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1. Introduction

It is well recognized that bidder collusion is a serious problem in many auctions: Collu-

sion is documented in auctions for used machinery, timbers, frequency spectrums, Treasury

securities, the procurement of construction work, etc. (Marshall and Meurer (1995), Porter

and Zona (1990), Baldwin et al. (1997)). Despite its signi�cance as an empirical phenomenon,

relatively little is understood about the theory of collusion in auctions, which is distinguished

from the standard collusion theory by the presence of asymmetric information across bidders

about their valuations of the object.

Most of the existing analysis of collusion in auctions is conducted in the one-shot frame-

work. One important contribution in this case is made by McAfee and McMillan (1992), who

analyze bidder collusion with communication in �rst-price auctions under the independent

private values (IPV) assumption. Their key �ndings include the identi�cation of the most

e�cient collusion schemes with and without side transfer. In particular, they show that

full collusion is possible with side transfer, but that the scope of bidder collusion is severely

limited without it.

If collusion is a product of frequent interaction, however, a more appropriate framework

for analysis is that of repeated games, where the same set of bidders participate in a series of

auctions held sequentially over time.1 The purpose of this paper is to show that in in�nitely

repeated auctions, collusion is possible through intertemporal payo� transfer even if there is

no side payment of money. In other words, bidders in repeated auctions can collude through

the adjustment of continuation payo�s in a way that partially compensates for the lack of

monetary transfer. The paper derives a su�cient condition for such a collusion scheme to

be an equilibrium and characterizes the equilibrium payo�s in a general environment with

a�liated signals and private or interdependent values.

We consider a model of in�nitely repeated auctions with two symmetric bidders. In

every period, a single indivisible object is sold through the same auction format, and the

bidders' private signals are drawn from the same distribution.

The bidders collude by coordinating their bids in each auction with the help of a media-

1See also Hendricks and Porter (1990), who emphasize the need of a repeated model of
collusion in auctions.
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tion device referred to here as a center. In each period, the center receives reports from the

bidders about their private signals and then instructs them on what bid to submit in the

stage auction. This stage mechanism, which chooses instructions as a function of reports, is

called an instruction rule in this paper. A collusion scheme represents the center's choice of

an instruction rule in every period contingent on history. A collusion scheme is an equilib-

rium if truth-telling is incentive compatible and obedience to the instructions is rational for

the bidders.

This paper examines a bid rotation scheme which instructs no more than one bidder

to participate in each stage auction during the collusion phase, and punishes any deviation

from the instruction by reversion to the one-shot Nash equilibrium of the stage auction. In

particular, we will construct a bid rotation scheme which uses three di�erent instruction rules

during the collusion phase as follows: In the original symmetric phase S, the center uses the

e�cient instruction rule which instructs the bidder with the higher valuation (based on the

reports) to bid the reservation price R if and only if his valuation exceeds R. It instructs the

other bidder to stay out. In phase Ai (i = 1, 2), the center uses an asymmetric instruction

rule which disfavors bidder i in the sense that i's ex ante payo� is lower than that of bidder

j.

It can be seen that the e�cient instruction rule used in phase S is not incentive com-

patible since the bidders tend to overstate their signals in the hope of winning the object at

the reservation price. We suppose that the incentive for truth-telling in phase S is provided

through the adjustment in continuation payo�s as follows: When bidder i's reported signal

is higher than that of j, a transition to phase Ai takes place with positive probability so

that bidder i's continuation payo� would be lower. The instruction rule used in phase Ai is

chosen to be incentive compatible so that no further adjustment in continuation payo�s is

necessary. Phase Ai lasts for a �xed number of periods, and the game returns to phase S.

The above discussion suggests that the bid rotation scheme considered in this paper is a

dynamic scheme which chooses a di�erent instruction rule contingent on the communication

history. On the other hand, the one-shot collusion scheme analyzed by McAfee and McMillan

(1992) corresponds to a static bid rotation scheme in repeated auctions which uses the same

instruction rule every period. Note in particular that any instruction rule used by a static
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collusion scheme must be incentive compatible since no adjustment in continuation payo�s

is possible. The advantage of dynamic bid rotation is most evident in the IPV environment.

Speci�cally, when the auction is �rst-price, it can be shown that the dynamic scheme is an

equilibrium for su�ciently patient bidders and yields a strictly higher payo� to them than

the optimal static scheme without side transfer. The intuition is as follows: The optimal

static scheme of McAfee and McMillan (1992) uses a random instruction rule whose support

consists of the two asymmetric instruction rules used in phases A1 and A2 of the dynamic

scheme described above. It follows that the average of a bidder's payo�s in these two phases

exactly equals his payo� from the optimal static scheme. Since the allocation in phase S is

e�cient, the bidder's overall payo� in the repeated game is strictly higher.

It should be noted that the collusion scheme described above does not extract all the

surplus of the trade from the auctioneer. In other words, the scheme is not �rst-best e�cient

from the point of view of the bidders. The question of �rst-best e�ciency in collusion without

side transfer under asymmetric information is indeed very di�cult. E�ciency results are

available only in IPV models with �nite signals: Fudenberg et al. (1994) show that the IPV

model with �nite signals and communication has the \product structure," which guarantees

the existence of a near e�cient equilibrium for su�ciently low discounting.2 As is often the

case with mechanism design problems, however, conclusions based on �nite signals do not

necessarily extend to continuous signals.3

As mentioned above, most existing models of collusion in auctions are one-shot. Robinson

(1985) and von Ungern-Sternberg (1988) are among the �rst to point out the vulnerability of

the English and second-price sealed-bid auctions to bidder collusion.4 Graham and Marshall

(1987) and Graham et al. (1990) present particular side transfer schemes for second-price and

English auctions with pre-auction communication. Subsequently, Mailath and Zemsky (1991)

and McAfee and McMillan (1992) identify the optimal schemes under the IPV assumption.

2Based on this result, Athey and Bagwell (1999) characterize the �rst-best scheme in the
IPV model with binary signals.
3The �niteness of actions is critical. With communication, a player's action includes a
mapping from the set of signals to the set of reports. This suggests that using a �nite
message space in communication is not su�cient.
4Engelbrecht-Wiggans and Kahn (1998) and Brusco and Lopomo (2000) analyze collusion
in (one-shot) multi-object ascending price auctions.
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The former examine collusion with side transfer in second-price auctions, while the latter

look at that with and without side transfer in �rst-price auctions. Both papers conclude that

e�cient collusion is possible with side transfer.5 More recently, Athey et al. (1998), Johnson

and Robert (1998), and Skrzypacz and Hopenhayn (1999) analyze collusion in repeated IPV

auctions without side transfer.6 Among them, Skrzypacz and Hopenhayn (1999) prove the

existence of a collusion scheme without communication that performs strictly better than

the static scheme of McAfee and McMillan (1992) when the stage auction is �rst-price and

the reservation price equals zero. While the intuition behind their results is closely related

to ours, their formal logic is specialized to the particular auction format as well as the IPV

assumption. In contrast, one of this paper's main objectives is to present a simple collusion

scheme which is robust with respect to these speci�cations.

In this paper, it is assumed that every stage auction has the same format. While we be-

lieve that it is an appropriate description of many actual practices, an alternative formulation

would include the auctioneer as an active player of the game. In the one-shot framework,

Mailath and Zemsky (1991) and McAfee and McMillan (1992) both discuss the choice of

the reservation price as the auctioneer's response to collusion. In repeated auctions, the

corresponding treatment is to let the auctioneer choose the reservation price as a function

of history. The analysis of such a model is left as a topic of future research.

The organization of the paper is as follows: The next section formulates a model of

repeated auctions with the center as a mediation device. The dynamic bid rotation scheme

is described in Section 3. The main theorem in this section gives a su�cient condition for

this scheme to be an equilibrium and describes the equation that characterizes its payo�.

Section 4 provides a comparison of the dynamic and static schemes under the IPV assump-

tion. Section 5 discusses the generalization of the su�cient condition for the existence of

an equilibrium dynamic bid rotation scheme that yields a strictly higher payo� than the

optimal static scheme.

2. Model

There are two risk-neutral bidders 1 and 2 and a center which coordinates their bidding

5An earlier version of this paper contains an extension of this result.
6I became aware of these papers after the �rst version of the present paper was completed.
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in in�nitely repeated auctions. A single indivisible object is sold every period through a

�xed auction format. In each period, bidder i receives a private signal si 2 [0;1] about the

value of the object. The probability distribution of the signal pro�le s= (s1; s2) is the same

in every period and represented by the density function f whose support is the unit square

[0;1]2. The signals are independent across periods. The conditional density of si given sj is

denoted fi(� j sj), and the corresponding distribution function is denoted Fi(� j sj) (i 6= j).

With slight abuse of notation, we also use fi (resp. Fi) to denote the marginal density (resp.

distribution) of si (i= 1, 2). We assume that

Assumption 1: The signals s = (s1; s2) are a�liated.

See Milgrom and Weber (1982) for the de�nition of a�liation as well as its properties.

Assumption 1 is standard in auction theory and includes independent signals as a special

case. Our analysis will only use the following property of a�liation (e.g., Milgrom and Weber

(1982, Lemma 1)):

(1)
fi(si j sj)

Fi(si j sj)
is weakly increasing in sj for any si (i 6= j).

Given the signal pro�le s = (s1; s2), the expected value of the object to bidder i is denoted

vi(s) � 0. Throughout, we adopt the convention that the �rst argument of vi is si (own

signal) and the second is sj (the other bidder's signal). The value function vi is the same for

every period.

Throughout, the problem is assumed to be symmetric in the sense that f(�;�) = f(�;�)

and vi(�;�) = vj(�;�) for every �, � 2 [0;1].

The following two possibilities will be considered concerning the functional form of vi.

The values are private if vi(s) = si for every s = (si; sj), and interdependent if vi is strictly

increasing in both si and sj (i = 1, 2, j 6= i). In the case of interdependent values, the

function vi is assumed to satisfy the following regularity conditions.

Assumption 2: For i= 1, 2 and j 6= i,

(i) vi is continuously di�erentiable.

(ii)
@vi
@si

(�;�) >
@vj
@si

(�;�) for every � 2 [0;1].

Assumption 2(ii) is the single-crossing property commonly assumed in the auction lit-

erature. It should be noted that in a private values model, Assumption 2 is automatically
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satis�ed. A stage auction in this paper is any transaction mechanism that solicits a single

sealed bid from each bidder and then determines the allocation of the good as well as mone-

tary transfer.7 Participation in the stage auction is voluntary so that the set of each bidder's

generalized bids is expressed as B = fNg[R+, where N represents \no participation." The

rule of the auction is summarized by measurable mappings �i and pi (i = 1, 2) on the set

B2 of bid pro�les b = (b1; b2): �i(b) is the probability that bidder i is awarded the good,

and pi(b) is his expected payment to the auctioneer. The functions �i and pi (i = 1, 2) are

symmetric in the sense that �i(�;�) = �j(�;�) and pi(�;�) = pj(�;�) for any �, � 2 [0;1],

and satisfy the following conditions.

Assumption 3: (i) A bidder makes no payment when he chooses not to participate: pi(b) =

0 if bi =N .

(ii) There exists a non-random reservation price R (2 [0; vi(1;1))) such that a bidder may

win the object only if he submits a bid at or above R: �i(b) = 0 if bi 2 fNg [ [0;R).

(iii) If only one bidder participates and submits bid R, then he wins the object at price R:

�i(b) = 1 and pi(b) =R if bi = R and bj =N .

(iv) There exists a symmetricNash equilibrium in the (Bayesian) game in which each bidder's

strategy is a mapping �i : [0;1]! B and payo� function is

Z
[0;1]2

f�i(�(s))vi(s)� pi(�(s))gf(s)ds:

Assumption 3 encompasses most standard auctions including the �rst- and second-price

auctions. Let g0 be the (ex ante) symmetric Nash equilibrium payo� to each bidder in the

stage auction as described in Assumption 3(iv). Also, let g� be the expected payo� to each

bidder under truthful information sharing and e�cient allocation with bidder i winning the

object at price R if and only if vi exceeds both vj and R:

g� =

Z
fs: vi(s)>maxfvj(s);Rgg

fvi(s)�Rgf(s)ds:

Clearly, 2g� gives the �rst-best joint collusive payo�, and the bidders see a potential gain

from collusion if g0 < g�. This is the case to be studied in what follows.

7The restriction to a seal-bid auction is purely for simplicity.
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Collusion in the repeated auction takes the following form: At the beginning of each

period, the two bidders report their private signals si to the center. Upon receiving the

report pro�le ŝ = (ŝ1; ŝ2) 2 [0;1]2, the center chooses instruction to each bidder i on what

(generalized) bid to submit in the stage auction.

In general, the bidders may report a false signal, and/or disobey the instruction. Bidder

i's reporting rule �i : [0;1]! [0;1] chooses report ŝi as a function of signal si, and his bidding

rule �i : [0;1]
2�B!B chooses bid bi in the stage action as a function of his signal, report

and instruction. The reporting rule is honest if it always reports the true signal, and the

bidding rule is obedient if it always obeys the instruction. Denote by ��i and ��i bidder i's

honest reporting rule and obedient action rule, respectively.

For simplicity, we assume that the (generalized) bids in the stage auction are observable

to every party including the center.8 It should be noted that the conclusion of this paper

continues to hold in an alternative framework where only the identity of the winner is publicly

observable. This is because (i) the designated winner in each stage auction obtains the

object at the lowest price possible (= reservation price) in the collusion scheme considered

in this paper, and (ii) the designated loser may gain from disobeying the instruction only

by changing the identity of the winner. The observability of bids implies that a bidder's

deviation can be classi�ed into two types: A bidder commits an observable deviation when

he chooses a bid di�erent from the instruction given to him, and commits an unobservable

deviation when he reports a false signal.

The center is formally a communication device as de�ned by Forges (1986) and Myerson

(1986). Its choice of instructions to the bidders given their reports is captured by an in-

struction rule q = (q1; q2) : [0;1]2 ! B2: qi(ŝ) is the instruction to bidder i when the report

pro�le is ŝ. Let gi(�;�; q) denote bidder i's stage payo� resulting from any pro�le (�;�; q) of

reporting and bidding rules (�;�) = (�1; �1; �2; �2) and instruction rule q. The instruction

rule q is one-shot incentive compatible (one-shot IC) if neither bidder has an incentive to

misreport his signal: gi(�
�; ��; q) � gi(�i; �

�
j ; �

�; q) for any reporting rule �i, i = 1, 2, and

j 6= i. Note that one-shot incentive compatibility refers only to the incentive in reporting

8If the center is a simple communication device which does not have any observation function
of its own, we can let the bidders report each other's bid to the center so that its instructions
in the next period will be conditional on the reports.
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and presumes bidders' obedience to the given instructions. In particular, the instruction rule

that instructs bidders to play the one-shot Nash equilibrium of the stage auction is one-shot

IC. Lemma 1 in the next section identi�es some other instruction rules with this property.

Bidder i's communication history in period t in the repeated auction game is the sequence

of his reports and instructions in periods 1; : : : ; t� 1. On the other hand, bidder i's private

history in period t is the sequence of his private signals si in periods 1; : : : ; t�1. Furthermore,

the public history in period t is a sequence of instruction rules used by the center in periods

1; : : : ; t and (generalized) bid pro�les in the stage auctions in periods 1; : : : ; t� 1.

Bidder i's (pure) strategy �i in the repeated auction chooses the pair (�i; �i) of reporting

and bidding rules in each period t as a function of his communication and private histories

in t, and the public history in t. Let ��i be bidder i's honest and obedient strategy which

plays the pair (��i ; �
�
i ) of the honest reporting rule and obedient bidding rule for all histories.

The collusion scheme � describes the center's choice of an instruction rule in every

period as a function of communication and public histories. At the beginning of each period,

it publicly informs the bidders which instruction rule is used in that period.

Our analysis will focus on the following class of \grim-trigger" collusion schemes with two

phases: The game starts in the collusion phase, and reverts to the punishment phase forever

if and only if there is an observable deviation by either bidder in the sense described above.

In the punishment phase, the bidders are instructed to play the one-shot Nash equilibrium

of the stage auction speci�ed in Assumption 3(iv).

A collusion scheme � in this class is static if it chooses the same instruction rule in every

period during the collusion phase independent of the history, and is dynamic otherwise.

Furthermore, the collusion scheme � employs bid rotation if no more than one bidder is

instructed to participate in each stage auction during the collusion phase.

Let � < 1 be the bidders' common discount factor, and �i(�; � ) be bidder i's average

discounted payo� (normalized by (1� �)) in the repeated game under the strategy pro�le

(�; � ). The collusion scheme � is an equilibrium if the pair �� = (��1; �
�
2) of honest and obedi-

ent strategies constitutes a Nash equilibrium of the repeated game: �i(�
�; � )� �i(�

0
i; �

�
j ; � )

for any �0i, i = 1;2, and j 6= i. It follows from the de�nition that if � is an equilibrium static

collusion scheme, then its instruction rule in the collusion phase is one-shot IC.
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3. A Dynamic Bid Rotation Scheme

Let q� be the e�cient instruction rule that instructs bidder i to bid R if his valuation vi(ŝ)

(based on the report pro�le ŝ) is higher than both R and vj(ŝ), and to stay out otherwise:

q�i (ŝ) =

(
R if vi(ŝ)>maxfR;vj(ŝ)g,

N otherwise.

Clearly, the (ex ante) payo� gi(�
�; ��; q�) associated with q� equals the �rst-best level g�

although q� is not one-shot IC.

Consider next the asymmetric instruction rule qi that (i) instructs bidder j (6= i) to bid

R if his valuation vj(ŝ) exceeds R, and to stay out otherwise, and (ii) instructs bidder i to

bid R if his valuation vi(ŝ) exceeds R and if bidder j's valuation vj would not exceed R even

when i's signal were 1:

qii(ŝ) =

(
R if vi(ŝ) >R � vj(ŝj;1),

N otherwise,
qij(ŝ) =

(
R if vj(ŝ)> R,

N otherwise.

In other words, qi treats bidders j and i as the primary and secondary bidders, respectively.

Let g = gi(�
�; ��; qi) and �g = gj(�

�; ��; qi) be the bidders' expected payo�s under qi. By

de�nition, �g > g.

Lemma 1. qi is one-shot IC.

Proof: See the Appendix.

Since 2g� is the �rst-best joint collusive payo�, it can be readily veri�ed that

(2) 2g� > �g+ g;

where the strict inequality is the consequence of the full support of the density function f

and R < vi(1;1). Let �
d be a dynamic bid rotation scheme such that:

a) The collusion phase consists of three subphases S, A1 and A2: S is the original symmetric

phase where the e�cient instruction rule q� is used, while Ai is the asymmetric phase where

the instruction rule qi is used.

b) Play begins in the symmetric phase S. After each period in phase S, transition to the

asymmetric phase Ai (i= 1, 2) takes place with probability !i(ŝ), which is a function of the
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reported signals in the current period alone and given by

!i(ŝ) =

(
x(ŝi) if ŝi > ŝj,

0 otherwise,

for some increasing function x : [0;1] ! [0;1]. Play stays in phase S with probability

1�!1(ŝ)�!2(ŝ).

c) Each asymmetric phase Ai lasts exactly for m periods and then play returns to S.

It should be noted that the transition probability x(ŝi) depends only on the higher of the

two reports. There is a clear connection between the above collusion scheme and the one with

side transfer in McAfee and McMillan (1992). In McAfee and McMillan (1992), each bidder

is discouraged from overstating his signal by the transfer payment that is required from the

bidder with the higher report. On the other hand, the deterrent in the above scheme is the

possibility of a lower continuation payo� for such a bidder. This is a natural modi�cation of

the side transfer scheme in view of the substitutability of continuation payo�s for monetary

transfer in repeated games.

Let r 2 [0;1] be the (unique) signal such that vi(r; r) = R, and de�ne the function

y : (g;1)!R++ by

y(u) =

Z 1

r

Z si

0

Z si

r

fvi(�;�)�Rg zi(�) e
�

�g�g

u�g

R si

�
zi(
)d


d� f(s)dsj dsi;

where

zi(�) =
fi(� j �)

Fi(� j �)
:

A bidder's payo� ud = �i(�
�; � d) from the dynamic bid rotation scheme � d is characterized

by (i) the recursive equation on ud involving the transition probability function x (in (b)

above), and (ii) the incentive compatibility condition on x for truthful reporting in phase S.

By the standard argument, the latter gives rise to a linear di�erential equation of x which

has the payo� ud as a parameter. By substituting the solution to this equation into the

recursive equation in (i), we obtain the following equation of u= ud:

(3) '(u)� u� g�+
2u� �g � g

u� g
y(u) = 0:

Note that the function ' : (g;1)! R is continuous since y is. The following is our main

theorem.
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Theorem 1. Assume that the values are either private or interdependent. If '(u) = 0

has a solution ud strictly greater than g0, then for a su�ciently large discount factor �, the

dynamic bid rotation scheme � d is an equilibrium for some x (transition probability) and m

(duration of phase Ai), and yields payo� ud.

Proof: See the Apendix.

It should be noted that low discounting is required for � d to be an equilibrium although

(3) and its solution ud are independent of �. While '(u) = 0 is not analytically solvable in

general, there is a simple su�cient condition based on the comparison of g0 and (�g+ g)=2 as

follows: Since y(u)> 0 for any u > g, it readily follows from (2) that

'(g�) =
2g� � �g� g

g�� g
y(g�) > 0 and '

��g+ g

2

�
=
�g+ g

2
� g� < 0:

By the intermediate value theorem, hence, there exists ud 2
�
(�g + g)=2; g�

�
that solves

'(u) = 0. The intuition behind ud > (�g + g)=2 is as follows: Phases A1 and A2 are equally

likely ex ante so that a bidder's expected payo� conditional on being in these two phases

equals (g + �g)=2. Since allocation is e�cient in phase S, his overall payo� in the repeated

game exceeds it. This observation combined with Theorem 1 yields the following corollary.

Corollary 1. Assume that the values are either private or interdependent. If g0 � (�g +

g)=2, then for a su�ciently large discount factor �, the dynamic bid rotation scheme � d is

an equilibrium for some x and m.

Example 1: Suppose that the stage auction is second-price sealed-bid with the reservation

price R equal to zero. In this case, it is well known that the bidding function in the one-shot

Nash equilibrium is given by �0i (si) = vi(si; si). Suppose further that the value function vi

has the linear form vi(s) = csi+(1� c)sj , where c 2 (1=2;1]. As seen, the values are private

if c= 1 and interdependent otherwise. The one-shot Nash equilibrium payo� equals

g0 =

Z
fs: si>sjg

fvi(s)� �0j (sj)gf(s)ds = c

Z
fs: si>sjg

(si� sj)f(s)ds;

whereas g = 0 and

�g =

Z
[0;1]2

fcsi + (1� c)sjgf(s)ds:
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From these, we can verify that

1
2
(g +�g)� g0 =

1
2

Z
[0;1]2

fsj � cjsj � sijgf(s)ds:

Therefore, the su�cient condition in Corollary 1 is equivalent to E[sj] � cE[jsj � sij]. It

follows that for the �xed distribution f , if � d is an equilibrium in the private values model (c=

1), then it is an equilibrium in the interdependent values model (c < 1) as well. Furthermore,

since E[sj]> 1
2 E[jsi� sjj] for any f as can be readily veri�ed, there exists �c > 1=2 such that

if c� �c, then � d is an equilibrium.

4. Dynamic vs. Static Collusion Schemes with IPV

In this section, we apply Theorem 1 to the IPV environment where the signals are

independent and the values are private. Theorem 2 below states that the condition of

Theorem 1 holds when the stage auction is either �rst-price or second-price.

Theorem 2. Assume independent private values (IPV). Suppose that the stage auction is

either �rst-price or second-price sealed-bid. Then for a su�ciently large discount factor �,

the dynamic bid rotation scheme � d is an equilibrium for some x and m, and its payo� ud is

strictly higher than both (�g+ g)=2 and g0.

Proof: See the Apendix.

Based on the conclusion of Theorem 2, we now turn to the comparison of the collu-

sive payo�s associated with static and dynamic collusion schemes under IPV. In �rst-price

sealed-bid auctions with IPV, McAfee and McMillan (1992) show that a certain degree of

collusion is possible in some cases even if there is no side transfer and the auction is one-

shot. Their theorem directly applies to the current repeated game framework and yields the

characterization of the most e�cient equilibrium static collusion scheme. Let

hi(si) =
1�Fi(si)

fi(si)

be the inverse hazard rate of si. The following theorem is stated without a proof as it is a

straightforward application of Theorem 1 of McAfee and McMillan (1992).

Theorem 3. Assume independent private values (IPV). Suppose that the stage auction is

�rst-price sealed-bid. Let � s be the most e�cient equilibrium static collusion scheme without
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side transfer for a su�ciently large discount factor �. Then � s is a grim-trigger scheme, and

its payo� us is as follows:

(i) If hi(�) is (weakly) increasing, then us equals the one-shot equilibrium payo� g0.

(ii) If hi(�) is (weakly) decreasing, then us equals (�g + g)=2.

Note that the static collusion scheme must use a one-shot IC instruction rule in every

period since no incentive for truthful reporting can be provided through the adjustment in

continuation payo�s. In particular, McAfee and McMillan (1992) show that when hi(�) is

decreasing (case (ii) above), the e�cient static scheme � s uses a random instruction rule

~q : [0;1]2 !�B2 which places probability one-half each on qi and qj de�ned in the previous

section: ~q = 1
2 q

i+ 1
2 q

j. More explicitly, ~q can be written as

(~qi(ŝ);~qj(ŝ)) =

8>><
>>:
(R;N) if ŝi >R � ŝj,

1
2 (N;R) + 1

2 (R;N) if ŝi, ŝj >R,

(N;N) if ŝi, ŝj �R.

In other words, the participating bidder is chosen at random with probability one-half when

both valuations exceed R. Clearly, such an instruction rule is one-shot IC.

Comparison of Theorems 2 and 3 immediately reveals that when hi(�) is monotone, the

dynamic bid rotation scheme � d outperforms any static bid rotation scheme. The following

corollary summarizes this observation.

Corollary 2. Assume independent private values (IPV). Suppose that the stage auction

is �rst-price sealed-bid, and that hi(�) is monotone. Then for a su�ciently large discount

factor �, the dynamic bid rotation scheme � d is an equilibrium for some x and m, and yields

a strictly higher payo� than any equilibrium static bid rotation scheme.

Example 2: Suppose that the stage-auction is �rst-price, and that si has the uniform

distribution over [0;1]. Assume that � is su�ciently large.9 Since h0i(si)< 0 for every si, the

best static scheme yields us = (g+�g)=2 by Theorem 3. Table 1 below presents the values of

ud, us and the one-shot equilibrium payo� g0 as fractions of the �rst-best e�ciency level g�

for various values of R. It can be seen that � d extracts at least close to 90% of the surplus.

9When R = 0, for example, � d is an equilibrium if � � :95.
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R g� ud

g�
us

g�
g0

g�

:0 :3333 :886 :750 :500

:1 :2835 :899 :786 :571

:2 :2347 :912 :818 :636

:3 :1878 :926 :848 :696

:4 :1440 :938 :875 :750

:5 :1042 :949 :900 :799

:6 :0693 :961 :923 :847

:7 :0405 :981 :944 :889

Table 1

5. Su�cient Condition

In this section, we reformulate the su�cient condition for the existence of an equilib-

rium dynamic collusion scheme that achieves a strictly higher payo� than the optimal static

scheme. Speci�cally, this condition is expressed in terms of the payo� vectors associated

with asymmetric one-shot IC instruction rules.

Corollary 1 shows that the payo� from the dynamic scheme � d is strictly higher than

the average of the payo�s associated with two asymmetric instruction rules q1 and q2 (used

in phases A1 and A2, respectively). By the same logic, if we construct a dynamic bid

rotation scheme using any other pair of asymmetric (one-shot IC) instuction rules, then a

bidder's payo� in that scheme is strictly higher than the average of his payo�s from these two

instruction rules. Formally, de�ne V to be the set of payo� vectors associated with one-shot

IC instruction rules:

V =
�
(g1(�

�; ��; q); g2(�
�; ��; q)) : q is a one-shot IC instruction rule

	
:

By the standard argument, the set V is closed. Note also that the one-shot Nash equilibrium

payo� vector (g0; g0) belongs to V . Let us = �i(�
�; � s) be the payo� associated with the

most e�cient (symmetric) static collusion scheme � s. Since � s uses a one-shot IC instruction

rule as previously noted, it follows that (us; us) 2 V . Graphically, (us; us) is the right-most

point of the intersection between V and the 45 degree line through the origin.
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Theorem 4. Assume that the values are either private or interdependent. Suppose that

the payo� vector (us; us) associated with the most e�cient symmetric static collusion scheme

is not an extreme point of the set V . Then for a su�ciently large discount factor �, there

exists an equilibrium dynamic bid rotation scheme � d whose payo� ud is strictly higher than

us.

Proof: Since (us; us) is not an extreme point, symmetry implies that there exist one-shot

IC instruction rules q̂1 and q̂2 with the payo� vectors (g0;�g0) 2 V and (�g0; g0) 2 V , respectively,

for some g0 and �g0 such that g0 < �g0 and (g0+ �g0)=2 � us. We also have 2g� > g0+ �g0 by the

same logic as in (2). Modify � d in Section 3 so that it chooses q̂i in subphase Ai (i = 1,

2). By Corollary 1, � d is an equilibrium for su�ciently patient bidders and its payo� ud is

strictly higher than (�g0+ g0)=2 � us. //

For example, suppose that the stage-auction is �rst-price. Suppose further that IPV

holds and and that hi(�) is decreasing. In this case, we know from Corollary 2 that the

payo� vector (ud; ud) associated with the dynamic bid rotation scheme � d strictly dominates

(us; us). In the light of Theorem 4, this is precisely because (us; us) is not an extreme point

of V : In fact, it equals the convex combination of (�g; g) and (g;�g) 2 V (Theorem 2).

To see that the condition of Theorem 4 is su�cient but not necessary, consider the �rst-

price IPV auctions with an increasing hi(�). In this case, (us; us) equals the one-shot Nash

equilibrium payo� vector (g0; g0) (Theorem 3) and (ud; ud) dominates (g0; g0) regardless of

whether it is an extreme point of V or not (Theorem 2).

Appendix

The following notation is used for the discussion of the interdependant values case in the

Appendix. For each si 2 [0;1], let ki(si) be the opponent's signal sj such that vi(si; sj) = R

if there exists any such sj 2 [0;1]. Let ki(si) = 1 if vi(si; sj) < R for every sj 2 [0;1], and

ki(si) = 0 if vi(si; sj) > R for every sj 2 [0;1]. It follows from the continuity and strict

monotonicity of vi that ki is well-de�ned. Also, we have by de�nition

vi(si; ki(si))

8>><
>>:
�R if ki(si) = 0,

=R if ki(si) 2 (0;1),

�R if ki(si) = 1.
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Furthermore, since vi is continuously di�erentiable, ki(si) is continuously di�erentiable itself

at any si such that ki(si) 2 (0;1) by the implicit function theorem. Figure 1 depicts ki for a

generic (interdependent) value function vi.

Proof of Lemma 1: The conclusion is straightforward if the values are private. We will

show below that qi is one-shot IC for bidder i in the interdependent values case. A similar

argument proves the same for bidder j. Let Gi
i(si; ŝi) be bidder i's interim stage payo� under

qi when he has signal si and reports ŝi.

Let ki be as de�ned above, and w 2 [0;1] denote the minimumof sj such that vj(sj;1)�R

(Figure 1). Note �rst that if ŝi is such that ki(ŝi) � w, then Gi
i(si; ŝi) = 0 for any si since

vi(ŝi; sj) � R implies sj � ki(ŝi) � w so that vj(sj;1) �R. Suppose now that ki(ŝi)< w. In

this case, we have

Gi
i(si; ŝi) =

Z w

ki(ŝi)

fvi(s)�Rgfj(sj j si)dsj:

Since vi(si; sj) � R for any sj � ki(si) and vi(si; sj) � R for any sj � ki(si), it follows from

the above equation that Gi
i(si; ŝi) is maximized when ŝi = si. //

Proof of Theorem 1: Let u > g0 be a solution to (3). Take any m 2N such that

m>
1

u� g

Z 1

r

fvi(�;�)�Rg zi(�)d�:

We claim that there exists � < 1 such that for any � > �,

(a1) (1� �)fvi(1;1)�Rg+ �g0 < (1� �m) g+ �mu;

and

(a2)
1� �

�(1� �m)(u� g)

Z 1

r

fvi(�;�)�Rg zi(�)d� < 1:

This is clear for (a1) since u > g0 by assumption. For m as speci�ed, (a2) also holds since

lim
�!1�

1� �

�(1� �m)
= lim

�!1�

1
�(1 + �+ � � �+ �m�1)

=
1
m
:

Recall that x(�) denotes the probability of transition to subphase Ai when i's report � is

higher than that of bidder j. Take any � > � and let x be given by

(a3) x(�) =

( 1� �

�(1� �m)(u� g)

Z �

r

fvi(�;�)�Rg zi(�) e
�

�g�g

u�g

R �

�
zi(
) d


d� if � > r,

0 otherwise.
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Note that x(�) 2 [0;1] by our choice of m and � so that it is indeed a probability.

In what follows, we �x u, m, � > �, x as above and prove the theorem in three steps:

Step 1 shows that each bidder's payo� is u when they play the honest and obedient strategy

��i under �
d. Steps 2 and 3 then prove the non-pro�tability of observable and unobservable

deviations, respectively. By the principle of optimality in dynamic programming, the latter

two steps can be accomplished by checking the pro�tability of one-step deviations.

Step 1. �i(�
�; � d) = u.

Note that u is the payo� associated with � d if and only if it satis�es the following recursive

equation:

u= (1� �) g�+ �

�Z 1

0

Z si

0

�
x(si)

�
(1� �m) g + �mu

	
+f1� x(si)gu

�
f(s)dsj dsi(a4)

+

Z 1

0

Z 1

si

�
x(sj)

�
(1� �m) �g+ �m u

	
+ f1� x(sj)gu

�
f(s)dsj dsi

�
:

Using symmetry, we can rewrite (a4) as

(a5) u= g��
�(1� �m)
1� �

(2u� �g� g)

Z 1

r

Z si

0

x(si)f(s)dsj dsi:

Substitution of (a3) into (a5) shows that the above recursive equation is equivalent to (3).

Since u solves (3) by assumption, the desired conclusion follows.

Step 2. No observable deviation (in bidding) is pro�table.

When bidder i with any signal or report (whether truthful or not) disobeys the instruc-

tion, the maximal instantaneous gain from the deviation is bounded above by vi(1;1)�R

and the continuation payo� equals g0. On the other hand, the lowest payo� along the path

of play equals (1� �m)g+ �mu (by Step 1) when subphase Ai is just beginning. Hence, (a1)

implies that no observable deviation is pro�table.

Step 3. No unobservable deviation (in reporting) is pro�table.

Since a bidder is made strictly worse o� by disobeying the instruction, a pro�table

deviation is possible only when he misreports his signal and then obeys the instruction.

Since the insturctions rules q1 and q2 are one-shot IC by Lemma 1, bidder i has no incentive

to misreport a signal in phases Ai and Aj. Likewise, he has no incentive for misreporting in

the punishment phase. It remains to check the incentive for misreporting in phase S.
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Let �i(si; ŝi) denote bidder i's interim (intertemporal) expected payo� in any period in

phase S when he has signal si and reports ŝi while bidder j reports his signal truthfully.

The discussion below assumes interdependent values. Derivation in the case of private

values is similar and hence omitted. We can express �i using the continuation payo� u as

follows: For ŝi > r,

�i(si; ŝi) = (1� �)

Z ŝi

ki(ŝi)

fvi(s)�Rgfj(sj j si)dsj

+ �

�Z ŝi

0

�
x(ŝi)

�
(1� �m)g + �mu

	
+ f1� x(ŝi)gu

�
fj(sj j si)dsj(a6)

+

Z 1

ŝi

�
x(sj)

�
(1� �m)�g+ �mu

	
+ f1� x(sj)gu

�
fj(sj j si)dsj

�
;

and for ŝi � r,

�i(si; ŝi) = �

�Z ŝi

0

�
x(ŝi)

�
(1� �m)g+ �mu

	
+ f1� x(ŝi)gu

�
fj(sj j si)dsj(a7)

+

Z 1

ŝi

�
x(sj)

�
(1� �m)�g+ �mu

	
+ f1� x(sj)gu

�
fj(sj j si)dsj

�
:

Upon simpli�cation, we see that (a6) is equivalent to

�i(si; ŝi)

= (1� �)

Z ŝi

ki(ŝi)

fvi(s)�Rgfj(sj j si)dsj

+ �

�
u� (1� �m) (u� g)x(ŝi)Fj(ŝi j si) + (1� �m)(�g� u)

Z 1

ŝi

x(sj)fj(sj j si)dsj

�
:

Since ki is di�erentiable almost everywhere, we can di�erentiate the above with respect to

ŝi to obtain

@�i
@ŝi

(si; ŝi)

= (1� �)
h
fvi(si; ŝi)�Rgfj(ŝi j si)� k0i(ŝi)fvi(si; ki(ŝi))�Rgfj(ki(ŝi) j si)

i
� �(1� �m)

h
(u� g)

�
x0(ŝi)Fj(ŝi j si) + x(ŝi)fj(ŝi j si)

	
+ (�g � u)x(ŝi)fj(ŝi j si)

i
= (1� �)

h
fvi(si; ŝi)�Rgfj(ŝi j si)� k0i(ŝi)fvi(si; ki(ŝi))�Rgfj(ki(ŝi) j si)

i
� �(1� �m)

h
(u� g)x0(ŝi)Fj(ŝi j si) + (�g� g)x(ŝi)fj(ŝi j si)

i
:

On the other hand, x given in (a3) satis�es the following linear di�erential equation:

(a8) x0(�) +
�g� g

u� g
zj(�)x(�) =

( 1� �

�(1� �m)(u� g)
fvi(�;�)�Rg zj(�) if � > r,

0 otherwise.
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(Heuristically, (a3) is derived as the (unique) solution to (a8) with the intial condition

x(r) = 0. (a8) is obtained as follows: The optimality of truth-telling implies the following

�rst-order condition for si > r:

@�i
@ŝi

(si; si) = (1� �)
h
fvi(si; si)�Rgfj(si j si)� k0i(si)fvi(si; ki(si))�Rgfj(ki(si) j si)

i
� �(1� �m)

h
(u� g)x0(si)Fj(si j si) + (�g� g)x(si)fj(si j si)

i
= 0:

The �rst line of (a8) follows from the fact that k0(si)fvi(si; ki(si))�Rg= 0 almost everywhere.

The similar �rst-order condition for si � r yields the second line of (a8).)

To verify that truth-telling is (globally) optimal under (a3), we rewrite
@�i
@ŝi

(si; ŝi) using

(a8) as follows when ŝi > r:

@�i
@ŝi

(si; ŝi) = (1� �)
h�
vi(si; ŝi)�R

	
fj(ŝi j si)� k0i(ŝi)

�
vi(si; ki(ŝi))�R

	
fj(ki(ŝi) j si)

i
+ �(1� �m) (�g� g)Fj(ŝi j si)x(ŝi)

�
zj(ŝi)�

fj(ŝi j si)

Fj(ŝi j si)

�
� (1� �)

�
v̂i(ŝi)�R

	
Fj(ŝi j si) zj(ŝi)

= (1� �)fj(ŝi j si)fvi(si; ŝi)� vi(ŝi; ŝi)g

+ (1� �)

�
fj(ŝi j si)

Fj(ŝi j si)
� zj(ŝi)

��
v̂i(ŝi)�R�

�(1� �m)
1� �

(�g� g)x(ŝi)

�
Fj(ŝi j si)

� (1� �)k0i(ŝi)
�
vi(si; ki(ŝi))�R

	
fj(ki(ŝi) j si)

Note that it follows from (a3) that

v̂i(ŝi)�R�
�(1� �m)
1� �

(�g� g)x(ŝi) > 0

for any ŝi > r. If ŝi > si, then k0i(ŝi)
�
vi(si; ki(ŝi))�R

	
� 0, vi(si; ŝi)� vi(ŝi; ŝi) < 0, and

fj(ŝi j si)

Fj(ŝi j si)
� zj(ŝi) � 0. Therefore,

@�i
@ŝi

(si; ŝi) � 0. Similarly,
@�i
@ŝi

(si; ŝi) � 0 when ŝi 2 (r; si).

When ŝi < r, we can similarly show from (a7) and (a8) that
@�i
@ŝi

(si; ŝi) � 0 (resp. � 0) for

ŝi > si (resp. < si). In either case, �i(si; �) is single-peaked at ŝi = si. This completes the

proof of the theorem. //

Proof of Theorem 2: It is clear from the discussion after Theorem 1 that ud > (�g+g)=2.

It will be shown below that ud > g0. It follows from (a8) that for � > R,

x(�) =
1� �

�(1� �m)(�g � g)
(��R)�

u� g

(�g� g)zj(�)
x0(�):
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Substituting this by noting g� =
R 1

R
(��R)Fi(�)fi(�)d�, we haveZ 1

R

x(�)Fi(�)fi(�)d�

=
1� �

�(1� �m)(�g � g)
g��

u� g

�g� g

Z 1

R

Fi(�)
2x0(�)d�

=
1� �

�(1� �m)(�g � g)
g��

u� g

�g� g

�
x(1)� 2

Z 1

R

x(�)Fi(�)fi(�)d�

�
;

where the second equality follows from integration by parts. It follows that

(�g+ g � 2u)

Z 1

R

x(�)Fi(�)fi(�)d� =
1� �

�(1� �m)
g� � (u� g)x(1):

By (a5), '(u) equals

'(u) = u� g� + (2u� �g� g)
�(1� �m)
1� �

Z 1

R

x(�)Fi(�)fi(�)d�(a9)

= u� 2g� +
�(1� �m)
1� �

(u� g)x(1):

Substituting

x(1) =
1� �

�(1� �m)(�g � g)

Z 1

R

�
1�Fi(�)

�g�g

u�g
	
d�

from (a3) into (a9), we obtain

'(u) = u�

Z 1

R

�
1�Fi(�)

2
	
d�+

u� g

�g � g

Z 1

R

�
1�Fi(�)

�g�g

u�g
	
d�:

We now show that '(u) = 0 has a solution in (g0; g�). It su�ces to show that '(g0) < 0

since we already know from the remark before Corollary 1 that '(g�)> 0. It can be readily

veri�ed that in both �rst-price or second-price sealed-bid auctions, the (symmetric) one-shot

Nash equilibrium payo� is given by

g0 =

Z 1

R

fFi(�)�Fi(�)
2gd�:

Substituting this into the �rst term of '(g0), we get

'(g0) = �

Z 1

R

�
1�Fi(�)

	
d�+

g0� g

�g � g

Z 1

R

�
1�Fi(�)

�g�g

g0�g
	
d�:

If we de�ne the function ��(�) : R+ !R by

��(z) =
1
z

�
1�Fi(�)

z
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for each � 2 [0;1], then it follows from the above that '(g0) can be rewritten as

'(g0) =

Z 1

R

n
��

� �g� g

g0� g

�
� ��(1)

o
d�:

Since �0�(z) < 0 for each � 2 [0;1) and z 2 R+, ��(z) is a strictly decreasing function of z

for every � 2 [R;1). It follows that '(g0)< 0 since (�g� g)=(g0� g)> 1. This completes the

proof of the theorem. //
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