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mortality on total fertility. Model simulations suggest that, for every neonatal death, an additional 0.37 
children are born, of whom 0.3 survive. 
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 1    Introduction 

Interest in the determinants of child mortality has recently surged, with the inclusion 

of targets for child mortality amongst the Millennium Development Goals (Lawn et al. 

2005, UNDP 2003), and short birth-spacing and high fertility are widely regarded as among 

the most important causes of early childhood death.  However, reproductive behaviour is 

endogenous to mortality and both are influenced by characteristics and choices of families, 

some of which are difficult to observe. For these reasons, there is limited evidence of the 

true causal associations of these variables. 

In developing countries, 30% of deaths are of children under five, compared to less 

than 1% in rich countries (Cutler et al. 2005). Almost half of child deaths are in the 

neonatal period, the first month of life, when the tie between mortality and fertility is 

closest (Cleland and Sathar 1984). About 4 million neonates died in 2000, 99% of them in 

developing countries, and 27% in India. The proportion of neonatal in under-5 deaths has 

increased, since interventions like immunization, control of acute respiratory infection, or 

oral rehydration have had more of an effect on post-neonatal death (Lawn et al. 2005). It is 

thus important to focus attention on the causes of neonatal death.  

Despite a long-standing interest of economists and demographers in the relation 

between childhood mortality and reproductive behaviour, the literature is scarce in a 

complete micro-data analysis of all inter-relations of these variables (Wolpin 1997). The 

main contribution of this paper is to use panel data based on retrospective fertility histories 

to estimate causal effects of birth interval length on subsequent neonatal mortality risk and 

of neonatal mortality on subsequent birth interval length, controlling for unobserved 

heterogeneity in both processes (referred to as frailty and fecundity, respectively). It also 

provides estimates of the effects of expected mortality (hoarding) and realized mortality 

(replacement) on fertility. Third, we model the mortality dynamics within families, 

estimating both the extent to which observed persistence in death risk is explained by state 

dependence, and the contribution of endogenously determined birth-spacing to state 

dependence effects. Other contributions are methodological, relating to the way in which 

we deal with right-censoring of birth intervals and with the initial conditions problem that 

arises in dynamic models with unobserved heterogeneity.  

Understanding the way in which biological and behavioural factors shape the family-
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level relation between reproductive behaviour and childhood mortality is crucial to 

understanding the demographic transition that has historically preceded economic growth 

(Kalemli-Ozcan 2002), and the endogenous processes by which societies evolve past the 

Malthusian spectre (Galor and Weil 2000). Time series analyses of historical data for 

today’s industrialized countries suggest that declining mortality stimulated fertility decline 

(e.g. Ben-Porath 1976, Eckstein et al. 1999), and a similar tendency can be seen in recent 

data for developing countries (e.g. Nyarko et al. 2003). Cross-sectional studies using 

household survey data have emphasized the reverse direction of causation, namely that high 

fertility, associated with close birth spacing or an early start to childbearing, causes an 

increase in childhood mortality (e.g. Cleland and Sathar 1984).  

In families with multiple children, there is a recursive bi-causal relation of these 

variables. The death of a child is often followed by a shorter interval to the next birth, 

which may be explained either by volitional replacement (e.g. Olsen 1988) or by the fact 

that the mother stops breastfeeding, enabling her to conceive the next child sooner than 

otherwise (e.g. Chen et al.  1974). A short birth interval, in turn, increases the mortality risk 

of the next child in the family, possibly because the mother has not recuperated from the 

previous birth (e.g. DaVanzo and Pebley 1993). Thus vulnerable families are caught in a 

death trap, creating persistence in death risk within families. This mechanism operates by 

the endogenous shortening of intervening birth intervals. Of course a birth interval is only 

observed if the mother has another birth, and this fertility decision is also influenced by 

whether her previous birth survived or not. While these relationships have each been 

studied, their interactions have rarely been studied jointly, and unobserved heterogeneity, 

another potential source of correlation of death risks within a family, is often ignored. 

The analysis in this paper provides estimates, using survey data from India, of a 

dynamic panel data model that describes the complete process of child survival and birth 

spacing (and thus fertility), allowing for endowment heterogeneity, input endogeneity, 

right-censoring and accounting for the initial conditions problem. We find evidence that 

childhood mortality risk is influenced by the pattern of childbearing, that is, by the timing 

and spacing of bir ths, and that birth-spacing and fertility are, in turn, a function of realized 

mortality. We find a replacement effect of 0.37, in line with the few available estimates in 

the literature. The results suggest that the full impact of family planning interventions 
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extends to reducing mortality and that mortality-reducing interventions like provision of 

piped water also affect birth spacing and fertility. Our finding of causal effects of sibling 

mortality on both mortality and reproductive behaviour implies tha t interventions that 

reduce mortality or lengthen birth intervals will have multiplier effects.  

The paper is organized as follows. Section 2 summarizes related research. Section 3 

describes the data. The econometric model is presented in section 4 and est imation and 

simulation results are reported in section 5. Section 6 summarizes and concludes.  

 

2    Related Literature and Contributions 

Previous demographic research provides estimates of some of the main effects 

analyzed in this paper, although not in a unified framework: for example, see Curtis et al. 

(1993), Madise and Diamond (1995), Hobcraft et al. (1985), and Whitworth and 

Stephenson (2002) for analysis of the effects of birth-spacing on mortality, and Olsen 

(1988), Zenger (1993) or Frankenberg (1998) for analysis of the effects of mortality on 

birth-spacing. The limitation of these studies is that their estimates cannot be given a causal 

interpretation (see Moffitt 2003).  

There is limited previous research in economics in this area. Bhargava (2003) estimates 

a single-equation probit model of infant mortality in India, and argues that endogeneity of 

birth spacing is taken care of by controlling for the survival status of older siblings, which 

is instrumented using household possessions and number of previous births. Maitra and Pal 

(2004) estimate a simultaneous hazards model of birth-spacing and child mortality, relying 

upon similarly strong identifying assumptions. Rosenzweig and Schultz (1983b) estimate a 

model of infant mortality in which birth-spacing is instrumented using household incomes 

and local prices. However, as discussed in Rosenzweig and Wolpin (1988, 1995), the 

implied exclusion restrictions typically do not hold. Rosenzweig and Wolpin (1988, 1995) 

instead use sibling differences to eliminate the mother-specific endowment. To allow for 

differences across siblings in frailty, they instrument inputs into the health of the index 

child using inputs relating to older siblings and parental characteristics. The econometric 

strategy in our paper is similar in that it relies upon natural information restrictions 

associated with the sequencing of births. 



 4 

Estimates of the effects of childhood mortality on subsequent birth spacing and fertility 

have mostly relied on the implausible assumption that parents have no influence on the 

survival chances of their offspring (Ben-Porath 1976, Wolpin 1997, Cigno 1998), although 

there are exceptions (Olsen 1980, 1988; Olsen and Wolpin 1983). Our approach is 

different, in that we use a dynamic panel data framework and provide estimates of causal 

effects in both directions, between mortality and reproductive behaviour, and for both birth 

spacing and total fertility. The recent demographic literature has highlighted the widespread 

phenomenon of sibling death clustering, emphasizing the role of unobserved heterogeneity, 

estimated using multi- level models that incorporate a random effect at the mother- level 

(Guo 1993, Zenger 1993, Curtis et al. 1993, Sastry 1997, Whitworth and Stephenson 2002). 

Arulampalam and Bhalotra (2006a,b) contribute to this introducing state dependence in 

mortality. They identify state dependence effects in 13 of 15 Indian states using a single-

equation model for mortality. Otherwise, there is little previous research on state-

dependence effects in analysis of sibling data, although sibling correlations in outcomes 

have been widely studied (e.g. Solon et al. 1991). 

 

3    Data & Descriptive Statistics 

The data are from the second round of the National Family Health Survey of India 

(NFHS-II) which recorded complete fertility histories for ever-married women aged 15-49 

in 1998-99, including the time and incidence of child deaths.1 Mothers constitute the cross-

sectional dimension of the data. As mothers are observed repeatedly, in relation to every 

birth, birth-order creates the time dimension of the (unbalanced) panel. We use data for 

Uttar Pradesh (UP), the largest Indian state, which, in the year 2000, contained 17.1% of 

the country’s population (approximately 165 million people). It has social and demographic 

indicators that put it well below the Indian average (Drèze and Sen 1997). After dropping 

mothers with at least one multiple birth, the sample contains 29,747 live births of 7286 

mothers, that occurred between 1963 and 1999.2 

Strictly, neonatal death refers to death in the first four weeks of life. We include deaths 

up to a month to allow for age-heaping.  The birth interval is the interval between reported 

                                                 
1 For details on sampling strategy and context, see IIPS and ORC Macro (2000). 
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dates of birth, rather than the inter-conception interval. As a result, measured birth intervals 

will be shorter on account of premature births (Gribble 1993) and longer on account of 

miscarriage or stillbirth (Madise and Diamond 1995). The first problem is dealt with by 

removing intervals shorter than 9 months; the second is harder to address. Ignoring 

miscarriage and stillbirth may lead to under-estimation of the mortality-raising effect of 

short birth intervals if women who have these problems also tend to produce weaker live 

births, since then falsely long intervals will be associated with higher mortality. However, 

this bias may be expected to be small once we control for mother-specific frailty and 

fecundity.  

Means and standard deviations of all variables used in the analysis are in Appendix 

Table 1. The incidence of neonatal death over the sample period in UP was 7.39%, 

compared with an all-India average of 5.21%. Previous research on developing country data 

suggests that preceding birth intervals less than 24, and especially 18, months raise 

mortality risk. In our sample, 17.5% of birth intervals are shorter than 18 months, 18.3% 

are 18-23 months long. The mean number of births per mother is 4.04, the median is 4, and 

the maximum is 14. The mean age of mothers at first birth is 18.4, and the mean age of 

mothers at (any) birth is 22.2. As many as 28.3% of all live births are to mothers under 19 

and 14.3% to mothers under 18. 

Although contraceptive prevalence is increasing, contributing to the fertility decline 

witnessed in India since the mid-1980s, it seems to have had little impact on neonatal 

mortality (James et al. 2000). This is because contraception is used primarily to limit 

fertility rather than to control early childbearing and lengthen birth intervals. At the time of 

the survey, women were asked what their current contraceptive method was. In the state of 

UP, 65.8% were using no method, and 19.6% reported female sterilization, which is the 

predominant form of contraception, as in other parts of India. In section 4 we will argue 

that information on sterilization helps identify the fertility equation.  

Figure 1 is a non-parametric regression of neonatal death on the log of the preceding 

birth interval. The curve declines monotonically. At short birth intervals, the probability of 

neonatal death is highest, and the gains from an additional month’s spacing are largest. 

                                                                                                                                                     
2 Elimination of multiple births is in line with the demographic literature on mortality. Children of a 
multiple birth face hugely higher odds of dying, other things equal. 
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Figure 2 plots the kernel density function of the birth interval separately for whether or not 

the previous child in the family survived its first month. The birth interval distribution for 

the case where the preceding child has died clearly lies to the left of the other, with median 

birth intervals of 23 months after a neonatal death and 27 months otherwise (the means are 

24.3 and 31.2 months). The raw data thus suggest the patterns that, as argued in section 1, 

contribute to “death traps” at the family level: short birth intervals raise subsequent 

mortality risk (Fig. 1), and mortality results in a shorter subsequent birth interval (Fig. 2).  

In the sample of second and higher-order children, the average probability of neonatal 

death is 6.28%. In the sub-sample in which the previous sibling survived, this probability is 

5.20%, but amongst those whose previous sibling died, it is a remarkable 18.80%. Thus the 

death of a preceding sibling is associated with an increase in mortality risk of 13.6%-points. 

This can be explained by both unobserved heterogeneity and genuine state dependence, and 

state dependence can, in turn, be explained by short birth-spacing or other mechanisms. Our 

analysis will disentangle these three explanations. 

 

4    The Model 

The model has a recursive dynamic structure: the risk of neonatal mortality depends 

upon mortality of the previous sibling and on the preceding birth interval, while the birth 

interval depends upon survival of the preceding sibling. Similarly, the probability of 

continuing fertility depends on previous mortality. Identification of the main causal effects 

rests on exploiting the natural sequencing of the birth and mortality processes, avoiding the 

need for exclusion restrictions. Amongst other covariates in the model are maternal age at 

birth of the child, and the year of birth of the child. Together with birth order, these are 

endogenous because they depend upon the entire history of birth intervals and maternal age 

at first birth. The model accounts for this endogeneity. A limitation of our approach is that 

it does not readily extend to analysis of infant or under-5 mortality since, for e.g., infant 

mortality may occur after the next birth. As discussed in section 1, this is not a strong 

restriction since neonatal mortality is particularly closely tied to reproductive behaviour. 

The mortality equation can be regarded as a health production function in which the 

birth interval is an endogenous input, as in Rosenzweig and Schultz (1983a,b). The birth 

spacing equation is an input equation, but it also describes an outcome that depends upon 
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tastes and technology. These two equations are estimated jointly with an equation for 

continued fertility that accounts for right-censoring of birth intervals, and an equation for 

mortality risk of the first-born child, that addresses the initial conditions problem.  

The estimation allows for endowments (persistent mother-specific traits), unobservable 

by the econometrician but potentially known to the mother, and for the agency of the parent 

in influencing outcomes. The health endowment is referred to as frailty. We also 

incorporate inter- family unobserved heterogeneity in the birth spacing and fertility 

equations (for convenience both of these terms are henceforth referred to as fecundity), and 

allow this to be correlated with frailty since, for e.g., women who are more careful about 

contraception may also better maintain the health of their children. Ignoring unobserved 

heterogeneity would bias estimates of the dynamics of each process (Heckman 1981; 

Hyslop 1999) and of the causal effect of each variable on the other (Alessie et al. 2004).  

The econometric model is an extension of the univariate model of Heckman (1981) and 

is broadly similar to the bivariate model of Alessie et al. (2004). Our approach to dealing 

with right-censoring is new, exploiting data on sterilization. The way in which the initial 

conditions problem is addressed is also novel. To take account of the sampling design, we 

use random effects at the community (cluster) level. The model is estimated by simulated 

maximum likelihood. 

Let ni be the number of live births of mother i at the time of the survey. Let Mij be an 

indicator variable with value 1 if child j in family i suffers neonatal death, and 0 otherwise. 

Bij is the log of the length of the interval between the birth of child j-1  and child j in family 

i. Thus Bij
 refers to the interval closed by the birth of child j. As it is the preceding birth 

interval for child j, it is, by definition, predetermined with respect to Mij. The rest of this 

section describes the equations and the model in detail. 

 

4.1    Neonatal Mortality 

For child j (j=2,…,ni) in family i (i=1,2,…, N), the equation for neonatal mortality is  

(1) Mij
* =g( xi , xi1, xij , Mi1,… Mi,j-1, Bi2,…, Bij; θm) + αmi + umij; 

Mij=1 if  Mij
*>0 and  Mij=0 if  Mij

*<0 

To explain the assumptions needed for consistent estimation, it is initially written in a 

general form. αmi is mother specific unobserved heterogeneity, reflecting the child’s health 
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endowment or “frailty”, which may derive from genetic sources (e.g. maternal propensities 

to low birth weight and prematurity), environmental factors, or child-care behaviours (e.g., 

Sastry 1997; Rosenzweig and Schultz 1983a,b). As emphasized in Rosenzweig and Wolpin 

(1988), the fact that endogenous inputs like breastfeeding are not explicitly incorporated 

implies that the estimated mother-effect will also reflect inter- family heterogeneity in 

preferences. The error term umij varies over mothers as well as children. It is revealed at the 

birth of child j and assumed not to influence parental inputs to child j in the one month of 

life during which parental choices can influence neonatal mortality risk. However, we allow 

umij-1 to influence parental inputs into child j through past mortality in the family, Mij-1.  

The vectors xi, xi1, and xij are exogenous explanatory variables, partitioned into 

variables that vary over children (xij, j=2,…,n),  are specific to the first child (xi1), or do not 

vary over children (xi). The vector of unknown parameters is denoted by θm . The variables 

Mi1,… Mi,j-1, Bi2,…, Bij are realized at or before the birth of child j.  

We will specify g as a linear function of xi, xij, Mi,j-1, Bij, and include quadratic terms in 

the year of birth of the child, and in the age of the mother at birth of the index child, both of 

which are functions of  xi1 and Bi2,…, Bij.3 Since the age of the mother at birth of child j 

depends upon her age at birth of child j-1 and the length of the intervening birth interval, 

Bij, it is clear from recursivity of the model that maternal age at birth of j can be expressed 

as a function of maternal age at first birth (in xi1) and the history of birth intervals up until 

that date (Bi2,.. Bij). Thus, by allowing for endogeneity of birth intervals and conditioning 

on xi1, we also allow for endogeneity of maternal age. Since our data include births that 

occurred across a span of about 30 years, a quadratic in the year of birth of the child is 

included to capture techno logical change in health production. This is also a function of the 

birth year of the first child and previous birth intervals.  

We expect a negative effect of Bij on Mij, consistent with the hypotheses of maternal 

depletion (section 1) and competition amongst closely spaced siblings (Cleland and Sathar 

1984). The effect of lagged mortality, Mi,j-1, on Mij can be negative if learning or sibling-

competition effects dominate, or positive if there is a strong role for factors like maternal 

depression. The first-order Markov assumption implicit in our specification of g  is justified 

                                                 
3 Interactions and squares of other terms gave no significant improvement. 



 9 

by the nature of the mechanisms driving state dependence (that is, a causal effect of Mij-1 on 

Mij): see Zenger (1993). 

We assume that xi, xi1, and xij are independent of αmi and umij. Mean independence of 

(xi, xi1) and αmi is the usual assumption in a random effects model, needed for 

identification; the conditional mean of αmi given xi and xi1 is subsumed in g. In xi, we 

include variables reflecting education levels of the mother and father, and caste and religion 

dummies. In xi1 we also include calendar year and age of mother at first birth. 

A potential drawback of random effects models as compared with fixed effects models 

is the assumption that the “time-varying” (in this context, varying across siblings) 

regressors xij are assumed to be independent of the individual effects αmi. In our case, 

however, the only variables included in xij are child gender and birth-order, which will be 

uncorrelated with mother- level frailty, so the independence assumption seems plausible.  

 

4.2    Birth Spacing  

The log length of the birth interval is modeled in a similar way as mortality: 

(2) Bij =h( xi , xi1,  xi,j-1 , Mi1,… Mi,j-1, Bi2,…, Bij-1; θb) + αbi + ubij; 

The family-specific effect, αbi, is referred to as “fecundity” though it will include not only 

biological fecundity but also, e.g., variation in preferences for family planning or desired 

fertility. A causal effect of mortality of child j-1 on the birth interval to child j is allowed 

through Mi,j-1. We include xi,j-1 since gender of child (j-1) may affect the interval to the birth 

of child j. The function h is specified as a linear combination of xi, xi,j-1, Mi,j-1, and the 

calendar year and age of the mother at the time of the birth of child j-1 and their squares, as 

in section 4.1. Biomedical and demographic research give no argument for a causal effect 

of Bij-1 on Bij, conditional on αbi, so we do not allow for this. 4 Assumptions on family-

specific effects and errors ubij are similar to those for equation (1). We assume that xi, xi1, 

and xij are independent of αbi and ubij and that ubij is independent of the past.  

We allow for correlation between the unobserved heterogeneity terms αbi and αmi in 

equations (1) and (2). This allows an alternative, non-causal explanation for the correlation 

between birth interval lengths and mortality in the raw data and for the potential 
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endogeneity of the preceding birth interval in equation (1), which may be correlated with 

frailty, αmi. For example, parents with weak endowments may choose shorter birth intervals 

to meet their target number of children in a given time. Similarly, our model allows Mij-1 in 

equation (2) to be correlated with family- level fecundity, αbi.  

The distribution of the family effects (αmi, αbi) is assumed to be bivariate normal with 

mean zero, variances σm
2, σb

2, and covariance σmσbρα. The child-specific error terms umij 

and ubij are assumed to be independent of αmi and α fi and normally distributed with mean 

zero. Without loss of generalit y, the variance of umij is set to 1. 

 

4.3    Right-Censoring 

Inclusion of the birth spacing equation, (2), in the model demands a correction for 

right-censoring because some mothers will not have completed their fertility at the time of 

the survey. To account for this, we model the probability that mother i will have another 

child after the birth of child j, as follows: 

(3) Fij
* =f( xi , xi1 ,  xij , Mi1,… Mi,j-1, Bi2,…, Bij; θf) + α fi + ufij; 

Fij=1 if  Fij
*>0 and Fij=0 if F ij

*<0 

We specify f as a linear combination of xi, the calendar year and age of the mother at the 

time of the birth of child j-1 and their squares (functions of xi1 and Bi2,…, Bij-1), dummies 

for the presence of boys and girls in the family that did not suffer neonatal death, and the 

total numbers of boys and girls in the family who survived the neonatal period (functions of 

j, Mi1,… Mi,j, and Bi2,…, Bij-1). The variables are gender specific to allow for son-preference, 

of which there is considerable evidence for UP (e.g. Drèze and Gazdar 1997). Endogeneity 

of the sibship variables is taken care of in the same way as in the other equations – they are 

functions of lagged dependent variables. Moreover, confounding unobserved factors are 

controlled for by allowing arbitrary correlations of α fi with αmi and αbi, assuming joint 

trivariate normality with arbitrary covariance matrix and independence of exogenous 

variables. We make similar assumptions on ufij as on the other error terms: normality, 

independence of individual effects and error terms for other birth-orders or other equations, 

and independence of exogenous variables. 

                                                                                                                                                     
4 Heckman et al. (1985) show, for a sample of (married) Swedish mothers, that there is no state 
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The data contain information on whether a mother is sterilized at the time of the 

survey, which helps to estimate the parameters of the model more efficiently. For sterilized 

mothers (19.6% of the sample), the complete birth process is observed. Of the remaining 

mothers, some will have another child after the survey date, and others will not. 

Sterilization is an incomplete indicator of whether the mother will have another child; it is 

an implicit dependent variable in our model but not a variable of interest as such, as it is the 

decision to have another child or not that is modelled here. To identify equation (3) with 

data on sterilization, we assume that women who have decided to have no more children 

get sterilized with a fixed probability ? (a nuisance parameter).   

To be precise: If mother i has more than j children, we know she has given birth to 

another child after child j, and the likelihood will incorporate the probability that Fij=1.  If 

the mother reports that she has had exactly j children and was sterilized after the birth of the 

j-th child, then the likelihood will incorporate the probability that Fij=0 and the probability 

?. If, at the time of the survey, the mother had j children but was not (yet) sterilized, then it 

is unclear whether child j is the last child or not - the birth interval after the birth of child j 

may extend beyond the time of the survey. The probability that this will happen, given that 

there will be another birth and given unobserved heterogeneity components, follows from 

(2) and is given by Φ([T- {h( xi , xi1 ,  xi,j-1 , Mi1,… Mi,j-1, Bi2,…, Bij-1; θb)+ αbi}]/σ), where T 

is the length of the time interval elapsed between the birth of child j and the time of the 

survey, and σ is the standard deviation of the error term in (2). In this case, the likelihood 

(conditional on unobserved heterogeneity) contains a factor that accounts for the fact that 

we do not observe whether or not there will be another birth after birth j.5 

 The usual approach to right-censoring is to assume that the same process 

continues but is not observed after the time of the survey (e.g. Wooldridge, 2002, Chapter 

20). This approach does not work well here since the fertility process is necessarily finite 

and ended well before the time of the survey for many women in the sample.6 In the 

absence of information on sterilization, an alternative would be to assume that fertility 

                                                                                                                                                     
dependence in the birth spacing process once controls for unobserved heterogeneity are introduced. 
5 An appendix with likelihood details is available at 
http://www.efm.bris.ac.uk/www/ecsrb/bhalotra.htm 
6 Initial experimentation with our data showed that the usual procedure produces a poor fit, being 
unable to explain why so many women suddenly completely stop having children.  
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stops at a given age (e.g. 40) for all mothers, or to estimate equation (3) without the 

sterilization information. In the latter case, the fertility equation would only be indirectly 

identified  and the estimates are likely to be much less precise. 

 

4.4    The Initial Conditions Problem 

“Lagged” mortality, Mij-1, is endogenous in equation (1) by virtue of being correlated 

with frailty, αmi. This creates the initial conditions problem common in this type of model 

(e.g. Heckman 1981). This is addressed by formulating a separate equation for the mortality 

risk of the first-born child of every mother: 

(4) Mi1
* = g1 ( xi , xi1; θm,1) + λmαmi + λbαbi + λfαfi + umi1; 

Mi1=1 if  Mi1
*>0 and  M i1=0 if  Mi1

*<0 

In most applications of this type of models (e.g., Hyslop, 1999) the true process is ongoing 

and the first observation is generated in the same way as later observations. Heckman et al. 

(1985) is an exception. They model birth spacing and observe the process from its natural 

start, the start of menarche. Here, similarly, we observe the birth and mortality processes 

from their beginning for each mother, and the first child is a genuine starting point of that 

process. This makes Heckman’s approach quite natural compared to, for example, the 

alternative approach of Wooldridge (2000).  

We will work with a linear specification of g1, in line with the specification of (1). It 

is likely that Mi1 will be correlated with αmi and we also allow it to be correlated with the 

other family specific effects αbi and α fi. The error term umi1  is assumed to be standard 

normal and independent of the  other error terms in the model, of the individual effects, and 

of the exogenous regressors xij and xi. ?m1, λm , λb and λf are auxiliary parameters. Equation 

(4) is a flexible function of the exogenous variables. We do not impose restrictions on the 

relation of the parameters in (4) to those in (1). 

 
4.5    Community Effects and Estimation 

The data are collected in 333 geographical clusters (“communities”) with, on average, 

24.4 mothers per cluster. To allow for the possibility that mothers (and children) within a 

cluster share unobservable traits (for example, sanitation or social norms), we need to 
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include a cluster- level term in the equation error.7 As the large number of clusters makes it 

infeasible to use cluster dummies, we incorporate random cluster effects in equations (1) 

and (2) and (3) in the same way as the mother-specific effects, with similar assumptions.8 A 

linear combination of the cluster effects in (1), (2) and (3) is added to equation (4), with 

three additional auxiliary parameters as coefficients. For identification, it is assumed that 

the cluster effects are independent of mother-specific effects.  

The complete model can be estimated by maximum likelihood, including the 

nuisance parameters of the initial conditions equation, and the fertility equation.9 

Conditional on the random effects, the likelihood contribution of a given mother can be 

written as a product of univariate normal probabilities and densities over all births of a 

mother, and the likelihood for a given cluster can be written as the product over all mothers 

in that cluster. The actual likelihood contribution is the expected value of the conditional 

likelihood contribution, taking the expectation over all (unobserved) random effects (three 

in the model without cluster effects, six in the model with cluster effects). This is a three or 

six-dimensional integral, which could in principle be approximated numerically using, for 

example, the Gauss-Hermite-quadrature.  

In this paper, we instead use (smooth) simulated ML, drawing multivariate errors 

from N(0,I3), transformed into draws of the random effects using the parameters of the 

random effects distribution. The conditional likelihood contribution is averaged over R 

independent draws. If R→∞ with the number of clusters, this gives a consistent estimator; if 

draws are independent across households and R/√N→∞, the estimator is asymptotically 

equivalent to exact ML (see, e.g., Hajivassiliou and Ruud 1994). We use Halton draws, 

which give more accurate results for given R than independent random draws (Train 2003). 

The results we present use R=100. Using R=50 gives very similar results.  

 

5    Results 

This section presents the results of the complete “benchmark” model (Table 1)  

                                                 
7 The data has some information on community characteristics at the time of the survey. We did not 
use this since it may not reflect community characteristics at the time of birth. 
8 That is, trivariate normal with arbitrary covariance structure to be estimated, independent of 
exogenous variables and error terms. 
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5.1    Neonatal Mortality 

The left hand panel of Table 1 reports the estimates of the equation for neonatal 

mortality. In the discussion, we focus on the implied marginal effects for the second child, 

assuming that the first child survived the first month of life, and setting all family 

characteristics to benchmark values (boy, Hindu, not of a backward caste, maternal and 

paternal education zero average date of birth (1986.8), age of mother at birth (21.3 years), 

and previous log birth interval (3.32). The estimated probability of neonatal mortality for 

this benchmark child is 4.84%. 

A 10% increase in the length of the preceding birth interval reduces the probability of 

death by about 0.45 percentage-points in the benchmark case (and the marginal effect is 

similar for higher birth-orders). Some studies have found that the deleterious effects of 

short birth intervals are enhanced if the previous sibling has survived (e.g. Zenger 1993, 

Cleland and Sathar 1984). We therefore included an interaction of lagged mortality with the 

birth interval. This was insignificant- a result that contrasts with Whitworth and Stephenson 

(2002). Our results suggest that maternal depletion is more important than sibling 

competition in explaining the mortality- increasing effects of short birth intervals. Maternal 

depletion will be especially pronounced amongst poor women who need longer to replenish 

stocks of nutrients like calcium and iron that are needed to support a healthy pregnancy. 

Neonatal mortality of the previous sibling makes neonatal death significantly more 

likely for the index child, even with the birth interval held constant. For the benchmark 

second child, the estimated difference is 4.16 percentage-points. Similar effects are found 

for the third and later children. 10 This suggests that, for neonatal mortality, learning effects 

(a mother is better able to avoid a further child death once she has experienced one) or 

reduced competition for scarce resources  are dominated by state dependence mechanisms 

that create a positive association of sibling deaths and do not operate via birth spacing. We 

hypothesize that the loss of a child may create psychological effects that the mother may 

not have recovered from by the time she conceives her next child, as a result of which there 

                                                                                                                                                     
9 An explicit specification of the likelihood function is in the online Appendix referred to in 
footnote 5.  
10 A similar positive effect of lagged mortality on current mortality is reported in Whitworth and 
Stephenson (2002), who do not interpret this finding. They use earlier data for all India and control 
for unobserved heterogeneity and birth intervals, but take birth intervals to be exogenous.  
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may be physiological effects that make this child more vulnerable both in the womb and 

after birth. Several studies report negative effects of depression on pregnancy outcomes 

(Steer et al. 1992) and early childhood mortality (Chung et al. 2004, Drewett et al. 2004). 

Rahman et al. (2004) find that maternal depression in the prenatal and postnatal periods is a 

risk factor for malnutrition and illness in infants in Pakistan. Mental health is increasingly 

recognised as an important health problem that is often neglected in poor countries (WHO 

2001). Overall, depression is a plausible causal mechanism, but further research is merited 

to investigate this and other potential pathways. 

Conditional on the other covariates, gender and birth-order are insignificant. Over the 

period 1963-99, neonatal mortality exhibits a trend reduction of 0.16 percentage-points per 

year. It is U-shaped in mother’s age at birth, a familiar pattern in developing country data. 

The minimum is at about 29 years of age. On average, mothers are much younger than this 

when giving birth to their second child (21.3 years). Mortality risk is decreasing in both 

maternal and paternal education, with larger effects of maternal education. We find no 

significant differences between castes. A striking result, that deserves further investigation, 

is that children of Muslim families (who, on average, have higher fertility, shorter birth-

spacing and lower socio -economic status) are significantly less likely to die in the first 

month than Hindu children, with an estimated difference of about 1.7 %-points.  

Estimates of the “reduced form” probit equation for mortality of first-born children 

(equation 4) are available in the online Appendix. The female dummy is now negative and 

significant at the two-sided 10% level, consistent with the fact that girls are born with a 

survival advantage, and with research that shows that discrimination against girls is 

smallest for first-borns (DasGupta 1990). Other effects are broadly similar.  

 

5.2    Birth Spacing  

Estimates of the birth spacing equation are in the second panel of Table 1. Since the 

dependent variable is in logs, the interpretation of the parameters is in terms of percentage 

changes in the expected length of the birth interval. Note that all covariates in this model 

refer to the preceding child (i.e. the child born at the start of the birth interval). Neonatal 

death of the previous child reduces the subsequent birth interval by about 21%, consistent 

with replacement behaviour (e.g. Ben-Porath 1976). Feeding this into equation (1), we find 
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that the effect of Mij-1 operating via Bij results in an increase in Mij of about 1.06%-points. 

Since the direct effect of Mij-1 on Bij in equation (1) is 4.16%-points, total state dependence 

increases the risk of death by 5.2%-points. Thus genuine state dependence accounts for 

37% of the clustering of sibling deaths (“raw persistence”), which was 14%-points on 

average (section 2). The residual 63% is (observed and unobserved) heterogeneity.  

The gender of the last-born child is significant and its sign is consistent with son-

preference. If the last birth was a girl, the expected birth interval is about 3% shorter than if 

it was a boy. There is a significant hump shaped trend in birth spacing, with a maximum in 

1980. That birth intervals got shorter in the last 20 years might be because rising nutritional 

standards for mothers allow them to support shorter intervals. Birth spacing is hump-shaped 

in maternal age, with a maximum at about 29 years. For the average mother, birth intervals 

increase until the sixth child is born. Parental education and caste have no significant effect. 

Birth intervals of Muslim families are 7.6% shorter than for similar Hindu families.  Other 

things equal, birth-order exhibits a non-monotonic pattern, with the shortest birth intervals 

preceding the birth of the fourth child.11  

 

5.3   Fertility Equation 

Table 3 presents estimates of the probability of having another child after each birth. 

Of particular interest are the family composition variables, which indicate son-preference. 

The probability of continued fertility is decreasing in the number of surviving children, but 

more than three times as rapidly in the number of surviving boys than in the number of 

surviving girls. Similar results have been reported for other countries in Asia and North 

Africa (e.g. Rahman and DaVanzo 1993, Nyarko et al. 2003).12 

Fertility is hump-shaped in time, with a maximum at about 1981. The quadratic in 

mother’s age is decreasing over the age range, until age 47.  Fertility falls with the level of 

education of both mother and father, with mother’s education having larger effects. 

Muslims show a higher tendency to continue fertility. Mothers in backward castes other 

                                                 
11 It is well-known that breastfeeding lengthens birth intervals (Habicht et al., 1985), and its effects 
are, in this study, subsumed in the birth interval effect. Direct investigation of the role of 
breastfeeding is difficult because of incomplete data and since breastfeeding is a choice variable. 
12 Angrist and Evans (1998) find no such asymmetry for the US. 
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than scheduled castes and tribes have lower fertility than others, not in the raw data, but 

after conditioning upon covariates.  

 

5.4    Unobserved Heterogeneity  

We find that the covariance structure of the mother and community-specific effects is 

sensitive to specification choices (like the number of draws in simulated ML), but the 

covariance structure of the sum  of these terms is not. We therefore focus on the latter (see 

Table 2). There is significant evidence of both effects in the mortality and birth interval 

equations, but only community-specific effects are significant in the fertility equation.  

Overall, the heterogeneity terms are statistically significant but small compared to 

the idiosyncratic errors. Compared to the idio syncratic noise term (with variance 1), the two 

heterogeneity terms in the mortality equation capture about 15% of the total unsystematic 

variation in Mij
* (0.173/(1+0.173)). More than half of this is heterogeneity across 

communities. In the birth interval equation, the idiosyncratic noise term has estimated 

variance 0.206, and total heterogeneity is about 11% of the total unsystematic variation. 

The estimated covariance between the total unobserved heterogeneity terms in the birth 

spacing and mortality equations is virtually zero, implying a correlation coefficient of –

0.004.  

The heterogeneity terms in the fertility equation explain about 15% of the 

unsystematic variation in Fij
*, but this estimate is not very accurate. We find a large 

negative correlation between the total heterogeneity terms in the fertility and birth interval 

equations of –0.73. This suggests that mothers who desire many children tend to use shorter 

birth intervals to achieve this, other (observed) explanatory variables constant. This is  

consistent with replacement behaviour in, for example, the target fertility model (see 

Wolpin 1997). On the other hand, the small correlations between unobserved heterogeneity 

in the mortality equation and both the birth interval and the fertility equatio ns suggest that 

hoarding does not play much of a role: there is hardly any evidence that mothers who 

perceive their children to have relatively high mortality risk react ex ante by having 

persistently shorter birth intervals. 

 

5.5 Robustness of the state dependence effect and other specification checks  
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A challenging finding is the strong positive effect of lagged mortality on mortality in 

equation (1), even after unobserved heterogeneity and the length of the preceding birth 

interval are controlled for.  There are three potential sources of positive correlation between 

lagged mortality and current mortality: unobserved heterogeneity, the causal mechanism 

operating through the birth interval, and other sources of state dependence. We would 

probably overestima te the importance of the last one if we underestimated the importance 

of the first two because of model misspecification. We therefore investigated model 

extensions generalizing either the specification of unobserved heterogeneity, or the 

mechanism through which birth intervals affect mortality. 

In the first category, we considered auto-correlated error terms, which can be seen as 

unobserved heterogeneity that changes gradually over time, and a more general distribution 

of unobserved heterogeneity. In the second category, we considered correlation between 

errors in birth interval and mortality equations (which may be due to measurement error in 

reported birth intervals), other functional forms of the relationship between birth intervals 

and neonatal mortality, and interactions of the birth interval with socio -demographics. 

Finally, we also looked at interactions between lagged mortality and socio-demographics in 

order to see whether the positive effect of lagged mortality can be attributed to specific 

groups. The changes in the estimates are discussed in detail in the online Appendix. The 

upshot is that the coefficient on lagged mortality is robust to all these specification checks. 

We also investigated robustness of the main coefficients of interest (those on the 

lagged endogenous variables) to several simplifications of the model. The results are 

generally as expected. For example, failing to control for unobserved heterogeneity or not 

controlling for the birth interval leads to overestimation of state dependence in equation (1).  

See the online Appendix for details. 

 

5.6  Simulations  

Table 3 shows the results of simulations performed with the benchmark model, to 

investigate the effects of neonatal mortality on birth intervals and fertility, and the 

importance of state dependence and hoarding. Column 1 is the benchmark simulation 

where all mechanisms at work in the estimated model are active (see the online Appendix 
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for details). Other columns present percentage deviations from the benchmark for scenarios 

in which some behavioural or non-behavioural mechanisms are “switched off.”  

Switching off the effect of previous mortality on the birth interval (col. 2) increases 

average birth interval length by 1.7%. Since longer birth intervals depress subsequent 

mortality, neonatal mortality falls by almost 3.2%. The longer birth intervals also imply 

that women have their children later and, through the negative effect of mother’s age on the 

decision to have another child, this reduces the number of births by 0.72%. Due to the fall 

in mortality, the reduction in the number of surviving children is smaller (0.47%).  

The next simulation (col. 3) shows what happens if mortality affects neither birth 

intervals, nor the probability of having another child. Mainly because of longer birth 

intervals, mortality falls by 4.4%. Comparing these results with the benchmark, the total 

size of the replacement effect can be estimated: total simulated mortality is 7.08% of births. 

Births as a result of replacement are about 2.6% of all births, that is, 0.37 births for every 

neonatal death. Because replacement increases mortality, the replacement effect on the 

number of surviving children is smaller, about 0.30 surviving replacement children for 

every death. These estimates, although they refer to neonates only, are in line with existing 

estimates, which lie between 0.2 and 0.5 (Schultz 1997:384-385). In particular, Olsen 

(1988) finds a replacement effect of 0.35 using Malaysian data, and shows that replacement 

is greatest for children who die soon after birth. 

 In addition to suppressing the effects of mortality on birth interval and fertility, the 

next simulation (col. 4) also suppresses the effect of previous mortality on index child 

mortality (Mij-1 on Mij), so that all effects of previous mo rtality are eliminated. Mainly 

because of suppressing the replacement effects, the average length of birth intervals 

increases by 0.50 months and the total number of children born falls by 2.6%. Neonatal 

mortality falls by about 0.66 %-points, because of suppressing state dependence and the 

longer birth intervals. Since the negative fertility effect dominates the positive mortality 

effect on surviving children, the total number of surviving children falls. 

In column 5, we further eliminate hoarding. High frailty mothers are now not 

expected, ex ante, to have shorter birth intervals or higher probabilities of having another 

child. Thus all behavioural and non-behavioural relations between mortality and birth 

spacing/fertility are eliminated. The total reduction in neonatal mortality compared to the 
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benchmark is 10.9%, most of which is due to eliminating state dependence. On average, 

birth intervals are 2.6% longer, mainly because the replacement effect is eliminated. The 

total number of children born falls by 3.3%; the number surviving falls by less, because of 

the reduced mortality probability.                           

           
 
6 Summary and Conclusions  

The main findings are as follows. The difference in neonatal mortality according to 

whether or not the preceding sibling died in the neonatal period is 14 %-points. This is 

enormous, given that the average risk of neonatal death in our sample is 7.4 percent. We 

estimate that genuine state dependence accounts for 37% of this, the remaining 63% being 

explained by inter- family heterogeneity. The analysis confirms that endogenously 

determined birth spacing is a mechanism generating state dependence in mortality, but it 

explains only about a fourth of total state dependence. Identification of the mechanisms 

driving the remaining state dependence is an important avenue for further research, not 

addressed in the demographic literature. We suggest maternal depression as a possibility. 

We find direct evidence of replacement behaviour: a child death results in a 

shortening of the interval to the next birth, and also increases the probability of a next birth. 

Our model simulations imply that, accounting for direct and indirect effects, 37 in 100 

children who die during the neonatal period are replaced by new births. Of these, about 30 

survive. There is no evidence that frailty is correlated with fecundity. This suggests that 

couples do not practice hoarding, i.e., we find no evidence that women who know that their 

children are at relatively large risk of neonatal death anticipate this by reducing the length 

of their birth intervals ex ante. 

As a measure of the importance of allowing for the joint determination of death risk 

and reproductive behaviour, we estimated the effects on the main outcomes of eliminating 

all behavioural and non-behavioural relations between the mortality process and the birth 

interval and fertility processes. The predicted reduction in neonatal mortality is 10.9%, 

most of which is due to eliminating state dependence. On average, birth intervals are 2.6% 

longer, mainly because the replacement effect is eliminated. The total number of children 

born falls by 3.3%, while the total number of children surviving the neonatal period falls by 

2.5% (because of the reduced mortality probability).                    
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Our estimates of fertility behaviour are consistent with son-preference. These are 

probably the first estimates of son-preference in fertility that allow for endogeneity of 

mortality.  We find that mortality falls with maternal age for most of range of the sample, 

indicating benefits to interventions that delay first birth (and lengthen birth intervals). The 

literature is scarce in estimates of maternal age effects on mortality that account for its 

endogeneity. Maternal education decreases both mortality and fertility, but has no effect on 

birth spacing. Paternal education depresses the probability of another birth but has no 

significant effect on the other endogenous variables. There are strong religion effects: 

Muslims exhibit higher fertility, shorter birth intervals and, yet, lower mortality. In contrast, 

fixed effects associated with caste are weak. Conditional upon all covariates, we estimated 

a trend reduction in mortality of 0.16%-points p.a. during 1963-99, which is about 3.3% of 

the benchmark probability. Fertility decline in India seems to have set in from 1981. 

Despite this, birth intervals have got shorter since about then. 

Future work could extend the framework to analyze infant or under-5 mortality. 

This creates the additional complication that mortality events and births can take place in 

overlapping time periods, requiring a different modelling approach. These results are for 

one Indian state, albeit a state with the largest population (166 million in 2001) and the 

highest neonatal death rate in India. Extension of the analysis to consider other Indian states 

or other developing countries will lend important insight into the mechanisms driving the 

key relationships analysed here. Many countries in sub-Saharan Africa have higher rates of 

neona tal mortality and persistently higher fertility than in India. It would be interesting to 

investigate this “demographic trap”. And this is easily done. The Indian survey used in this 

paper is one of about 70 Demographic and Health Surveys conducted across the developing 

world (see www.measuredhs.com). The methods used in this paper are therefore 

immediately applicable to a vast array of countries with different profiles of the structural 

processes.  

 

References 

Alessie, R., S. Hochguertel and A. van Soest, 2004, Ownership of stocks and mutual  

funds: A panel data analysis. Review of Economics and Statistics 86, 783-796. 



 22 

Angrist, J.D. and B. Evans, 1998, Children and their parents’ labor supply: Evidence from 

exogenous variation in family size. American Economic Review 88, 450-477.  

       Arulampalam, W. and S. Bhalotra, 2006a, Sibling death clustering in India: Genuine scarring 

vs unobserved heterogeneity. Journal of the Royal Statistical Society, Series A, 169(4), 829-848. 

       Arulampalan, W. and S. Bhalotra, 2006b, Persistence in infant mortality: Evidence for the 

Indian states, Discussion Paper 2488, IZA: Bonn.  

       Ben-Porath, Y., 1976, Fertility response to child mortality: Micro data from Israel. Journal of 

Political Economy 84, S163-S178. 

       Bhargava, A., 2003, Family planning, gender differences and infant mortality: Evidence from 

Uttar Pradesh, India. Journal of Econometrics 112, 225-240.  

       Chen, L., S. Ahmed, M. Gesche and W. Mosley, 1974, A prospective study of birth interval 

dynamics in Rural Bangladesh. Population Studies 28, 277-297. 

       Chung EK, McCollum KF, Elo IT, Lee HJ, Culhane JF. (2004) Maternal depressive symptoms 

and infant health practices among low-income women. Pediatrics, 113(6):523-529. 

       Cigno, A ,1998, Fertility decisions when infant survival is endogenous. Journal of Population 

Economics 11, 21-28  

       Cleland, J. and Z.A. Sathar, 1984, The effect of birth spacing on childhood mortality in 

Pakistan. Population Studies 38, 401-418.  

       Curtis, S.L., I. Diamond and J.W. McDonald, 1993, Birth interval and family effects on 

postneonatal mortality in Brazil. Demography 33, 33-43. 

       Cutler, D., A. Deaton and A. Lleras-Muney, 2005, The determinants of mortality. Journal of 

Economic Perspectives, forthcoming. 

       DasGupta, M., 1990, Death clustering, mothers education and the determinants of child-

mortality in rural Punjab, India. Population Studies 44, 489-505. 

       DaVanzo, J. and A.R. Pebley, 1993, Maternal depletion and child survival in Guatemala and 

Malaysia. Labor and Population Program Working Paper 93-18, RAND.  

       Drewett R, P. Blair, P. Emmett and A. Emond; ALSPAC Study Team (2004), Failure to thrive 

in the term and preterm infants of mothers depressed in the postnatal period: A population-based 

birth cohort study. Journal of Child Psychol Psychiatry, 45(2):359-66. 

       Drèze, J. and H. Gazdar, 1997, Uttar Pradesh: The burden of inertia, in: J. Drèze and A. Sen,  

(Eds.), Indian Development: Selected Regional Perspectives, Oxford University Press, pp. 33-128. 

       Drèze, J. and A. Sen, 1997, Indian Indian Development: Selected Regional Perspectives, 

Clarendon Press, Oxford.  



 23 

       Eckstein, Z., P. Mira and K. Wolpin, 1999, A quantitative analysis of Swedish fertility 

dynamics, 1751-1990. Review of Economic Dynamics 2, 137-165. 

       Frankenberg, E., 1998, The relationship between infant and child mortality and subsequent 

fertility in Indonesia, 1971-1991, in: M. Montgomery and B. Cohen, (Eds.), From Death To Birth: 

Mortality Decline And Reproductive Change, National Research Council, National Academy Press, 

Washington DC, pp. 254-315.  

       Galor, O. and D. Weil, 2000, Population, technology, and growth: From Malthusian stagnation 

to the demographic transition and beyond. American Economic Review 90, 806-828. 

       Gribble, J.N., 1993, Birth intervals, gestational age and low birth weight: are the relationships 

confounded?  Population Studies 47, 133-146. 

       Guo, G., 1993, Use of sibling data to estimate family mortality effects in Guatemala. 

Demography 30, 15-32. 

       Habicht, J.-P., J. DaVanzo, W.P. Butz, and L. Meyers,  1985, The Contraceptive Role of 

Breastfeeding. Population Studies 39, 213-232. 

       Hajivassiliou, V. and P. Ruud, 1994, Classical estimation methods for LDV models using 

simulation, in: R. Engle and D. McFadden, (Eds.), Handbook of Econometrics, Vol. IV, North-

Holland, New York, pp. 2384-2443. 

       Heckman, J.J., 1981, The incidental parameters problem and the problem of initial conditions 

in estimating a discrete time-discrete data stochastic process, in: C.F. Manski and D.L. McFadden, 

(Eds.), Structural Analysis Of Discrete Data With Econometric Applications, MIT Press, London, 

pp. 179-195. 

       Heckman, J., V.J. Hotz and J. Walker, 1985, New evidence on the timing and spacing of births. 

American Economic Review 75, 179-184.  

       Hobcraft, J.N., J.W. McDonald, S.O. Rutstein, 1985, Demographic determinants of infant and 

early child mortality: A comparative analysis. Population Studies 38, 193-223. 

       Hyslop, D.R., 1999, State dependence, serial correlation and heterogeneity in inter-temporal 

labor force participation of married women. Econometrica 67, 1255-1294. 

       IIPS and ORC Macro, 2000, National Family Health Survey (NFHS-2) 1998-9: India. 

International Institute for Population Sciences (IIPS), Mumbai. 

       James, K.S., I. Aitken and S.V. Subramanian, 2000, Neonatal mortality in India: Emerging 

paradoxes. Harvard Center for Population and Development Studies Working Paper Series: 10, 13.  

       Kalemli-Ozcan, S., 2002, Does mortality decline promote economic growth? Journal of 

Economic Growth 7, 411-439. 



 24 

       Lawn, J.E., S. Cousens, J.Zupan (2005), Neonatal Survival 1- 4 million neonatal deaths: When? 

Where? Why?, Lancet, 365: 891-900.  

       Madise, N.J. and I. Diamond, 1995, Determinants of infant mortality in Malawi: An analysis to 

control for death clustering within families. Journal of Biosocial Science 27, 95-106. 

       Maitra, P. and S. Pal, 2004, Birth spacing and child survival: Comparative evidence from India 

and Pakistan. Working paper, Monash University, Melbourne. 

       Moffitt, R., 2003, Causal analysis in population research: An economist’s perspective. 

Population and Development Review 29, 448-458. 

       Nyarko, P., N.J. Madise and I. Diamond, 2003, Child loss and fertility behaviour in Ghana. 

Social Statistics Research Centre Working Paper, A03/08, University of Southampton. 

       Olsen, R., 1980, Estimating the effect of child mortality on the number of births. Demography 

17, 429-443. 

       Olsen, R. (1988), Cross-sectional methods for estimating the replacement of infant deaths, 

Research in Population Economics, 6, 111-136. 

       Olsen, R. and K. Wolpin, 1983, The impact of exogenous child mortality on fertility: A waiting 

time regression with exogenous regressors. Econometrica 51, 731-749.  

       Preston, S.H., 1985, Mortality in childhood: Lessons from WFS. In: J. Cleland and J. Hobcraft, 

(Eds.), Reproductive Change In Developing Countries, Oxford University Press, Oxford, 46-59. 

       Rahman, A., Z. Iqbal, J. Bunn, H. Lovel and R. Harrington, 2004, Impact of maternal 

depression on infant nutritional status and illness. Archives of General Psychiatry 61, 946-952. 

       Rahman, M. and J. DaVanzo, 1993, Gender preference and birth spacing in Matlab, 

Bangladesh. Demography 30, 315-332. 

       Rosenzweig, M. and T.P. Schultz, 1983a, Consumer demand and household production: The 

relationship between fertility and child mortality. American Economic Review 73, 38-42.  

       Rosenzweig, M. and T.P. Schultz, 1983b, Estimating a household production function: 

Heterogeneity, the demand for health inputs, and their effects on birth weight. Journal of Political 

Economy 91, 723-746. 

       Rosenzweig, M. and T.P. Schultz, 1989, Schooling, information and nonmarket productivity: 

Contraceptive use and its effectiveness. International Economic Review 30, 457-477. 

       Rosenzweig, M. and K. Wolpin, 1988, Heterogeneity, intrafamily distribution and child health. 

The Journal of Human Resources 23, 437-461. 

       Rosenzweig, M. and K. Wolpin, 1995, Sisters, siblings and mothers: The effect of teenage 

childbearing on birth outcomes in a dynamic family context. Econometrica 63, 303-326. 



 25 

       Sastry, N., 1997, A nested frailty model for survival data, with an application to the study of 

child survival in Northeast Brazil. Journal of the American Statistical Association 92, 426-435. 

       Schultz, T.P., 1997, Demand for children in low income countries, in: M. Rosenzweig and 

O.Stark, (Eds.), Handbook Of Population And Family Economics, Vol. 1A, North Holland, 

Amsterdam, pp. 349-432. 

     Solon, G., M. Corcoran, R. Gordon and D. Laren, 1991, A longitudinal analysis of sibling 

correlations in economic -status. Journal of Human Resources 26, 509-534. 

       Steer, R.A., Scholl, T.O. Hediger, M.L. and R.L. Fischer, 1992, Self-reported depression and 

negative pregnancy outcomes. Journal of Clinical Epidemiology 45, 1093-1099. 

       Train, K., 2003, Discrete Choice Methods With Simulation, Cambridge University Press, 

Cambridge. 

       UNDP, 2003, Human Development Report: Millennium development goals: A compact among 

nations to end human poverty, Geneva: UNDP. 

       Whitworth, A. and R. Stephenson, 2002, Birth spacing, sibling rivalry and child mortality in 

India. Social Science and Medicine 55, 2107-2119. 

       WHO, 2001. The World Health Report. Mental health: New Understanding, New Hope, 

Geneva: World Health Organization. 

       Wolpin, K., 1997, Determinants and consequences of the mortality and health of infants and 

children. In: M. Rosenzweig and O. Stark, (Eds.), Handbook Of Population And Family Economics, 

Vol. 1A, North Holland, Amsterdam, pp. 483-558. 

       Wooldridge, J., 2000, A framework for estimating dynamic, unobserved effects panel data 

models with possible feedback to future explanatory variables. Economics Letters 6, 245-250. 

       Wooldridge, J., 2002, Econometric Analysis Of Cross-Section And Panel Data, MIT Press, 

Cambridge, MA.  

       Zenger, E., 1993, Siblings’ neonatal mortality risks and birth spacing in Bangladesh. 

Demography 30, 477-488. 



 26 

Table 1: Model Parameter Estimates 

Parameter s.e Parameter s.e Parameter s.e
lagged mortality 0.320* 0.068 -0.237* 0.017
log birth interval -0.447* 0.050
Religion:
Muslim -0.197* 0.065 -0.076* 0.014 0.379* 0.045
other -0.043 0.338 -0.098 0.070 -0.404 0.242
Caste:
scheduled caste 0.098 0.136 0.025 0.034 0.101 0.088
scheduled tribe 0.100 0.054 0.001 0.013 -0.044 0.039
other backward caste -0.061 0.052 -0.005 0.012 -0.158* 0.038
caste missing 0.063 0.099 0.001 0.024 -0.038 0.074
Maternal education:
incomplete primary -0.029 0.094 0.011 0.024 -0.115 0.070
complete primary -0.197* 0.093 0.034 0.021 -0.136* 0.059
incomplete secondary -0.093 0.099 0.013 0.024 -0.266* 0.067
secondary & higher -0.297* 0.144 0.034 0.022 -0.544* 0.062
Paternal education:
incomplete primary -0.004 0.083 0.013 0.020 0.116* 0.057
complete primary -0.109 0.076 0.002 0.015 -0.035 0.049
incomplete secondary -0.103 0.059 0.004 0.015 -0.098* 0.042
complete secondary -0.134* 0.067 -0.001 0.016 -0.198* 0.048
higher than secondary -0.031 0.066 0.010 0.016 -0.228* 0.047
Gender:
female -0.043 0.038 -0.028* 0.008
Birth year of child:
year of birth of child/10 -0.028 0.62 0.415* 0.121 14.462* 0.850
(year/10) squared -0.008 0.036 -0.026* 0.007 -0.895* 0.051
Maternal age:
maternal age at birth/10 -0.817* 0.341 0.308* 0.072 -1.195* 0.190
(age/10) squared 0.143* 0.063 -0.054* 0.015 0.126* 0.033
Child birth-order:
birth-order 0.044 0.049 -0.025* 0.008
square of birth-order -0.001 0.004 0.003* 0.001
Surviving children:
1 if no boys 0.206* 0.049
1 if no girls 0.147* 0.041
number of boys -0.249* 0.025
number of girls -0.072* 0.020
Constant 1.633 2.706 1.402* 0.509 -53.872* 3.420
sigma error 0.454* 0.002

Neonatal Mortality Log Birth Interval Prob(Further Birth)

Notes: s.e. denotes standard error. * indicates that the parameter is significant at the two-sided 5% level.  
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Table 2. Unobserved Heterogeneity: 
Mother plus community level effects  

 
Covariance matrix 
 Mortality Birth interval Fertility 
Mortality 0.173   
Birth interval -0.000 0.025  
Fertility  0.003 -0.049 0.181 
    
Correlation matrix 
 Mortality Birth interval Fertility 
Mortality 1.000   
Birth interval -0.004 1.000  
Fertility 0.015 -0.725 1.000 

Notes: See section 5.4 of the text 
 

Table 3. Simulations  
 

      
 (1) (2) (3) (4) (5) 

Neonatal mortality (%)  7.404 -3.17 -4.40 -8.92 -10.86 
Birth interval (months) 30.586  1.70  1.66  1.66   2.63 
Number of births 
(fertility) 

 4.125 -0.72 -2.59 -2.59  -3.34 

Number of survivors  3.819 -0.47 -2.25 -1.90  -2.50 
      

Notes: Column 1 presents sample averages of the simulated outcomes for the 
benchmark model. Columns 2-5 show percentage deviations from the benchmark 
that arise when selected mechanisms are “switched off” as follows: 
2: No effect of mortality on birth interval. 
3: No effect of mortality on birth interval or probability of having another child. 
4: No effect of mortality on birth interval, probability of having another child, or 
next child’s mortality. 
5: No effect of mortality on birth interval, probability of having another child, or 

next child’s mortality; no hoarding (i.e. unobserved heterogeneity in the 
mortality equation is not correlated with unobserved heterogeneity in the 
equations for birth spacing and fertility).  
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Appendix Table 1 

Variable Definitions and Summary Statistics 
 

Variable  Mean Std. Dev. Min Max 
     
neonatal mortality 0.069  0.0 1.0 
lagged neonatal mortality 0.060  0.0 1.0 
log birth interval* 3.306 0.486 2.1 5.7 
Hindu 0.824  0.0 1.0 
Muslim 0.168  0.0 1.0 
other religions  0.007  0.0 1.0 
not backward caste 0.454  0.0 1.0 
scheduled caste 0.196  0.0 1.0 
scheduled tribe 0.022  0.0 1.0 
other backward caste 0.276  0.0 1.0 
mother has no education 0.753  0.0 1.0 
ma has incomplete primary 0.045  0.0 1.0 
ma has completed primary 0.075  0.0 1.0 
ma has incomplete secondary 0.061  0.0 1.0 
ma has secondary or higher 0.064  0.0 1.0 
father has no education 0.334  0.0 1.0 
pa has incomplete primary 0.068  0.0 1.0 
pa has completed primary 0.110  0.0 1.0 
pa has incomplete secondary 0.195  0.0 1.0 
pa has completed secondary 0.125  0.0 1.0 
pa has higher than secondary 0.164  0.0 1.0 
Female 0.475  0.0 1.0 
year of birth of child* 86.992 7.394 630 99.0 
maternal age at birth* 23.224 5.539 12.0 47.0 
birth-order* 3.179 2.051 1.0 14.0 
dummy no surviving boys 0.122  0.0 1.0 
dummy no surviving girls 0.188  0.0 1.0 
number of surviving boys* 1.962 1.386 0.0 8.0 
number of surviving girls* 1.782 1.461 0.0 10.0 
     
Notes: All variables other than those with a * are dummies. Lagged mortality refers to the 
mortality status of the preceding sibling. Italics indicate reference category omitted in the 
regressions.  
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Figure 1: Nonparametric (lowess) relation of (predicted) neonatal mortality and the 
preceding birth interval 
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Notes: The top 1% of observations were deleted. 
 

Figure 2: Density of log birth interval by survival status of preceding sibling  
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Online Appendix 

 

Birth Spacing, Fertility and Neonatal Mortality in India: 

Dynamics, Frailty and Fecundity 
 
 

Sonia Bhalotra, University of Bristol, 
 

Arthur van Soest, RAND and Tilburg University 
 
 

This Appendix includes details of the likelihood function (section 4 of the text), 
robustness checks (section 5.5), the benchmark simulation (section 5.6) and some 
auxiliary results (relating to section 5). A longer version of our paper is available as a 
CMPO (Bristol) Working Paper on this link:  
http://www.bris.ac.uk/Depts/CMPO/workingpapers/workingpapers.htm 
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Appendix 2: Specification Checks 
Here we present in more detail the results of the robustness checks summarized in section 

5.5 of the paper. First we consider checks on robustness of the coefficient of lagged 

mortality. Then we consider robustness of the main parameters to some simplifications, 

in order to assess the importance of alternative features of the model. 

1. Robustness of the Coefficient on Lagged Mortality 

It is striking that we find a positive effect of lagged neonatal mortality on current 

neonatal mortality even though we control for the birth interval and for unobserved 

heterogeneity. There are three potential sources of positive correlation between lagged 

mortality and current mortality: unobserved heterogeneity, the causal mechanism 

operating through the birth interval, and other sources of state dependence. A reason for 

overestimating the last one might be that the roles of the first two are underestimated, 

because of model misspecification. We therefore focus on model extensions that 

generalize either the specification of unobserved heterogeneity, or the mechanism 

through which birth intervals affect mortality. 

 In the first category, we consider: auto-correlated error terms, which can be seen 

as unobserved heterogeneity that is not purely persistent but gradually changes over time, 

and a more general distribution of unobserved heterogeneity, relaxing the normality 

assumption. In the second category, we consider correlation between errors in birth 

interval and mortality equations (which may be due to measurement error in reported 

birth intervals), other functional forms of the relationship between birth intervals and 

neonatal mortality, and interactions of the birth interval with socio -demographics. 

Finally, we also looked at interactions between lagged mortality and socio -demographics  

in order to see whether the positive effect of lagged mortality can be attributed to specific 

groups.  

We describe the results of these additional estimations below. The bottom line is 

that the positive estimate of the effect of lagged mortality in the benchmark model (0.320 

with standard error 0.068) is quite robust. 

Auto-correlated errors  

As we know since Heckman (1981) and as emphasized by Arulampalam and 

Bhalotra (2006a) for the single equation mortality model, ignoring or underestimating the 
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importance of unobserved heterogeneity may lead to an upward bias in the state 

dependence coefficient. One form of misspecification would be that heterogeneity varies 

over time, which can be captured by introducing autocorrelation in the error terms. As in 

an ARMA(1,1) time series model, the AR coefficient (on the lagged dependent variable) 

might be overestimated if the MA coefficient is set to zero and an AR(1) model with 

error terms that are uncorrelated over time is estimated. In the current context, the family 

may have suffered a temporary shock such as a poor harvest or an episode of maternal 

illness that spans two or more births. This will result in correlated risks of death for 

successive births. Thus we extended the benchmark model to allow for non-zero 

autocorrelation in the error terms umij in the neonatal mortality equation (eq. (1)). The 

model was estimated using the GHK simulator to obtain the simulated likelihood 

contributions. 

 We found an estimate of the autocorrelation coefficient of -0.004 with t-value -

0.10. Correspondingly, the estimates of the other parameters were virtually identical to 

those in the benchmark model with autocorrelation coefficient set to zero. Only the 

standard errors increased (as expected). The estimate of the parameter of interest, the 

effect of lagged mortality on current mortality, was 0.320 with standard error 0.094.  

More flexible distribution of unobserved heterogeneity 

Another form of misspecification arises if the normality assumption on the 

unobserved heterogeneity terms is not satisfied. We looked at a more general distribution 

for the vector of unobserved heterogeneity terms in the three equations (1)-(3), a mixture 

of (3-variate) normals. Indeed we found some evidence for a second point of support, 

albeit the second point of support has rather small probability 0.079 (standard error 

0.034). The other coefficients, including the parameters of main interest in Table 5, 

however, are hardly affected. The estimated coefficient of lagged mortality in the 

mortality equation becomes 0.319 with standard error 0.067. 

Correlation between errors in mortality and birth interval equations  

A potential source of a correlation between the error terms in the mortality 

equation and the equation for the preceding birth interval might be measurement error in 

the retrospectively reported birth intervals. This might induce attenuation bias on the 

coefficient on the birth interval in the mortality equation, attributing a too small role to 
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the birth interval mechanism, and thus leaving too much for the remaining effect of 

lagged mortality on mortality. In the model extended with this correlation, the estimated 

correlation coefficient is not significant (-0.256 with a t-value of -0.87). Moreover, in 

contrast to the measurement argument, the effect of the birth interval on neonatal 

mortality falls and, accordingly, the effect of lagged mortality on mortality rises (0.463 

with standard error 0.177). Standard errors in this model are much larger than in the 

benchmark model, because identification now relies on excluding lagged independent 

variables from the mortality equation. In particular, the only lagged independent variable 

is gender of the index child, so the identifying assumption is that gender of the previously 

born child does not have a direct effect on neonatal mortality.  

A more flexible effect of the birth interval on mortality 

If the effect of the birth interval in the mortality equation is mis-specified, this 

may also induce a bias in the coefficient on lagged mortality. In the benchmark model, 

we simply include the log birth interval in the mortality equation. Other studies have 

worked with dummies for short and long birth intervals. We added dummies for short 

(<12 months) and long (>36 months) to the model, retaining log birth interval as well. 

The extension is not a significant improvement. Both dummies are insignificant and 

hardly change the other coefficients. In particular, the effect of lagged mortality now 

becomes 0.326 with standard error 0.068. We also included the square of the log birth 

interval, but there was no improvement.  

Another way of allowing for a more flexible effect of the birth interval on 

mortality is to interact it with other variables in the mortality equation. Interactions with 

lagged mortality and with socio-demographics such as education, religion or ethnicity 

were insignificant. The state dependence effect of lagged mortality on mo rtality is hardly 

changed (estimate 0.322; standard error 0.071). 

Interactions of lagged mortality with socio-demographics 

To explore whether the large effect of lagged mortality is specific to a certain 

socio-demographic group, we re-estimated the model with interactions of lagged 

mortality and basic socio-demographics. Because of the limited number of neonatal 

deaths in certain cells, we could not interact with all variables simultaneously. We 

included interactions with birth date, mother’s age, and birth order, but not with the 
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squares of these variables, and with dummy variables indicating gender of the newborn 

child, lower caste, religion other than Hindu (mainly Muslim), and higher than basic 

education of mother and father (but not with all separate dummies for higher education 

levels). 

A likelihood ratio test shows that the eight interactions are jointly insignificant at 

the 5% level. Only three interactions have absolute t-values larger than 1: with date of 

birth (in 0.1 years; point estimate -0.144 with t-value -1.91), with the dummy for more 

than basic education of the mother (0.156 with t-value 1.16) and with the dummy for 

more than basic education of the father (-0.156 with t-value -1.44).  

These additional results confirm that there is a substantial positive effect of the 

neonatal death of one child on the neonatal survival probability of the next child that does 

not work through the birth interval, even after controlling in a flexible way for 

unobserved heterogeneity. The effect is robust to many features of the specification, and 

is of similar order of magnitude to that in Whitworth and Stephenson (2002). A 

behavioural reaction of the mother to the death of a child, e.g. induced by depression (cf. 

Steer et al., 1992), is a mechanism that may explain at least part of this. (References are 

in the paper.) 

 

2. Other Specification Checks 

Here we discuss the estimates in Table A1 (below), which consider sensitivity of 

the main parameters to various simplifications of the model. The benchmark case is 

named Model 1. First, we excluded the community effects (Model 2). There is now a 

positive correlation of 0.21 between the unobserved heterogeneity terms in equations (1) 

and (2), which explains why we find somewhat larger negative effects of the birth 

interva l on mortality and vice versa than in the benchmark model. The main difference is 

that this model underestimates the standard errors. Model 3 does not allow for 

unobserved heterogeneity at the community or mother level. This creates some 

significant changes. The most salient is the effect of lagged on current mortality, which is 

about 80% larger than in the benchmark model (and 67% larger than in Model 2). This is 

consistent with the traditional argument that ignoring heterogeneity leads to 
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overestimation of state-dependence (Heckman 1981). 13 There is little change in the effect 

of mortality on the next birth interval, because the correlation between the total 

unobserved heterogeneity terms is close to zero.  

We also considered the consequences of omitting the birth interval from the 

mortality equation (Model 4). This increases the estimated effect of lagged mortality in 

the mortality equation, consistent with the mechanisms described in section 1. It also 

biases the effect of lagged mortality on the birth interval in equation (2). This is because 

omission of the birth interval induces a significant negative correlation (of –0.43) 

between the (total) unobserved heterogeneity terms in equations (1) and (2), which 

creates an upward simultaneity adjustment on the coefficient of lagged mortality. In 

Model 1, this correlation was small and insignificant (at –0.004). Model 5 combines the 

restrictions imposed in arriving at Models 3 and 4. The two positive biases on the effect 

of lagged mortality on mortality together lead to an estimate that is twice as large as in 

the benchmark model. There is hardly any bias on the coefficient of mortality in the birth 

interval equation, for the same reason as in Model 4.] 

 

                                                 
13 Similarly, if the effect of lagged mortality on current mortality is set to zero, the estimated 
standard deviation of the unobserved heterogeneity term in the mortality equation increases from 
0.173 to 0.279.  
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Table A1. Sensitivity Analysis: 
Endogenous coefficients in simplified specifications  

 

 
Mortality 
equation Birth interval equation 

 Mi,j-1  Ln Bi,j  Mi,j-1 
Model 1    
Benchmark model 0.32 -0.447 -0.237 
 -0.068 -0.05 -0.017 
Model 2    
No community cluster effects 0.369 -0.482 -0.246 
 -0.055 -0.046 -0.016 
Model 3    
No mother-level or community 
unobserved heterogeneity 0.585 -0.411 -0.243 
 -0.042 -0.039 -0.013 
Model 4    
No lagged birth interval 0.39  -0.211 
 -0.065  -0.016 
Model 5    
No lagged birth interval & 0.643  -0.243 
no mother-level or community 
unobserved heterogeneity -0.042  -0.013 
    

Notes: See section 5.5 of the text. Figures are parameter values, with standard errors in 
parentheses. Model 1 is that reported in Table 1. The effects of the other variables are not shown 
since they do not change much compared to the benchmark estimates. 
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Appendix 3: Benchmark Simulation 
 

This appendix describes the benchmark simulation mentioned in Section 5.6. The 

benchmark simulation has all mechanisms at work as specified in equations (1)-(4). 

Observatio ns for the exogenous variables are taken from the data: 7286 mothers in 333 

clusters, with their ethnicity, their and their partner’s education levels, their date of birth, 

and the date of birth of their first child; all the explanatory variables in the eq uation for 

mortality of the first child. The mother specific effects, the neighborhood specific effects, 

and all error terms in the equations for mortality, birth interval, and the decision to have 

another child are drawn from their estimated joint distrib ution. 14      

 Dependent variables are then simulated recursively for each mother: the mortality 

outcome of the firstborn child; the decision to have a second birth or not; if this decision 

is positive, the birth interval until the second birth; the mortality outcome of the second 

birth; the decision to have a third birth or not; and so on until the mother decides to have 

no more births, or until the maximum number of births (14) is reached. Table A1 presents 

the benchmark simulation results by birth order. The second and third columns present 

the frequency distributions of births and neonatal-survivors. By design, the sample 

consists of women who gave birth at least once. About 12% have only one birth, 17.2% 

have two births, etc. About 0.6% of all women have  no surviving children – they have 

one or two births, but all their children die within 30 days. The simulated average of 4.12 

births is somewhat larger than the average number in the sample, because the numbers in 

the sample are truncated at the time of the interview.15 The overall mean of simulated 

birth intervals is 30.59 months, somewhat smaller than the observed mean of 30.78 in the 

data, the difference being due to a small number of large outliers. The average number of 

surviving children (3.82) is 7.4% smaller than the average number of births. Thus the 

average neonatal mortality rate in this simulation is 7.4%. Column 4 presents simulated 

mortality by birth order. Neonatal mortality is largest among firstborn children and 

                                                 
14 The maximum number of births in the data is 14; we thus draw 14 error terms for each 
equation, 42 in total, although not all of them will actually play a role. (E.g., if the mother decides 
not to have more children after her fifth birth, errors in birth intervals and mortality equations for 
the sixth and further children play no role.)  
15 If we apply the same truncation in the simulation, the average number in the simulations is 
virtually very similar to the observed number. 



 38 

among children of birth order higher than six. The estimates for high birth orders, 

however, become rather inaccurate due to small numbers of mothers with so many 

children; this is also why the Table only presents results up to birth order 10. 

 Column 5 presents the average length of the simulated preceding birth interval by 

birth order. On average, intervals are shorter for higher birth orders. This is primarily a 

selection effect. In other words, it reflects that fact that women who have high-order 

births (i.e. high fertility) tend to have shorter birth intervals. 

 
Table A2. Benchmark Simulation 

     
Birth order Births 

(frequency, %) 
Survivors 
(frequency, %) 

Mortality risk  
(%) 

Average birth 
interval 
(months) 

0    0.62   
1 12.01 13.50  9.17  
2 17.22 17.90  6.89 30.90 
3 17.17 18.24  5.93 31.04 
4 15.26 15.87  6.79 30.73 
5 12.63 12.31  6.34 30.42 
6  9.44  9.50  5.98 29.89 
7  6.60  5.60  8.61 29.17 
8  4.63  3.60 10.37 29.65 
9  2.24  1.59 10.35 28.07 
10  1.54  0.70  8.33 30.24 
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Appendix 4: Some Auxiliary Tables 
 

Table A3: Neonatal Mortality of the first-born child (equation 3) 
 Parameter Std error t-value 
Religion:    
Muslim -0.132 0.103 -1.28 
Other -0.070 0.423 -0.17 
Caste:    
scheduled caste 0.139 0.225 0.62 
scheduled tribe 0.121 0.094 1.30 
other backward caste -0.031 0.092 -0.34 
caste missing            0.056 0.165 0.34 
Maternal education:    
incomplete primary 0.108 0.148 0.73 
complete primary -0.119 0.139 -0.86 
incomplete secondary 0.063 0.130 0.48 
secondary & higher -0.298 0.160 -1.87 
Paternal education:    
incomplete primary -0.245 0.164 -1.49 
complete primary           -0.008 0.114 -0.07 
incomplete secondary -0.093 0.099 -0.94 
complete secondary -0.107 0.113 -0.94 
higher than secondary -0.163 0.116 -1.41 
Gender:    
Female -0.143 0.076 -1.88 
Trend effects:    
year of birth of child/10 -0.722 0.814 -0.89 
(year/10) squared 0.036 0.048 0.76 
Maternal age:    
maternal age at birth/10 -1.340 0.963 -1.39 
(age/10) squared 0.250 0.236 1.06 
Constant 3.645 3.517 1.04 
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Table A4: Unobserved Heterogeneity: Underlying Parameter Estimates 
 

 Parameter Std error t-value 
pmm       0.283* 0.061 4.67 
pbm       0.084* 0.023 3.67 
pbb     0.041  0.027 1.49 
pfm    -0.091 0.072 -1.27 
pfb     0.086 0.103 0.83 
pff     0.110 0.139 0.79 
    
p0m      0.480 0.266 1.80 
p0b    -0.345 0.261 -1.32 
    
t mm         0.305* 0.069 4.41 
t bm       -0.079*   0.027 -2.95 
t bb        0.099* 0.025 3.96 
t fm      0.094 0.071  1.31 
t fb    -0.372 0.106 -3.51 
t ff      0.072 0.150 -0.48 
    
t 0m      0.037 0.173 0.21 
t 0b     -0.235 0.215 -1.09 

 
Notes: Refer section 5.4 of the text. 

*: parameter (and marginal effect) significant at the two-sided 5% level 
 Mother-specific effects are parameterized as follows:    

Mortality:  ami = pmmumi;  
Birth interval:   abi = pbmumi + pbbubi;  
Fertility:  afi = pfmumi + pfbubi + pffufi;  

umi, ubi, ufi independent standard normal, independent of exogenous variables and 
error terms.  The parameters p0m and  p0bare the coefficients of umi and  ubi in the 
equation for neonatal mortality of the first child. 
Community-specific effects are parameterized as follows:    

Mortality:  (mi = tmmv mi;  
Birth interval:   (bi = tbmvmi + t bbvbi;  
Fertility:  (fi = tfmvmi + t fbvbi + tffvfi;  

vmi, vbi, vfi independent standard normal, independent of umi, ubi, ufi, exogenous variables, 
and error terms. The parameters t0m and t0b are the coefficients of vmi and vbi  in the 
equation for neonatal mortality of the first child.  

 
 
 
 


