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1 Introduction

The estimation of causal exposure e¤ects on study outcomes is almost always complicated

by non-random selection of exposure. The problem is well known to a¤ect observational

studies, but it also a¤ects randomised controlled trials, which are rarely perfectly con-

ducted and usually a¤ected by issues like participant non-compliance. If the selection

mechanism is non-random then inferences based on estimators that fail to adjust for its

e¤ects will be misleading. For example, in epidemiology, the impact of non-random se-

lection is termed �confounding�bias, which arises if confounding variables C associated

with outcome Y and exposure X are omitted from the analysis. Exposure selection is

ignorable if all the confounding variables C are observed and conditioned on appropri-

ately in the analysis, but selection is non-ignorable if there are unobserved confounding

variables (e.g., bias due to �residual confounding�). In economics, the problem is com-

monly framed in terms of a regression model from which important regressor variables

have been omitted and so become part of the model�s error term. In this context, the

exposure is termed �exogenous�if it is not associated with the error, and �endogenous�if

it is, even after conditioning on C.

Instrumental variables are widely used in economics to solve the problems posed by

endogenous X, and more generally, those problems arising from non-ignorable selection.

An instrumental variable (IV) Z is associated with X but associated with Y only in-

directly through its association with X. IVs are also used in disciplines other than

economics. For example, there has recently been great interest in the use of IVs based on

genetic information to exploit the �Mendelian randomisation�hypothesis (e.g., Lawlor et

al., 2008); and in the analysis of randomised experiments with non-compliance, the IV is

the randomisation indicator of the experimental group to which each experimental unit

is randomised (e.g., Angrist et al., 1996; Greenland, 2000).

In this paper, we review the problems associated with �binary IV�estimators, that is,
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estimators for the causal e¤ects of exposures on binary outcomes which are based on IVs.

It has already been recognised that binary IV estimators cannot identify causal e¤ects

without additional assumptions concerning the nature of the data generating process

(Chesher, 2010). In two recent papers, extensive simulation studies are used to compare

the performance of di¤erent binary IV estimators under speci�c data generating processes

(Didelez et al., 2010; Vansteelandt et al., 2010). However, our focus is somewhat di¤er-

ent: we use a general causal modelling framework to compare the di¤erent IV estimators

proposed in the literature, make clear the underlying identi�cation assumptions of each,

and explore the links between these estimators. Our survey includes estimators of �local�,

or �complier-speci�c�causal e¤ects (Imbens and Angrist, 1994), and thus links in with

the literature on �principal strati�cation�(Fragakis and Rubin, 2002), and we also aim

to emphasise the implications of our �ndings for practitioners looking to apply these

methods. While our focus here is on non-ignorable selection, we note that the important

problem of measurement error can also be addressed using binary IV estimators (e.g.,

Carroll et al., 2006; Vansteelandt et al., 2008).

The paper is organised as follows. We start by setting out in Section 2 the framework

within which the di¤erent estimators are to be assessed. To simplify the presentation and

to emphasise concepts, we focus on setting out this framework for the simplest possible

scenario with X and Z both binary and no covariates. In Section 3, we explicate the

assumptions required to identify causal e¤ects and bounds for these e¤ects. The various

estimators are considered in Sections 4-7 where we again consider only the simplest

possible scenarios to facilitate a comparison between the identifying assumptions made

by each. Finally, in Section 8 we make concluding remarks about recent developments in

this area, and make recommendations for practice.
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2 Causal Framework

2.1 Study design

It is �rst helpful to clarify the nature of the studies for which the estimators we consider

are appropriate. If we set causal inference as the analytical goal, then we take the ideal

study to be a randomised experiment in which randomisation determines the exposure

level received by each study unit. However, randomised experiments are not always

perfectly conducted or even feasible, and it is for studies falling below the ideal standard

that IVs can be used to obtain causal inference.

The �rst class of studies we consider are called �encouragement designs�. These are

experiments which involve an initial selection stage wherein exposure is randomly as-

signed to the study units, followed by a second stage in which the study units select

whether or not to comply with this assignment; the outcome is measured at some point

following selection. More generally, the �rst stage involves a selection mechanism that

is known to be ignorable given pre-study covariates C (Rosenbaum and Rubin, 1983).

Special cases of encouragement design impose constraints on stage-two selection. For

example, in randomised placebo-controlled trials, those assigned to the control group

who non-comply cannot take the active treatment, only a placebo (e.g., Greenland, 2000;

Nagelkerke et al., 2000); a more extreme example of this type directly �forces�compliance

among those assigned to the control group by denying access to any treatment, be it the

active treatment or a placebo (e.g., Somer and Zeger, 1991).

The second class of studies we refer to simply as �observational studies�. These can be

of cross-sectional or longitudinal surveys of a population or cohort in which X and Y are

measured. We follow Rubin (2008) and argue that a prerequisite for causal inference from

observational studies is that X can plausibly be conceived as the result of some selection

mechanism driven by factors causally antecedent to X. If these factors are known and

part of C then causal inference is possible. However, the scenario of interest here is one
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where important factors are omitted from C and so causal inference requires the use of

IVs.

Choosing IVs for observational studies is far from simple because, as we discuss be-

low, an IV must be associated with exposure and independent of the unobserved fac-

tors driving selection. Potentially successful strategies involve exploiting �natural experi-

ments�, such as administrative di¤erences between two otherwise homogeneous areas, and

the Mendelian randomisation hypothesis that X is a phenotype for a randomly deter-

mined genotype Z (e.g., Didelez and Sheehan, 2007). Other study designs that work on

similar principles, like regression discontinuity designs (e.g., Imbens and Lemieux, 2008),

will not be considered here.

2.2 Structural models

We begin by considering the classical application of IVs from econometrics, namely,

estimation of the linear model for the regression of outcome Y on exposure X when the

exposure and the model�s residual error term are correlated. For illustration, we allow Y

to have any measurement scale provided that the linear model

Y = �0 +X�1 + U; (1)

holds, where U represents the combined contribution of the omitted variables such that

E(U) = 0 and Var(U) = �2. Non-ignorable selection in this case results in endogenous

X where Cov(X;U) 6= 0. To make causal inferences, we interpret model (1) as structural

in the sense that the target parameter �1 is the ceterus paribus e¤ect of X, that is, the

e¤ect on Y of a unit change in X if U is held �xed (Goldberger, 1972).

The structural modelling approach involves �nding suitable estimators for the model

parameters. In this example, the ordinary least squares (OLS) estimator of �1 is always

consistent for Cov(Y;X)=Var(X), but is consistent for �1 only if Cov(X;U) = 0. How-

ever, by expanding our data set to include a suitable IV Z, the classical IV estimator
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b�IV1 = Cov(Y; Z)=Cov(X;Z) is consistent for �1 even if Cov(X;U) 6= 0. For binary Z,

the classical IV estimator is

b�IV1 =
E(Y jZ = 1)� E(Y jZ = 0)
E(XjZ = 1)� E(XjZ = 0) : (2)

To be a suitable IV, Z must be chosen so that the directed acyclic graph (DAG) for

the true joint distribution of Z, U , X and Y satis�es the following constraints:

C1. Independence between the IV and the omitted variables: Z?U .

C2. Conditional independence of the outcome and IV: Y?ZjX;U .

Figure 1 displays the DAG corresponding to these constraints. Note that ? indicates in-

dependence between random variables, but for semi-parametric estimators the stochastic

independence assumption can somtimes be relaxed to conditional mean independence.

To ensure that the denominator of the IV estimator is non-zero, a further requirement is

needed:

C3. Causal e¤ect of Z on X: E(XjZ = 1)� E(XjZ = 0) 6= 0 for binary Z.

Didelez and Sheehan (2007) call these three requirements the IV �core conditions�. Robins

(2006) discuss an exception to C3 in which Z is a �surrogate�IV and there is no arrow

between Z and X in Figure 1, but we will assume throughout that C3 holds.

Two-stage least squares (2SLS) is the most widely used IV estimator for linear models

(e.g., Wooldridge, 2002, ch. 5). It is a generalisation of (2) to multiple regression models

and multiple IVs. In this simple set-up, the two stages of the 2SLS estimator are de�ned

as follows: �rst, �t the �reduced-form�linear regression model E(XjZ) = �0+Z�1 using

OLS to obtain bX = b�0+Zb�1; and second, �t E(Y j bX) = �0+ bX�1 using OLS. The 2SLS
estimator is consistent (but not unbiased) provided that (1) holds and the IV satis�es core

conditions C1-C3. Moreover, there is a certain degree of robustness because the estimator

is consistent even if the reduced-form model is mis-speci�ed (e.g., if X is binary).
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2.3 Potential outcomes

The IV conditions can also be stated in terms of potential outcomes (e.g., Angrist et al.,

1996; Robins and Rotnitzky, 2004). For each individual, de�ne the potential exposures

X(z) and potential outcomes Y (z; x) for, respectively, the exposures and outcomes which

would have been obtained if the exposure had been set to x and the IV to z by external

intervention rather than by the true data generating process.

The consistency assumption linking observed and potential outcomes is Y = Y (Z;X)

and X = X(Z), which is trivially taken to hold; all the other potential outcomes are

unobservable and thus counterfactual. More importantly, the IV must satisfy three con-

ditions:

P1. Independence of the potential outcomes and IV: X(z); Y (z; x)?Z.

P2. Exclusion restriction: Y (z; x) = Y (x).

P3. Causal e¤ect of IV on exposure: EfX(1)�X(0)g 6= 0 (for binary Z).

Condition P1 corresponds to independence between the IV and all the potential outcomes

and exposures; the exclusion restriction P2 ensures that Z has no direct e¤ect on the

potential outcome. Together with condition P1, these conditions ensure that the IV

a¤ects the outcome only indirectly through its e¤ect on the exposure.

The linear structural model (1) can be written in terms of potential outcomes as

Y (x) = �0 + x�1 + U; (3)

where exposure x is set by external intervention and so irrespectively of U , which means

that �1 has the same interpretation as in structural model (1). Clearly, the right-hand

side of model (3) satis�es the exclusion restriction, and the conditional independence

constraints on U and Z ensure that condition P1 holds. In other words, the original core

conditions C1-C3 can be viewed as a special case of conditions P1-P3 as speci�ed within

the structural framework.
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Model (3) is restrictive because it constrains the exposure e¤ect for each individual to

be constant, that is, Y (1)�Y (0) = �1. An attraction of the potential outcomes approach

is that explicit modelling assumptions like these are not necessary. Instead, inferences are

made directly about meaningful expectations of potential outcomes. For binary exposure,

an important causal parameter is the average causal e¤ect ACE = EfY (1)g�EfY (0)g,

which is sometimes known as the average treatment e¤ect (ATE). Other population

causal parameters are the causal risk ratio CRR = EfY (1)g=EfY (0)g and the causal

odds ratio

COR =
EfY (1)g=Ef1� Y (1)g
EfY (0)g=Ef1� Y (0)g ;

also of interest are causal parameters among the exposed group like the average causal

e¤ect among the exposed, EfY (1)� Y (0)jX = 1g, and covariate-conditional e¤ects like

EfY (1) � Y (0)jCg. Under model (3) it follows that �1 = ACE, but structural model

parameters do not always correspond to causal e¤ects.

A consequence of conditions P1-P3 is the �randomisation assumption�

EfY (x)jZg = EfY (x)g; (4)

which is also known as �conditional mean independence�(CMI). CMI plays an important

role in the identi�cation of causal e¤ects using IV estimators (see Section 3).

2.4 Models for binary outcomes

To link the structural model and potential outcomes approaches, we assume that all the

potential outcomes and exposures are the result of an underlying data generating process.

In an abstract but intuitive fashion, we can represent this process by the �generating

model�

X(z) = fX(z; V ); Y (x) = fY (x; U); (5)

where U and V are latent random variables (or vectors) representing omitted variables

(Clarke and Windmeijer, 2010). Hernán and Robins (2006) refer to (5) as a non-
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parametric structural equation model, in the sense that no constraints are placed on

its unknown form.

In the structural framework, fY (x; U) is referred to as the structural model, so to avoid

confusion with other frameworks we refer to the fX(z; V ) component as the �selection�

model and the fY (x; U) component as the �scienti�c�model (Rubin, 2008). The functions

fX and fY index the e¤ects of ceterus paribus variation in z and x, respectively, with

V and U indexing variation between individuals. Throughout we informally assume

that every combination of generating model and IV fZ; fX ; fY ; U; V g corresponds to a

well-de�ned distribution for X(z); Y (x) given Z.

Using the generating model notation, we can interchange between the usual structural

model and potential outcomes representations. The usual structural model representation

follows from the consistency assumption, namely, X = fX(Z; V ) and Y = fY (X;U).

Clearly, if follows that E(Y jX;U) = EfY (X)jX;Ug = Y (X) = Y , which emphasises

that X and U alone determine each individual�s outcome. For binary outcomes, we

consider scienti�c models of the form

Y (x) = fY (x; U) = Iff �Y (x; U) > 0g; (6)

where I is the indicator function, and f �Y is de�ned on the latent scale. A simple model

is

Y (x) = I(�0 + x�1 + U > 0); (7)

constraining the exposure e¤ect on the latent scale to be constant as in (1).

We can now introduce three important examples of scienti�c model. First, if U is

speci�ed to be a scalar random variable following the standard logistic distribution, then

integrating U out of (7) leads to the logistic model

EfY (x)g = expit(�0 + x�1); (8)

where expit(z) = exp(z)=f1 + exp(z)g is the cumulative distribution function (cdf) of
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the standard logistic distribution; this model has the convenient property that exp(�1) =

COR. Second, if U is assumed to follow the standard normal distribution then integrating

it out of (7) leads to the probit model

EfY (x)g = �(�0 + x�1); (9)

where � is the cdf of the standard normal distribution. Neither �0 nor �1 have obvi-

ous interpretations as causal parameters, but the causal parameters can be obtained by

construction (e.g., ACE = �(�0 + �1)� �(�0) and CRR = �(�0 + �1)=�(�0)).

The last model we consider is based on the latent random vector U = (U1; U2)0 such

that

Y (x) = I(�0 + x�1 + U1 + U2 > 0); (10)

where U2 represents the e¤ect of those omitted variables which are independent of X,

and U1 represents those variables which are associated with X. If U2 follows the standard

logistic distribution then it can be integrated out to give the �mixed e¤ects�logistic model

EfY (x)jU1g = expit(�0 + x�1 + U1): (11)

A mixed e¤ects probit model is similarly obtained. Commonly in mixed e¤ects modelling,

U1 is assumed to be normally distributed, but no such parametric assumption will be

made here unless it is explicitly stated.

An important feature of the class of scienti�c models we consider here is that causally

implausible models like

Y (x) = I(�0 + x�1 + U1 > 0) + U2;

are excluded from consideration. The implausibility of this model stems from the support

of U2 needing to depend on x to ensure that Y (x) 2 f0; 1g, but from Figure 1 it is clear

that U2 is causally antecedent to the exposure. Furthermore, the specifc examples (7-11)

are all �symmetric�in that U and X both act on the outcome through the latent scale
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in the same way, which is a desirable property if we view U as representing the e¤ects of

omitted variables.

The second component of a generating model is the selection model. A simple linear

selection model is

X(z) = �0 + z�1 + V; (12)

which is analogous to the reduced-form model for 2SLS. This model has the additional

property of being �monotonic�, which is discussed further in Section 7. If X is binary

then a more appropriate selection model is

X(z) = I(�0 + z�1 + V > 0); (13)

which is also monotonic.

Finally, to complete speci�cation of the generating model, denote the cdf of (U; V ) by

Fuv. Selection is ignorable only if U and V are independent. To index the dependence

of the latent variables, let �correlation� parameter � be a notational device indexing

non-zero moments of the joint distribution which involve cross-products of Uk and V k

(k = 1; 2; : : :). Hence, � = 0 corresponds to ignorable selection and � 6= 0 corresponds to

non-ignorable selection.

3 Identi�cation of Population Causal E¤ects

3.1 Bounds

In this section, we review how IVs are used to identify bounds for causal e¤ects for the

entire population based only on assumptions P1-P3. More generally, sets containing the

causal e¤ect can be identi�ed: hence the term �set-identi�cation�.

Manski (1990) (see also Robins (1989)) propose bounds for the ACE using the follow-

ing argument. The conditional expectation of the exposure-free potential outcome given
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the IV can be written as

EfY (0)jZg = Pr(X = 0jZ)q00Z + Pr(X = 1jZ)q01Z ;

where q0xz = EfY (0)jX = x; Z = zg is the expected potential outcome. The coun-

terfactual component of the right-hand side is q01Z , and the observed component is

q00Z � q0Z = E(Y jX = 0; Z). In the absence of prior information, we can say only

that q01Z lies in the closed interval (0; 1), in which case EfY (0)jZg > Pr(X = 0jZ)q0Z

and EfY (0)jZg < Pr(X = 0jZ)q0Z + Pr(X = 1jZ), or

EfY (0)jZg 2 (p10:Z ; 1� p00:Z);

where pyx:z = Pr(Y = y;X = xjZ = z); similarly, it follows that EfY (1)jZg 2

(p11:Z ; 1� p01:Z). CMI (4) constrains EfY (x)jZ = 1g = EfY (x)jZ = 0), and so bounds

for ACE, CRR and COR can be constructed. However, these bounds are not �sharp�

because not all information about the observed distribution is used.

Balke and Pearl (1997) construct sharp bounds by using linear programming tech-

niques to �nd all

ACE = EUfPr(Y = 1jX = 1; U)� Pr(Y = 1jX = 0; U)g

satisfying the constraints EUfPr(Y = y;X = xjZ = z; U)g = pyx:z; Dawid (2003) gives

an equivalent geometrical interpretation of the same problem. The sharp bounds are

EfY (0)g 2

0BB@max
0BB@

p11:0
p11:1

p00:1 + p11:1 � p00:0 � p01:0
p10:1 + p11:1 � p01:0 � p10:0

1CCA ;min

0BB@
1� p01:1
1� p01:0

p00:0 + p11:0 + p10:1 + p11:1
p10:0 + p11:0 + p00:1 + p11:1

1CCA
1CCA ;

EfY (1)g 2

0BB@max
0BB@

p10:1
p10:0

p10:0 + p11:0 � p00:1 � p11:1
p01:0 + p10:0 � p00:1 � p01:1

1CCA ;min

0BB@
1� p00:1
1� p00:0

p01:0 + p10:0 + p10:1 + p11:1
p10:0 + p11:0 + p01:1 + p10:1

1CCA
1CCA ;
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from which bounds for ACE, CRR and COR can be established. Balke and Pearl (1997)

given an expression for bounds on ACE, where the width of these bounds is itself bounded

by the probability of non-compliance, and generally includes zero. As would be expected,

the bounds are very wide if the causal e¤ect of Z on X is weak, and so cannot identify

the direction of the causal e¤ect.

Chesher (2010) considers an alternative approach based on a wide class of non-linear

scienti�c models for outcomes with discrete support. The class of binary outcome scien-

ti�c models he considers can be written as

Y (x) = I(eU � cx); (14)

where cx is the cut-o¤ point determining the value of the potential outcome, and eU is

(marginally) a uniformly distributed scalar random variable on the (0; 1) interval; the

other requirement is that the cdf of eU given Z must not depend on Z (c.f., condition

C1). Latent eU is a �normalisation�of random vector U , and is generally associated with

X so that the conditional distribution of eU given X is not uniform. This corresponds to

a scienti�c model (6) in which f �Y (x; U) must be a separable function where, for exam-

ple, an additively separable function satis�es f �Y (x; U) = f �1 (x) + f �2 (U). The marginal

distribution of U determines the functional form of cx; it also determines, together with

the selection model, the conditional distribution of eU given X and Z.

The binary scienti�c models introduced in Section 2.4 are all in this class: the cut-o¤

for the simple logistic model (8) is cx = expit(��0 � x�1), and for the simple probit

model (9) it is cx = �(��0 � x�1). The focus is on the cut-o¤s as EfY (x)g = 1 � cx,

but an identi�cation problem arises because

Pr(Y = yjX = x; Z = z) = FeU jXZ(cxjx; z);
where FeU jXZ(cxjx; z) is the cdf of the conditional distribution of eU given X and Z. The

left-hand side is observed but the function determining the right-hand side is unobserv-

able. Equality clearly holds for the true value of cx and the correct function FeU jXZ , but
12



it also holds for c�x 6= cx because F �eU jXZ 6= FeU jXZ can be found explicitly to satisfy the
equality. Hence, the data cannot distinguish between distinct but observationally equiva-

lent scienti�c models, and so the causal e¤ect is non-identi�ed. However, the range of c�x

is constrained by the requirement that F �eU jXZ must satisfy the IV core conditions, which
enables the true causal e¤ect to be set-identi�ed, or bounded, in a non-trivial sense.

Chesher (2010) shows that all observationally equivalent models for which the IV

core conditions hold must satisfy the sharp inequalities PrfY < h(X; �)jZg < �;PrfY �

h(X; �)jZg � � , for all � 2 (0; 1) and all Z. In the case where X and Z are both binary,

these inequalities yield the following bounds for c0 and c1:

p01:z � c0 < p00:z + p01:z � c1 < 1� p11:z;

p00:z � c1 < p00:z + p01:z � c0 < 1� p10:z;

where pyx:z is de�ned above. As the inequalities must be satis�ed for all Z 2 f0; 1g, the

resulting set can be written

EfY (0)g 2 B0
S
A0 �

� T
z=0;1

(p10:z; p10:z + p11:z)

�S� T
z=0;1

(p11:z + p10:z; 1� p00:z)

�
;

EfY (1)g 2 B1
S
A1 �

� T
z=0;1

(p11:z + p10:z; 1� p01:z)

�S� T
z=0;1

(p11:z; p11:z + p10:z)

�
:

Each set comprises the union of two regions corresponding to above and below the

EfY (0)g = EfY (1)g (ACE = 0; CRR = COR = 1) line: the sets B0 and B1 together

de�ne the region of [EfY (0)g; EfY (1)g] pairs lying below the ACE = 0 line; and A0 and

A1 de�ne the equivalent region above the ACE = 0 line.

Chesher (2010, sec. 3) illustrates the geometry of these sets using a numerical example.

An IV strongly associated with exposure will eventually have one or both of B0; B1 = �

or one or both of A0; A1 = �, thus identifying the sign of the e¤ect (e.g., if B1 =

? then the positive causal e¤ect region contributes nothing to the set and the causal

e¤ect is identi�ed as negative). In its limit, if Pr(X = xjZ = z) = 1 for some pair
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x; z 2 f0; 1g then cx is point-identi�ed. We discuss this situation again in the context of

encouragement designs with �no-contamination�restrictions in Section 8.

Bounds for ACE, CRR and COR can be calculated straightforwardly based on the

sets above. Both �Chesher bounds�and those of Balke and Pearl (1997) are sharp, but

we expect the former to be narrower because the structure of (14) excludes structurally

implausible scienti�c models from consideration. Results from a limited simulation study

show Chesher bounds to be marginally narrower (details available from the authors), but

a more formal comparison is on-going. However, neither evaluating bounds for more

complex scenarios nor interval estimation is straightforward.

3.2 Identi�cation

In this section, we consider the identi�cation (or more precisely, point-identi�cation)

of population causal e¤ects. To begin, we return to the classical result introduced in

Section 2.2, namely, if the true scienti�c model is linear with constant exposure e¤ects,

then the IV core conditions C1-C3 identify ACE. Despite the convention within statistics

of modelling binary outcomes using non-linear models, linear models can be used if the

outcome probabilities are bounded away from 0 and 1. In applications with no, or coarsely

de�ned, covariates, this assumption can be veri�ed for the observed outcomes (although

the constant exposure e¤ects assumption cannot), in which case the 2SLS estimator

may only have small bias in large samples. Arguments supporting the linear probability

model are not unknown (e.g., Angrist, 2001), but generally either the bounded probability

assumption demonstrably fails or cannot be veri�ed (e.g., Imbens, 2001).

We now move on to consider identi�cation in situations where the assumptions behind

linear IV estimators are implausible. Using the framework developed by Chesher (2010),

suppose that the conditional distribution of eU given X has known cdf G(� ; x) = Pr(eU �
� jX = x). For the simple example with a binary exposure and a binary IV, the cut-o¤s
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are identi�ed if the inverse of G(cxjx) = Pr(Y = 0jX = x) exists because

cx = G�1fPr(Z = 0jX = x)(1� qx0) + Pr(Z = 1jX = x)(1� qx1); xg;

where G�1(p; x) is the inverse cdf and qxz = E(Y jX = x; Z = z). Such approaches

are identi�ed by the functional form of G, which follows from fully parametric assump-

tions about the generating model, including those about the joint distribution of U and

V . Maximum likelihood estimators explicitly incorporate such assumptions to obtain

identi�cation (see Sections 6 and 7).

Another set of identifying assumptions, which does not rely on functional form, con-

cern the expected potential outcomes qx
�
xz = EfY (x�)jX = x; Z = zg, where clearly

qxxz � qxz is identi�ed. Any assumption that identi�es the counterfactual expectation

q
(1�x)
xz (x = 0; 1) also identi�es the cut-o¤s because

cx = Pr(X = 0jZ = z)(1� qx0z) + Pr(X = 1jZ = z)(1� qx1z);

follows under CMI (4).

Up until this point, the focus has been on identifying population causal e¤ects, and

so it has been necessary to make unveri�able assumptions about both Y (0) and Y (1)

via CMI. However, identi�cation of causal e¤ects among the exposed group (e.g., the

average causal e¤ect for the exposed EfY (1)� Y (0)jX = 1g) requires only unveri�able

assumptions about Y (0) throughEfY (0)jZg = EfY (0)g because Y (1) is observed among

those exposed and its distribution identi�ed. The parameters of structural mean models

are identi�ed in this way (see Section 5).

4 The Generalized Method of Moments

The 2SLS estimator is based on the moment conditions

E(R) = E(RZ) = 0; (15)
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where R = Y � �0 � X�1 is the residual of the linear scienti�c model (1). Under this

model it follows that R = U , and so (15) trivially holds under the core conditions and

�1 is identi�ed.

Estimators for non-linear models can be obtained using the generalized method of mo-

ments (GMM). GMM estimators solve the same basic moment condition (15), but where

R is a generalised residual function that satis�es E(RjZ) = 0. Johnston et al. (2008)

give a concise overview of GMM estimators, while Wooldridge (2002, ch. 14) gives a

more complete account. As the name suggests, GMM is a generalisation of the method

of moments to allow for more than one endogenous covariate and multiple IVs for each.

Only situations involving one endogenous exposure and one IV are considered here, but

the points we make also apply to the general case.

To construct a GMM estimator that exploits the IV core conditions it must be possible

to separate U from the parameters of the underlying scienti�c model. However, scienti�c

models like (6) are not mean separable because of the indicator function. For example,

the additive residual R = Y � E(Y jX) 6= U , which means that E(RjZ) 6= 0 and any

GMM estimator based on this residual cannot be consistent.

We now review two GMM estimators based on the assumption that the scienti�c

model is a logistic mixed model (11), which can be written as

E(Y jX;U1) = expit(�0 +X�1 + U1);

recalling that U1 represents the e¤ect of the omitted variables that are associated with X.

The error structure is slightly more complex than for standard logistic and probit models,

and changes the interpretation of �1: it is now the conditional log-odds ratio given U1

and does not correspond to COR because of non-collapsibility (e.g., Greenland et al.,

1999). Neither estimator is consistent but both estimators are approximations based on

di¤erent assumptions; the key issue for practice is how good each approximation is.
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4.1 Additive residual approximation

Johnston et al. (2008) consider the scienti�c model

E(Y jX; eU) = expit(�0 +X�1) + eU; (16)

which is asymmetric and causally implausible in the sense we discussed in Section 2.4.

They argue that it is a �rst-order approximation of (11), that is, expit(�0 + x�1 + u1) '

�(x)+u1�(x)f1��(x)g, which in turn is approximately �(x)+u1�(x)f1��(x)g, where

x = E(X). However, we expect the �rst-step approximation alone to be poor because

EfY � �(X)jZg = Efexpit(�0 +X�1 + U1)� �(X)jZg

' E

�
U1�(X)f1� �(X)g+ 1

2
U21�(X)f1� �(X)gf1� 2�(X)gjZ

�
;

which equals zero only trivially if X and U1 are independent; moreover, the U21 term

indicates that the approximation will be good only if the variance of U1 is small.

Ten Have et al. (2003) propose the closely related �marginal�estimator, based on a

marginal structural model (MSM) speci�cation for the scienti�c model (e.g., Robins et

al., 2000; Hogan and Lancaster, 2004). The logistic MSM is

EfY (x)g = expit(�0 + x�1); (17)

which follows from integrating U out of (6) with respect to its unspeci�ed marginal

distribution. An advantage of this speci�cation over (11) is that, in the absence of

covariates, �1 = COR; covariates can be added through extending the linear predictor

to include C, with the proviso that the e¤ect of X is now conditional on C and so �1

will not equal COR, again due to non-collapsibility. No explicit assumption of constant

exposure e¤ects has been made.

The marginal estimator comes from two moment conditions, one of which is

E [fZ � E(Z)gR] = 0;
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where R = Y � expit(�0 +X�1) is the additive residual based on (17). If E(RjZ) = 0

then it follows that these moment conditions are equivalent to E(R) = E(RZ) = 0, and

so the marginal estimator is equivalent to that proposed by Johnston et al. (2008).

Ten Have et al. (2003) argue that the moment condition holds if the scienti�c model

follows a mixed model (10) that satis�es (17). Clarke and Windmeijer (2009, app. 2)

show that their justi�cation relies implicitly on R having the same properties as U1,

but that E(RjZ) 6= E(U1jZ) = 0 unless exposure selection is ignorable. Ten Have et

al. (2003) present simulation results which show their estimator�s bias depends both on

the association between X and U1 and between U1 and Y , but these �ndings cannot be

interpreted merely as �nite sample bias because the estimator is inconsistent.

4.2 Multiplicative residual approximation

If Y (or 1� Y ) is a rare outcome then the logistic mixed model can be approximated by

the exponential mean model

E(Y jX;U1) ' exp(�0 +X�1 + U1): (18)

In practice, the exponential mean model is mainly used for the estimation of risk ratios

from count data when X is endogenous (e.g., Mullahy, 1997). A GMM estimator for

these models is based on the multiplicative residual

R =
Y

exp(�+X�1)
� 1 (19)

from which the multiplicative moment condition E(RZ) = 0 identi�es e� = e�0E(eU1)

and �1. Hence, the multiplicative GMM estimator is consistent for ACE = (e�1 � 1)e�

and CRR = e�1 ' COR provided that model (18) holds.

For applications in which the outcome is rare, the GMM estimator based on (19) is a

sensible way to proceed. However, if we assume that exp(�0+x�1+u1) 2 (0; �) for small

� > 0 and for all (x; u1), then it can be shown that E(RjZ) = O(�), where expectation
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is taken with respect to the logistic mixed model (11) and a = O(�) implies that ja=�j

is bounded above. This indicates that the moment condition error is of the same order

as the event probability itself. If X is exogenous (or equivalently selection is ignorable)

then the model can also be �tted using a GMM estimator based on the same model but

using R = Y � exp(�0+X�1) and E(RjX) = 0, i.e., the additive (or Poisson �rst-order)

moment condition. The additive moment condition satis�es E(RjX) = O(�2) so the

error is an order of magnitude smaller than the event probability itself. It follows from

this that the bias of the multiplicative GMM increases more quickly than the additive

estimator as the event becomes less rare (Clarke andWindmeijer, 2009, app. 1). However,

this estimator is useful as a �rst-order aproximation to CRR (or COR) for Mendelian

randomisation studies.

5 Structural Mean Model Estimators

5.1 Structural mean models

Robins (1989, 1994) introduced the class of semi-parametric structural mean models

(SMMs) and �G-estimation� for causal e¤ects of treatment regimes on outcomes from

randomised controlled trials a¤ected by non-compliance. The parameters of SMMs cor-

respond to meaningful functions of expected potential outcomes for the population of

participants exposed to the treatment. For example, additive SMMs are speci�ed in

terms of average treatment (or causal) e¤ects, and multiplicative SMMs in terms of

causal risk ratios (Hernán and Robins, 2006). Vansteelandt and Goetghebeur (2003)

developed the generalised SMM from which we consider two important special cases: the

logistic and probit SMMs (see also Goetghebeur and Vansteelandt (2005)).

We again consider SMMs in the simplest possible set-up, namely, an encouragement

design for a randomised controlled trial where IV Z is the randomisation assignment

indicator of a binary treatment/exposure, X is the corresponding indicator for the actual
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treatment chosen by the patient, and X 6= Z is possible due to non-compliance. The

generalised SMM for this design is written

bfE (Y jX;Z)g � b[E fY (0) jX;Zg] = ( 0 +  1Z)X;

where Y (0) is the exposure-free potential outcome and b is a suitable link function.

This model is saturated, or non-parametric, but more generally the right hand side can

be a parametric function incorporating the e¤ect of C and/or variable exposure dose,

provided that X = 0 is equivalent to the exposure for those who comply in the control

group Z = 0. For instance, the link function for the logistic SMM is b = logit, where

logit(a) = log fa= (1� a)g is the inverse cdf of the standard logistic distribution; the

parameters of the logistic SMM are thus the causal odds ratios among those who are

assigned to Z in the exposed group:

exp( 0 +  1Z) =
E fY (1)jX = 1; Zg =E f1� Y (1)jX = 1; Zg
E fY (0)jX = 1; Zg =E f1� Y (0)jX = 1; Zg :

The link functions for the additive, multiplicative and probit SMMs are, respectively,

the identity function, the natural logarithm, and the inverse cdf of the standard normal

distribution.

It is important to recognise that this speci�cation assumes nothing explicitly about the

underlying generating model, and so in principle all four SMMs can be applied to binary

outcomes. Recalling Section 3.2, it is clear that the SMM can be viewed as an identifying

assumption: it explicitly links the expected counterfactual q01z = EfY (0)jX = 1; Z = zg

to the observed expectation q1z = E(Y jX = 1; Z = z) via a semi-parametric model. It

remains now to establish the conditions under which the parameters of the SMM are

identi�ed.

5.2 SMM estimation

Estimators for the additive and multiplicative SMMs are based on the moment condition

E fY (0) jZ = 1g = E fY (0) jZ = 0g ;
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which follows under CMI (4). For example, under the multiplicative SMM (b = log) the

moment condition is

E [Y exp f� ( 0 +  1)Xg jZ = 1] = E fY exp (� 0X) jZ = 0g : (20)

It is clear that the SMM parameters are not directly identi�ed by this moment condition

because it constitutes a system with two unknowns and one equation. Therefore, further

assumptions are required.

Hernán and Robins (2006) highlight the importance of the �no e¤ect modi�cation by

Z�(NEM) assumption that  1 = 0. Under NEM, the target parameter for the additive

SMM is  0 = E fY (1)� Y (0)jX = 1g, the average causal e¤ect among those exposed;

and for the multiplicative SMM it is exp( 0) = E fY (1)jX = 1g =E fY (0)jX = 1g, the

causal risk ratio among those exposed. The estimator b 0 under the additive SMM is

easily shown to equal the classical IV estimator (2), whereas for the multiplicative SMM

it is

\exp( 0) = 1�
E(Y jZ = 1)� E(Y jZ = 0)

E f(1�X)Y jZ = 1g � E f(1�X)Y jZ = 0g (21)

(Hernán and Robins, 2006).

Robins (1994) developed G-estimation for non-saturated semi-parametric additive

and multiplicative SMMs. G-estimators are asymptotically normal, semi-parametrically

e¢ cient and obtain uniform convergence. Generally, the variance of a G-estimator�s

asymptotically normal distribution is di¢ cult to evaluate, but this approximation has

good �nite sample properties (see the arguments given by Robins and Ritov (1997)).

For non-saturated models, these SMMs are not ideal because the model does not con-

strain probabilities to lie in (0; 1), but van der Laan et al. (2007) develop two alternative

strategies for multiplicative SMMs which overcome this problem.

The logistic and probit SMMs are considered separately because no G-estimator can

be found for  0 for either model (e.g., Robins and Rotnitzky, 2004). The double-logistic
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estimator was developed by exploiting the result that  0 can be identi�ed if the re-

searcher additionally speci�es a logistic �association model�E (Y jX;Z) = expit(�0 +

X�1+Z�2+ZX�3) (Vansteelandt and Goetghebeur, 2003). In some circumstances, the

double speci�cation of the SMM and association model as logistic can be uncongenial,

but this does not a¤ect the saturated SMMs considered here (Robins and Rotnitzky,

2004; Vansteelandt et al., 2010).

Identi�cation of  0 under the double-logistic SMM is based on the moment condition

E [expit f�0 + �2 + (�1 + �3 �  0)Xg jZ = 1] = E [expit f�0 + (�1 �  0)Xg jZ = 0] ;

(22)

where an estimate of (�0; �1; �2; �3) is obtained at the �rst stage by �tting the logistic

association model. Similarly, the double-probit estimator (b = ��1) is based on asso-

ciation model E(Y jX;Z) = �(�0 + X�1 + Z�2 + ZX�3), and is similarly calculated.

Both �double�estimators have similar asymptotic properties to G-estimators when the

association model is correctly speci�ed, with an additional �local robustness�property

if it is mis-speci�ed, namely, it is always consistent under the null hypothesis  0 = 0

(Vansteelandt and Goetghebeur, 2003). However, as with G-estimators, the expression

for the asymptotic variance is generally di¢ cult to evaluate, so for simple saturated

models the non-parametric bootstrap is recommended instead (Didelez et al., 2010). We

also note that an approximate version of the double-logistic model has been developed

(Vansteelandt et al., 2010).

An alternative assumption to NEM can be used for encouragement designs with con-

straints on participant selection following assignment. For instance, in a randomised

placebo-controlled trial, patients in the control group cannot receive the treatment be-

cause non-compliers (Z = 0; X = 1) receive only the placebo and so Pr(X = 0jZ = 0) =

1. Cuzick et al. (2007) refer to designs with this property as having �no contamination�

restrictions; Robins and Rotnitzky (2004) discuss the role played by such restrictions in
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identifying the parameters of logistic and probit SMMs.

5.3 The NEM assumption

Clarke and Windmeijer (2010) investigate the validity of NEM using the generating

model framework introduced in Section 2.4. The SMM parameters are simple functions

of EfY (x)jX = 1; Zg, which can be written in terms of the generating model as

E fY (x)jX = 1; Z = zg = Pr ff �Y (x; U) > 0jf �X (z; V ) > 0g :

All members of this class automatically satisfy the CMI assumption and so we can focus

on NEM for each SMM in turn. For a speci�c example, suppose that the generating

model follows the �bivariate probit�model

Y (x) = I (�+ �x� U > 0) ; X(z) = I (
 + �z � V > 0) ; (23)

where Fuv = �� is the cdf of the standard bivariate normal distribution and � is its cor-

relation parameter; the bivariate probit generating model is considered again in Section

6. In this case,

E fY (x) jX = 1; Z = 1g = �� (�+ x�; 
 + Z�) =� (
 + Z�) ;

where � (v) is the cdf of V . Clearly, if non-compliance is ignorable then � = 0 and NEM

automatically holds for every SMM. However, if � 6= 0 then NEM does not necessarily

hold. For example, NEM fails for the logistic SMM because

exp ( 0 +  1) =
�� (�+ �; 
 + �) =f� (
 + �)� ��(�+ �; 
 + �)g

�� (�; 
 + �) =f� (
 + �)� ��(�; 
 + �)g

6= �� (�+ �; 
) =f� (
)� �� (�+ �; 
)g
�� (�; 
) =f� (
)� �� (�; 
)g

= exp ( 0)

almost everywhere. Perhaps this is not surprising, but NEM also fails for the probit

SMM because

��1[EfY (1)jX = 1; Z = 1g]� ��1[EfY (0)jX = 1; Z = 1g]

6= ��1[EfY (1)jX = 1; Z = 0g]� ��1[EfY (0)jX = 1; Z = 0g]
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almost everywhere; the corresponding NEM assumption for the additive and multiplica-

tive SMMs also fail under the bivariate probit model.

Of course, this does not mean that generating models under which NEM holds for

a particular SMM cannot be found, but it is almost impossible to write-down an ex-

plicit generating model satisfying these requirements, and NEM clearly places consider-

able constraints on the family of models that satisfy it. It is possible to generate data

from a logistic or probit SMM indirectly using the association model parameterisation

E(Y jX;Z) = b�1(�0+X�1+Z�2+ZX�3), because the SMM and NEM together imply

that EfY (0)jX;Zg = b�1f�0+X(�1� 0)+Z�2+ZX�3g (Robins and Rotnitzky, 2004;

Vansteelandt et al., 2010). However, this is not a true scienti�c model and (�0; �1; �2; �3)

must be constrained explicitly to satisfy CMI.

To �nish this discussion, we note that parametric assumptions can be used to relax

NEM and identify interactions between Z and X for generalised SMMs where Z is not

binary and there are covariates (Vansteelandt and Goetghebeur, 2005).

5.4 Links with other estimators

There is a clear link between the additive and multiplicative SMM estimators and the

GMM estimators considered in the previous section. To show this link, let us assume

that the true scienti�c model is the same as that used to construct the multiplicative

GMM estimator in Section 4.2, that is, EfY (x)jU1g = exp(�0+x�1+U1). It follows that

EfY (0)jZg = exp(�) = EfY (0)g, where � is de�ned in equation (19) and so CMI holds.

Furthermore, the model satis�es NEM for the multiplicative SMM and has the desirable

property  0 = CRR because the causal risk ratios among the exposed and control groups
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are equal. The moment conditions for the multiplicative SMM can be thus written

E [E fY (0)jX;Z)g jZ] = exp(�);

E fexp(���X 0)E(Y jX;Z)� 1jZg = 0;

E fexp(���X 0)Y � 1jZg = 0;

which are equivalent to the moment conditions for the multiplicative GMM estimator. In

other words, the multiplicative GMM estimator is a special case of multiplicative SMM

G-estimator that exploits the additional assumptions embodied by the scienti�c model.

For the logistic and probit SMMs, the SMM de�nes EfY (0)jX;Zg to be a residual

on the scale of the link function: bfE(Y (0)jX;Z)g = bfE(Y jX;Z)g� 0X. This residual

can be interpreted as that of a non-orthogonal projection of bfE(Y jX;Z)g onto X, where

 0 is chosen to satisfy zero expectation with respect to the conditional distribution of

X given Z, and identi�cation requires NEM and semi-parametric assumptions about the

association model. As we have already discussed, it is very di¢ cult to explicitly specify

a generating model for binary data that satis�es NEM for either the logistic or probit

SMMs, and hence to derive an expression for EfY (0)g. Hence, there is no equivalent

relationship between GMM and the double-SMM estimators.

If the design has a no-contamination restriction or the selection model is monotonic

then there is also a correspondence between SMM estimators and local e¤ect estima-

tors: this connection is discussed in Section 7.

6 Parametric Likelihood Estimators

6.1 Probit models

In Section 3, we saw that causal parameters can be identi�ed under parametric assump-

tions about the generating model. Speci�cally, these assumptions relate to the conditional

distribution of U given X and Z and augment the IV core conditions. Likelihood theory
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o¤ers a natural way to incorporate such assumptions and develop consistent estimators.

The cost is that U is unobserved and so any assumptions about its association with X

are unveri�able from the observed data.

Heckman (1979) and Lee (1981) proposed ML estimators for generating models in

which the latent variables are normally distributed. Suppose that the scienti�c model

is Y (x) = �0 + x�1 + U and that there are two basic types of selection models: if X

is binary then X(z) = I(�0 + x�1 + V > 0); and if X and Z are linearly related then

X(z) = �0 + x�1 + V . Furthermore, the latent variables are assumed to follow the

bivariate normal distribution�
U

V

�
�
��

0
0

�
;

�
1 ��v
��v �2v

��
;

where � is the correlation coe¢ cient; the usual identi�cation constraint �2v = 1 is used if

X is binary. Then, for example, when X is binary the ML estimator is

b� = argmax
Y
i

��(��0 � �1Zi;��0)I(Xi=Yi=0)��(�0 + �1Zi;��0 � �1)
I(Xi=1;Yi=0)

���(��0 � �1Zi; �0)
I(Xi=0;Yi=1)��(�0 + �1Zi; �0 + �1)

I(Xi=Yi=1);

where ��(u; v) is the cdf of (U; V ), and � = (�0; �1; �0; �1; �)
0. ML estimates of the

important causal e¤ects can be estimated by construction.

It is important to distinguish the role played by the selection model here from the

role played by the reduced-form model for 2SLS: the reduced-form model yields a con-

sistent 2SLS estimator if the scienti�c model is linear even if the true selection model is

non-linear, whereas the selection model here implicitly encodes parametric identi�cation

assumptions for the generating model parameters. More precisely, these assumptions

determine the crucial U given X distribution:

Fujx(uj0) = (1� �x)
��(u;��0)
�(��0)

+ �x
��(u;��0 � �)

�(��0 � �1)
;

Fujx(uj1) = (1� �x)
�(u)� ��(u;��0)

�(�0)
+ �x

�(u)� ��(u;��0 � �1)

�(�0 + �1)
;
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where Fujx(ujx) = Pr(U � ujX = x) is identi�ed because �� and its marginal � are both

known, and �x = E(ZjX = x), �0 and �1 are all identi�ed by the IV core conditions.

The ML estimator based on the model above is clearly sensitive to functional form ��

and so will be biased and inconsistent if mis-speci�ed.

Rivers and Vuong (1988) further consider the properties of two simple estimators for

probit models which are both analogous to 2SLS. These are �pseudolikelihood�estimators

because each involves replacing nuisance parameters with consistent estimators thereof.

Identi�cation depends crucially on (U; V ) being normally distributed and on X given Z

being linear.

First, consider the �plug-in�estimator if X = �0 + x�1 + V . Stage one: �t the linear

selection model and store bX = b�0 + b�1Z; stage two: �t Y = �(��0 +
bX ��1) to obtain

consistent estimates of the scaled coe¢ cients ��j = �j=
p
1 + 2�1��v + �21�

2
v for j = 0; 1.

While the causal e¤ect of X on the latent scale, �1, cannot be identi�ed, its direction

(positive or negative) can through ��1. The plug-in estimator can be written as

��1 =
��1fE(Y jZ = 1)g � ��1fE(Y jZ = 0g

E(XjZ = 1)� E(XjZ = 0) ;

which has the same basic form as (2) and the Wald estimators considered in Section 7.

Second, consider the �control function�estimator. Stage one: �t linear selection model

as before, but instead of bX store the �tted residual bV = X � b�0� b�1Z and its estimated
variance b�2v; stage two: �t Y = �(���0 +X ���1 +

bV ���) to obtain consistent estimates of
���j = �j=

p
1� �2 and ��� = �=

p
1� �2, where � = �=�v. Under this model, it follows

that

��1fE(Y jX;V )g � ��1fE(Y jX = 0; V )g = X���1 ;

the form of which we have already seen in the context of the probit SMM from Section 5.

In contrast to the plug-in estimator, the coe¢ cients are identi�ed because b� is a function
of b�2v and b���; moreover, again in contrast to the plug-in estimator, the control function
is consistent if selection is ignorable.
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Compared to the probit SMM, the assumptions implicit in the control function ap-

proach are instantly seen to be stronger. First, the probit generating model satis�es

EfY (x)jZg = �(�0 + x�1) and thus CMI EfY (x)jZg = EfY (x)g holds automatically

and cannot be exploited for identi�cation, which comes through functional form. On the

other hand, the probit SMM does not use functional form but is required only to satisfy

EfY (0)jZg = EfY (0)g and not EfY (1)jZg = EfY (1)g: Second, the association model

under the probit generating model is

E(Y jX;Z) = � f���0 � �0�
�� + (���1 + ���)X � Z�1�

��g ;

which has the same form as the association model for the double-probit SMM estimator

(namely, E(Y jX;Z) = �(�0 + X�1 + Z�2)). However, this similarity is super�cial: the

association model follows because the probit generating model constrains the exposure

e¤ect on the latent scale to be constant, the selection model to be linear, and U to be

normally distributed and independent of Z; in contrast, the probit SMM under NEM

��1fE(Y jX;Z)g � ��1[EfY (0)jX;Zg] = X 0 is an assumption.

The operational simplicity of the two-stage estimators is an attractive feature for

applications. Unfortunately, this simplicity hinges crucially on linearity of the selection

model. If X is binary then the selection model is non-linear and neither estimator

is consistent, even for the scaled coe¢ cients. For example, stage one of the plug-in

estimator becomes: �t X = �(�0 + �1Z) and obtain \E(XjZ) = �(b�0 + b�1Z); stage
two: �t Y = �f�0 + \E(XjZ)�1g. Essentially, the plug-in estimator relies on being able

to construct a tractable expression for E(Y jZ), which is easy under linear selection but

falls down here because

E(Y jZ) = EU;V [If�0 + I(�0 + Z�1 + V > 0)�1 + U > 0g] 6= �f�0 + E(XjZ)�1g:

Similarly for the control function method: stage one now involves calculating bV = X �

�(b�0+b�1Z) and using this residual in stage two, but the estimator is inconsistent because
no � can be found to ensure that X ? U � V � if V = X � �(�0 + �1Z).
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6.2 Logistic and other models

In theory, the likelihood for any parametric model can be speci�ed, but there are prac-

tical di¢ culties in specifying a suitable likelihood for non-normal (U; V ). Despite this,

pseudolikelihood estimators have been proposed for logistic models. Palmer et al. (2008)

develop both plug-in and control variable approaches for logistic models and a linear

selection model. To overcome the problem of non-normal latent variables, they assume

that the outcome data come from the logistic mixed model (11) where U1 � N(0; �21).

Thus expressions for E(Y jZ) and E(Y jX;V ) can be constructed using the result that

EAfexpit(B! + A)g w expit(B!c) if A � N(0; v); where !c = !=
p
1 + cv and c =

16
p
3=15�. It is shown that both the plug-in and control function approaches are consis-

tent for scaled coe¢ cients like those of the two-stage bivariate probit estimators, but that

even the control function cannot produce consistent estimators for actual coe¢ cients.

Nagelkerke et al. (2000) construct an IV estimator using arguments analogous to

those for the control variable estimator above but for binary X. Their control variable

approach is based on an additive error structure for the selection modelX = E(XjZ)+V ,

which leads to an inconsistent estimator because E(XjZ) + V 6= Iff �X(Z; V ) > 0g. Ten

Have et al. (2003) found by simulation that this estimator can be badly biased if the

association between X and U is not weak, that is, the true selection process is strongly

non-ignorable.

Finally, we note that semi-parametric control function approaches for linear X based

on non-parametric methods have been developed (e.g., Blundell and Powell, 2004).

7 Local Causal E¤ects

An alternative identi�cation strategy is to focus not on population causal e¤ects, but

on so-called �local�or �complier-speci�c�causal e¤ects. More generally, these e¤ects are

the parameters of principal strata (Frangakis and Rubin, 2002). The identi�cation of
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local e¤ects requires only assumptions about the selection model for X(z) and not for

the scienti�c model, although semi-parametric assumptions are required if covariates are

included.

To illustrate the nature of the identifying assumptions, consider the support of X(0)

and X(1) in the simple example where X and Z are binary. Realisations from this

distribution fall into one of four groups:

1. �Compliers�X(0) = 0 and X(1) = 1.

2. �Always-takers�X(0) = 1 and X(1) = 1.

3. �Never-takers�X(0) = 0 and X(1) = 0.

4. �De�ers�X(0) = 1 and X(1) = 0.

These groups are de�ned using what the study unit would have selected if its IV had

taken another value, and so are de�ned in terms of unobservable counterfactuals. A

monotonic selection mechanism requires that X(z) is a non-decreasing function of z

(or a non-increasing function, depending on the labelling). In this example, monotonic

selection implies that the set of de�ers is empty with probability one; more generally,

monotonic selection is satis�ed if z > z0 implies that X(z) � X(z0) for all pairs z; z0

(Imbens and Angrist, 1994).

As we suggested earlier, the simple selection models (12) and (13) are special cases of

monotonic selection mechanisms because both imply that either X(1) � X(0) or X(1) �

X(0); for brevity, we herein assume that monotonic selection implies X(1) � X(0)

without loss of generality. However, some plausible selection models are not monotonic.

For example, an extension of (12) to allow for heterogeneous exposure e¤ects is

X(z) = �0 + z(�1 + V1) + V2;

but selection is not monotonic because X(1)�X(0) = �1 + V1 � 0 if �1 > 0.

Imbens and Angrist (1994) give key results regarding local causal e¤ect estima-

tors under monotonic selection. These e¤ects are local in the sense that the com-
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plier group comprises only those whose exposure selection would be modi�ed if they

had (counterfactually) been characterised di¤erently by the IV. An important result is

that the classical IV estimator (2) is consistent for the �local average treatment e¤ect�

LATE = EfY (1) � Y (0)jX(1) > X(0)g (Angrist et al., 1996); LATE is also known

as the �complier�average causal e¤ect. If Z is discrete then the focus is on modelling

LATE(z; z0) = EfY (1) � Y (0)jX(z) > X(z0)g for all z > z0. Two notable extensions to

this result are: if both X and Z are (multi-valued) discrete random variables then the

classical IV estimator is a weighted function of local causal e¤ects (Imbens and Angrist,

1994); and Angrist et al. (2000) discuss an interpretation of the classical IV estimator (2)

when X is continuous and Y (x) is a smooth function of x. Crucially, all of these results

hold no matter what the scienti�c model, and so are valid for binary outcomes.

A connection between local estimators and SMMs has already been alluded to. From

Section 5, we know that the G-estimator for the additive SMM equals the classical IV

estimator (2). Hence, if NEM fails but selection is monotonic then the additive SMM

is consistent for the LATE; a similar relationship holds for the multiplicative SMM.

Hernán and Robins (2006) shows that the G-estimator for the multiplicative SMM (21) is

consistent for the local risk ratio LRR = EfY (1)jX(1) > X(0)g=EfY (0)jX(1) > X(0)g;

Angrist (2001) also derived this estimator but without reference to SMMs. Hence, the

multiplicative SMM is consistent for LRR if NEM fails. Conversely, the local odds ratio

LOR =
E fY (1) jX (1) > X (0)g

E f1� Y (1) jX (1) > X (0)g=
E fY (0) jX (1) > X (0)g

E f1� Y (0) jX (1) > X (0)g ;

is not the estimand of the double-logistic SMM if NEM fails unless EfY (1)jX(1) =

X(0) = 1g = EfY (1)jX(1) > X(0)g (Clarke and Windmeijer, 2009, app. 3), but a

consistent estimator for LOR is given by Abadie (2003, eqs. 3-4).

The no contamination restrictions introduced in Section 5 constitute a stronger form

of monotonic selection. For example, a placebo-control trial constrains X(1) � X(0) = 0,

in which case causal e¤ects among the exposed group are equivalent to local e¤ects. Under
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such restrictions, all the SMM parameters are identi�ed and can thus be interpreted as

local e¤ects (c.f., Greenland, 2000; Robins and Rotnitzky, 2004). Clarke and Windmeijer

(2010) review the connection between SMMs and local estimators in more detail.

Didelez et al. (2010) propose �Wald�estimators for the risk ratio and odds ratio based

on extending (2); these are written

WaldRR = exp

�
logfE(Y jZ = 1)g � logfE(Y jZ = 0)g

E(XjZ = 1)� E(XjZ = 0)

�
;

WaldOR = exp

�
logitfE(Y jZ = 1)g � logitfE(Y jZ = 0)g

E(XjZ = 1)� E(XjZ = 0)

�
;

where logit(p) = logfp=(1 � p)g and are approximately unbiased for CRR and COR,

respectively, if X is symmetrically distributed, the true causal e¤ect is small, and there

is no e¤ect modi�cation by U . It is also straightforward to show that WaldRR and

WaldOR are approximately consistent for LRR and LOR, respectively. For instance,

a second-order Taylor series of logit(p) around p = 0:5 is 2(2p � 1), and applying this

approximation to the numerator ofWaldOR together with the usual arguments for local

e¤ects (e.g., Angrist et al., 1996) it follows that WaldOR ' LOR.

If covariates are included in the model then estimators for covariate-conditional local

treatment e¤ects (i.e., where X is binary) can be applied. The earliest approaches to

this problem are based on fully parametric speci�cation of the generating models, with

estimators based either on maximum likelihood using the EM algorithm or Markov chain

Monte Carlo using data augmentation (e.g., Imbens and Rubin, 1997; Hirano et al., 2000;

Yau and Little, 2001). Tan (2006) highlights that, as in Section 6, these approaches are

sensitive to unveri�able parametric assumptions.

Abadie (2003) and Tan (2006) consider alternative, more robust approaches for esti-

mating covariate-conditional local treatment e¤ects. Abadie (2003) shows that the local

expectation of any function h(Y;X;C) can be identi�ed by a weighted estimating equa-

tion, and that these weights are straightforward to calculate. In practice, this allows the

speci�cation of a weighted estimator based on a working model for the �local average re-
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sponse function�(LARF). The LARF is de�ned as EfY jC;X = x;X(1) > X(0)g and it

identi�esEfY (x)jC;X(1) > X(0)g under the IV core conditions and monotonic selection.

In practice, a semi-parametric estimator for LARF can be based on weighted least-squares

for the residual h(Y;X;C) = Y � g(X;C), where g(X;C) is a semi-parametric working

model for LARF (for example, g(X;C) = �(�1X + �2C)); similarly, a fully parametric

speci�cation of LARF can be used to derive a score function h(Y;X;C) that can be

weighted. In either case, if h is correctly speci�ed then the weighted estimand is correct

and the estimator is consitent. More realistically, working model h will be mis-speci�ed,

but either weighted estimator will be robust in the sense that its estimand corresponds

to the working model that is closest to the truth: for the weighted least-squares estimator

distance is measured in terms of mean-square error, whereas for the weighted maximum

likelihood estimator it is measured by Kullback-Leibler distance.

Tan (2006) proposes two alternative approaches to the same problem. First, his

�regression estimator�hinges on the weak assumption that the selection model takes the

form X(z) = If�(Z;C)�V � 0g, where selection probability �(Z;C) = Pr(X = 1jZ;C)

and V is uniform on (0; 1) (Tan, 2006, prop. A.1). From this it follows that the association

model can be written as E(Y jX;Z;C) = �fX;C; �(Z;C)g, that is, a function of the

selection probabilities �(X;C) as well as exposure and covariates. Under monotonic

selection, CMI (EfY (x)jZ;Cg = EfY (x)jCg) leads to an expression for the required

local expectations in terms of these two models; for example,

EfY (1)jX(1) > X(0); Cg = �(1; C)�f1; C; �(1; C)g � �(0; C)�f1; C; �(0; C)g
�(1; C)� �(0; C)

:

In practice, generalised linear models for � and � are speci�ed, where the association

model includes the selection probabilities in the linear predictor. A two-stage regres-

sion estimator (�rst-stage: �t the selection model �; second-stage: �t association model

�(X;C; b�)) is consistent provided that both models are correctly speci�ed. The key dis-
tinction between the regression estimator and previous likelihood-based approaches is
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that both sets of semi-parametric assumptions relate to distributions of observed quanti-

ties, which in principle can be empirically veri�ed. Tan (2006) also develops the �weight-

ing method�estimator for EfY (x)jX(1) > X(0)g, which is based on models for E(XjZ),

E(Y jX) and the conditional distribution of Z given C. Combining both approaches, a

double-robust, semi-parametric e¢ cient estimator can be obtained with similar properties

to the G-estimators and double-SMM estimators in Section 5 (Tan, 2006, p. 1612).

8 Discussion

Dawid (2000) highlights that causal inference generally requires assumptions that are

�metaphysical�, in that the observed data alone contain insu¢ cient information to iden-

tify the causal parameters. The core conditions which must be satis�ed by an IV are

inherently metaphysical. Throughout this paper, we have side-stepped this issue and

assumed that the analyst has available a valid IV satisfying all three core conditions,

but even in randomised experiments, where the IV corresponds to the randomisation

indicator, only condition P1 will automatically be satis�ed: condition P3 can be veri�ed

empirically but the exclusion restriction (P2) depends on the study units�compliance

decisions being independent of their outcomes. For example, in unblinded clinical trials

where patients can make their own informal prognoses and judgements, condition P2 will

not always hold. Similarly, in Mendelian randomisation studies, genetic IVs are assessed

with respect to conditions P2 and P3 on the basis of continually developing scienti�c

understanding (e.g., Lawlor et al., 2008).

Chesher (2010) proves that it is only possible to set-identify, or bound, causal e¤ects

for non-linear scienti�c models under the IV core conditions. Two approaches to cal-

culating bounds were considered in Section 3, but in practice are di¢ cult to calculate

in general scenarios where there are covariates and X and Z are non-binary. Bounds

can be wide if the non-compliance rate is high and the IV is weakly associated with the
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exposure. However, this is a true re�ection of how informative the data are about the

causal e¤ect, and not a drawback with the method itself.

From the analyst�s perspective, point estimates of population causal parameters are

desirable but require further assumptions. From Chesher�s analysis, it is seen that iden-

ti�cation can generally be obtained in two ways: via parametric assumptions about the

latent variables (that is, (U; V ) in our generating model framework); or via direct assump-

tions linking observed and counterfactual potential outcomes that exploit the conditional

mean independence (CMI) assumption (4). The rule of thumb is that better estimators

have more empirically veri�able identi�cation assumptions (i.e., ones which could be

tested if the sample size was in�nite) and fewer unveri�able metaphysical assumptions.

Of th estimators we consider, those longest established are generalised method of mo-

ments (GMM) and maximum likelihood (ML). GMM estimators (Section 4) do not �t

into Chesher�s framework but are instead non-linear analogues of two-stage least-squares

(2SLS). While these estimators cannot be consistent for population causal parameters,

the bias can be small in scenarios where rich covariate information is included in the

analysis, thus making plausible the assumption that selection is approximately ignor-

able; for example, the marginal estimator is shown in simulations to have small bias for

scenarios with approximately ignorable selection (Ten Have et al., 2003). Conversely, ML

estimators (Section 6) can be consistent but are identi�ed through a wholly metaphysical

parametric speci�cation of the latent variable distribution.

Structural mean model (SMM) estimators for causal e¤ects in the exposed group

have a number of advantages over GMM and ML. SMMs are essentially semi-parametric

assumptions about how the causal e¤ect varies with X and Z (and possibly C). Iden-

ti�cation is obtained by additionally assuming that the causal e¤ect among the exposed

does not vary with Z, that is, there is no e¤ect modi�cation by Z (NEM). Clarke and

Windmeijer (2010) highlight that NEM implicitly places strong restrictions on the un-
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known (and unknowable) generating model, and so is inherently metaphysical in nature.

Using a simulation study, they show that even minor failures of NEM for SMMs can lead

to disproportionately large bias. In one example, data are generated in such a way that

the parameters of the multiplicative SMM are exp( 0) = 1:063 and exp( 0+ 1) = 1:068

(a 0:5 percent di¤erence) so that the risk ratio among the exposed equals 1:066, but the

relative bias of its G-estimator is 1:122 � 1:066 or 5:3 percent (Clarke and Windmeijer,

2010, sec. 6.3). The double-logistic and double-probit SMM estimators further require

semi-parametric assumptions about the association model for the conditional distribution

of Y given X, Z and C, but these are empirically veri�able.

Encouragement designs which satisfy �no contamination�restrictions on exposure fol-

lowing assignment are a powerful aid for identi�cation. Somer and Zeger (1991) originally

proposed an IV estimator for an encouragement design wherein all subjects assigned

to the control group are excluded from any sort of treatment, be it the active treat-

ment or a placebo. In their case, an estimator for CRR follows from a multiplicative

model that incorporates plausible assumptions about the compliance behaviour and out-

comes in the control group, in the counterfactual scenario where the controls can select

treatment. More generally, no contamination restrictions such as those in randomised

placebo-controlled trials enforce constraints like Pr(X = 0jZ = 0) = 1. Greenland (2000)

develops an IV estimator for CRR among the exposed group, and Robins and Rotnitzky

(2004) explicate the important role these play in identifying the parameters of SMMs.

In fact, the power of these constraints for identifying causal parameters is a limiting

case of the behaviour of identi�ed sets for discrete-outcome structural models, in which

set-identi�cation tends to point-identi�cation as the strength of association between the

IV and the exposure increases (Chesher, 2010, sec. 2).

Estimators of local e¤ects require weaker assumptions than those for population causal

e¤ects. We have highlighted the close correspondence between saturated SMMs and local
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estimators of additive causal e¤ects and risk ratios (e.g., Hernán and Robins, 2006), and

also more general identi�cation results for parameters of the complier group (Abadie,

2003). Dawid (2000) criticises the potential outcomes approach for, among other things,

its focus on causal e¤ects for a subgroup whose individual members cannot be identi�ed.

Moreover, local estimators require that the selection model is monotonic. Monotonicity

is an inherently metaphysical assumption that can be violated by plausible selection

models in which the e¤ect of the IV on selection varies between subjects. An exception

to this rule is for study designs which constrain selection to be monotonic; for example,

encouragement designs with no contamination restrictions e¤ectively force a strong type

of monotonicity because constraints like Pr(X = 0jZ = 0) = 1 imply that X(1) �

X(0) = 0 with probability 1.

Tan (2006) develops two alternative estimators for covariate-conditional local expec-

tations. In doing so, he makes a distinction between �modern�IV frameworks like his and

those based on a fully parametric speci�cation (e.g., Imbens and Rubin, 1997). Chesher

(2010) does not explicitly consider the identi�cation of local causal e¤ects, but CMI

plays a crucial role here too. For example, Tan�s �regression estimator�is based on an

expression of the covariate-conditional local expectation in terms of two empirically ver-

i�able semi-parametric models, and this expression follows only if CMI holds. While

SMMs require stronger assumptions than models for local parameters, these estimators

still fall within a modern framework: G-estimators for additive and multiplicative SMMs

(Robins, 1994), and the double estimators for logistic and probit SMMs (Vansteelandt

and Goetghebeur, 2003), generally rely on the metaphysical NEM assumption, but the

double-estimators�association models are empirically veri�able, and all of these estima-

tors are locally robust in the sense of being consistent if the SMM is mis-speci�ed under

the �sharp�null hypothesis that there is no causal e¤ect.

To conclude, we note that extensive simulation studies comparing di¤erent binary IV

37



estimators have been conducted by Didelez et al. (2010) and Vansteelandt et al. (2010).

These simulations are based on speci�c choices of generating model, and in the latter

case explicitly constrain NEM to hold, but in applications the form of this model can-

not be known; indeed, there is no evidence that the logistic and logistic SMM models

used to simulate data in these studies approximate realistic generating models at all.

Instead, we have highlighted the inherently metaphysical nature of the identi�cation as-

sumptions; how the strength of these assumptions increases with the target parameter;

and how di¤erent estimators exploit parametric functional form or CMI to obtain identi-

�cation. The most sophisticated estimators like SMMs seek to limit assumptions where

possible to be semi-parametric and empirically veri�able; moreover, robustness to model

mis-speci�cation can be incorporated using recent developments in estimating equation

theory. In practice, the fundamentally metaphysical nature of the binary IV problem

means that researchers should ideally look to assess robustness of inferences using sen-

sitivity analyses involving a number of alternative estimators (e.g., Rassen et al., 2008;

Clarke and Windmeijer, 2010; Vansteelandt et al., 2010), but with added weight given

to those estimators which do not rely on fully parametric assumptions.
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Figure 1: A directed acyclic graph representing conditional independence relationships 

implied by a structural model for Y given X and U and a non-ignorable selection 

mechanism, along with the core conditions that must be satisfied by instrumental variable 

Z.  Each node represents a variable (square nodes are observed and circular nodes are 

unobserved variables) with edges between variables denoting pairs that are not 

conditionally independent.  Directed edges with arrows indicate causal direction, and 

undirected edges indicate an association about which no causal direction is assumed. 
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