COMPOSITES CURRICULUM - Unit Information

This unit forms part of the Masters level Composites Curriculum developed by Bristol and Plymouth Universities.

Taught block title	Performance A
Unit title	Durability
Level (Credit points)	H (2)
Unit director	Professor John Summerscales

Unit description

This unit forms part of the Masters level Composites Curriculum. It builds on the unit "Introduction to Composites" and "Composites Constituents" to provide Learners with a good understanding of the deterioration of composite systems over extended exposure to degrading conditions.

Core subjects to be covered

- 1. Polymer transition temperatures
- 2. Thermal degradation and fire
- 3. Moisture diffusion
- 4. Marine exposure: osmosis and blistering, galvanic corrosion
- 5. Weathering: electromagnetic and ionising radiation, precipitation and particle erosion
- 6. Chemical attack: acids, alkalis, solvents

- 7. Biological exposure: fouling, fungi
- 8. Mechanical durability: creep, fatigue, impact
- 9. Environmental stress corrosion interactions
- 10. Standard methods of test (NPL MAT85)
- 11. Highly Accelerated Life Testing (HALT)
- 12. Structural Health Monitoring (SHM)
- 13. Lifetime prediction

Statement of unit aims

The aims of this unit are to:

- Give Learners an understanding of the limitations of composites arising from degradation mechanisms
- 2. Provide Learners with an overview of the mechanisms of deterioration of composite performance
- 3. Give Learners the tools to design commercial structures that will satisfy performance requirements for the whole life cycle

Statement of learning outcomes

Learners will be able to:

- 1. Provide a clear overview of the mechanisms of deterioration of composites
- Establish an appropriate composite system for a specific application respecting the operating environment
- 3. Understand the issues constraining the use of composites in harsh conditions.

Methods of teaching	7 lectures, 2 lab classes and demonstrations, 1 class exercise
Assessment details if required	Written assignment (85%), 20 minute assessed presentation (15%)
Timetable information	2 days of teaching in a block