Modal nudging of aerospace structures

Olivia Leão

Supervisors: Alberto Pirrera and Rainer Groh

8th CDT Conference

16th April 2019

bristol.ac.uk/composites
Outline

- Nonlinearities in design process
- Modal nudging
 - Concept
 - Stiffened structure example
- Limitations
- Current/future work
- Summary
Well-behaved nonlinear structures

- Instabilities ≠ structural failure
- Large deformations in material linear elastic range: Novel functionality and lighter structures
- Well-behaved nonlinearities can be robustly controlled

Improved structural efficiency through the incorporation of well-behaved nonlinearities in the design process

[1] shellbuckling.com
Modal nudging

Nonlinear response tailoring method based on post-buckling information

Original structure → Nonlinear post-buckling response information → Small change in geometry → Improved structural response:

- Load-carrying capacity
- Stiffness/compliance
- Sensitivity to imperfections

Modal nudging of aerospace structures
1. Identify isolated stable region of interest.
2. Extract deformation mode u_{state}.
3. Superpose to initial geometry x_0.
4. Restart analysis using nudged geometry x.
5. If necessary, increase nudging factor η. Repeat from 3.

Steps and results

- Clamped edge
- Clamped edge
- Original structure

Modal nudging of aerospace structures
Steps and results

1. Identify isolated stable region of interest.

2. **Extract deformation mode** \(\mathbf{u}_{\text{state}} \).

3. Superpose to initial geometry \(\mathbf{x}_0 \).

4. Restart analysis using nudged geometry \(\mathbf{x} \).

5. If necessary, increase nudging factor \(\eta \). Repeat from 3.

Graph:

- **Load, \(\lambda/\lambda_c \):** 0 to 3
- **End-shortening, \(d/d_c \):** 0 to 9
- **Higher load-carrying solution**
- **Region of interest**
- **Stable orig. path**
- **Unstable orig. path**
- **Critical point**

Modal nudging of aerospace structures
Steps and results

1. Identify isolated stable region of interest.
2. Extract deformation mode $\mathbf{u}_{\text{state}}$.
3. Superpose to initial geometry \mathbf{x}_0.
4. Restart analysis using nudged geometry \mathbf{x}.
5. If necessary, increase nudging factor η. Repeat from 3.

$$\mathbf{x} = \mathbf{x}_0 + \eta \bar{\mathbf{u}}_{\text{state}}$$

η: nudging factor
$\eta \sim$ thickness
$\bar{\mathbf{u}}_{\text{state}}$: normalised $\mathbf{u}_{\text{state}}$
Steps and results

1. Identify isolated stable region of interest.
2. Extract deformation mode \(\mathbf{u}_{\text{state}} \).
3. Superpose to initial geometry \(\mathbf{x}_0 \).
4. **Restart analysis using nudged geometry \(\mathbf{x} \).**
5. If necessary, increase nudging factor \(\eta \). Repeat from 3.

\[
\mathbf{x} = \mathbf{x}_0 + \eta \bar{\mathbf{u}}_{\text{state}}
\]

- \(\eta \): nudging factor
- \(\eta \sim \text{thickness} \)
- \(\bar{\mathbf{u}}_{\text{state}} \): normalised \(\mathbf{u}_{\text{state}} \)

Modal nudging of aerospace structures

[Diagram showing load-shortening relationship with stable and unstable paths, critical point, and nudged capacity.]
Limitations and Current/future work

Manufacturability

Modal nudging

Feature nudging

Aerodynamic surface change

Geometrical surface change

NA change

Modal nudging of aerospace structures
Summary

• Modal nudging is a robust method for improving structural efficiency
• Negligible increase in mass → Improvement in load carrying capacity/stiffness
• Effective for stiffened structures and can be adapted for different cases
Acknowledgements

The authors would like to acknowledge CNPq and Embraer for their support of this research.
Thank you!
Any questions?
olivia.leao@bristol.ac.uk

bristol.ac.uk/composites