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Abstract 
 

In this paper we distinguish between two causal explanations for the volume-outcome relationship, 
learning-by-doing and selective referral. We use data on three surgical procedures for which a 
volume-outcome relationship has been documented, the Whipple, coronary artery bypass graft 
(CABG) and repair of abdominal aortic aneurysm (AAA). We distinguish between the competing 
explanations by estimating the relationship between mortality and volume in a non-linear system of 
equations where volume is endogenous and where predicted volume is used to “instrument” for 
volume. In this system, we also allow for the possibility of forgetting. This model will identify 
learning-by-doing by the extent to which differences in expected volume based on variation in the 
numbers of competitors and patients near the hospital affect mortality at the hospital. For AAA and 
CABG increased volume appears to cause lower mortality, while the direction of causality is less 
certain for the Whipple. Using the assumption that volume is exogenous, we find that a significant 
amount of the learning is retained from quarter to quarter for the Whipple and AAA. For CABG, the 
impact of an exogenous increase in contemporaneous volume on mortality depreciates from one 
quarter to the next.  
 

__________________________ 
* We thank Nancy Baxter, Bryan Dowd, Marty Gaynor, Willard Manning, Sean Nicholson, Ariel Pakes, Harold 
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1. Introduction 
 

Over the past quarter century, a large literature comprising over 135 studies has analyzed 

the relation between physician and hospital volumes for surgical procedures and patient 

outcomes, principally mortality. Roughly 70% of these studies find a significant positive 

correlation between volume and outcomes (Halm, et al. 2002). While the volume-outcome 

correlation is well known, the underlying reasons for this relationship are not well established. 

Two hypotheses, with opposite causal implications, have been offered as explanations. 

One explanation is that the volume-outcome relationship is a consequence of some 

economies of scale in quality. Usually the posited specific mechanism underlying these scale 

economies is learning-by-doing. The idea is simple and has been in economic thought at least 

since Adam Smith: one gets better at a given task by performing it more often. This same 

principle underlies production processes that rely on specialization of tasks. In our context, high-

volume hospitals perform more surgeries and perform them more frequently, which increases 

their skills and improves outcomes. An alternative explanation is selective referral, which 

postulates that high volume hospitals are on average better because patients, perhaps with the 

advice of a physician, prefer to be admitted to high quality hospitals. Opposite to learning-by-

doing, selective referral implies that high quality causes high volume. Although both 

explanations are plausible, the medical literature has largely assumed that learning-by-doing is 

the correct interpretation for the observed volume-outcome relationship.1 

In this paper, we attempt to understand the extent to which learning-by-doing and 

selective referral explain the volume-outcome relationship for three different surgical 

procedures, the Whipple, coronary artery bypass graft (CABG) and the repair of abdominal 
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aortic aneurysm (AAA). Our results can shed light on the extent of learning-by-doing for an 

important part of the economy. The hospital sector is also one for which the implications of 

potential policies depend crucially on the mechanisms through which high volumes lead to good 

outcomes. If learning-by-doing is the right explanation for the volume-outcome relationship then 

consolidation of procedures may be in the public interest. If the cause is selective referral, then 

regionalizing procedures will serve to reduce competition and may also make it more difficult for 

patients to sort to good hospitals. The reduction in competition may increase market power and 

allow firms to raise prices (Ho, Town and Heslin, 2005). While the increase in market power is 

of significant concern in small markets, recent studies have found substantial market power for 

hospitals even in large metropolitan areas (Capps, Dranove and Satterthwaite, 2003, Town and 

Vistnes, 2001). 

 Our results also have implications beyond surgery. Understanding the extent of learning-

by-doing in different industries has long been the focus of significant theoretical and empirical 

work.2 More recently, a small literature  has sought to understand the type of learning process, in 

particular, to evaluate the theoretical implications and empirical importance of forgetting.3 The 

skills of a surgical team may deteriorate when they do not perform the procedure often, implying 

that forgetting is important. We are able to estimate the technology of learning for our industry 

because we use detailed data that may not exist for other industries. These data allow for the 

                                                                                                                                                       
1 For example, a recent editorial in the New England Journal of Medicine advocated public policy and private efforts 
to reduce the number of procedures at low volume hospitals (Epstein 2002). A notable exception is Luft, Hunt and 
Maerki (1987) who first proposed the term selective referral. 
2 For example, the literature has identified learning in the following industries: airplane manufacturing, automobile 
manufacturing, chemical manufacturing, textiles, semiconductor manufacturing, ship building, pizza making, 
refined petroleum products, power plants, Kibbutz farming and nuclear power plants. See Argote (1999) for a 
thorough discussion of this literature.   
3 For instance, Doraszelski and Satterthwaite (2005) examine the theoretical implications of forgetting. Benkard 
(2000) provides finds significant forgetting in commercial aircraft production. Darr, Argote and Epple (1995) find 
that there is significant learning-by-doing and forgetting in the cost of pizza production. Argote, Beckman and Epple 
(1990) find significant knowledge depreciation in Liberty Shipbuilding during World War II.   
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identification of learning, selective referral and forgetting effects based on micro-level shocks. 

Unlike studies in the manufacturing sector, we measure learning in terms of better outcomes, and 

not lower costs. Yet, better outcomes surely translate into lower social costs, and so ultimately, 

these measures can be tied back. Moreover, data on mortality is likely more accurate than data 

for other industries, e.g. cost data for manufacturing industries. 

 Our basic model is that patient mortality depends on hospital volume, hospital 

characteristics and patient characteristics, via a probit specification. However, if selective referral 

is even partly correct, then high hospital volume is partly caused by good hospital outcomes. The 

error term in this equation will then be correlated with volume, in which case a simple probit 

alone will yield inconsistent results. We use simultaneous equation methods to control for the 

endogeneity, and ultimately to inform us about both the level of learning-by-doing and selective 

referral. Our methods rely on exogenous variables that are plausibly correlated with volume but 

uncorrelated with unobserved components of hospital quality. We create exogenous variables 

using the predicted hospital volume by procedure from a multinomial choice model. The key 

predictor in the multinomial choice model is distance to a hospital, which we allow to interact 

with hospital and patient characteristics. The location of patients relative to hospitals is a 

determinant of hospital volume that we think might reasonably be thought to be exogenous and 

hence that we use in a similar way to an instrument. Although our model is identified from 

similar forces as instrumental variables, our exact specification, which we detail below in 

Section 2, uses maximum likelihood methods that are consistent with the non-linearities inherent 

in our model. 

 The idea of our identification is that the different locations of hospitals provide a source 

of exogenous variation that should affect mortality for surgical procedures but that can properly 
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be excluded as a regressor. For instance, a hospital which experiences a positive shock to the 

number of patients living nearby will on average accrue more volume and move down any 

learning curve more quickly, regardless of the extent of selective referral. In contrast, hospitals 

with many competitors relative to patients nearby will on average move slowly down the 

learning curve. The level of forgetting is identified by the relative extents to which lagged and 

current predicted volumes affect mortality. A sufficient condition for our source of exogenous 

variation to be valid is that the underlying distribution of residual hospital quality (which is the 

predictor of mortality that remains after controlling for hospital and patient characteristics 

including hospital fixed effects in some specifications) is identically distributed in the 

population. For example, our source of valid variation would be if the unobserved determinants 

of hospital quality are due to random variation in how smoothly different surgical teams 

function. Selective referral would be important to the extent that patients or their physicians are 

aware of the unobserved determinants of hospital quality, and choose hospitals on this basis. 

Distance can plausibly be excluded as a regressor in the mortality equation for the surgeries that 

we examine because time to the hospital is not going to significantly affect survival probabilities. 

 Because the identification is based on the amount of potential competition, we have to be 

careful in how we define potential competitors. For instance, a hospital which performs high 

quality Whipple surgeries may cause nearby hospitals to have no Whipple patients in a given 

quarter, thereby boosting its predicted volume if the nearby hospitals are omitted. For this 

reason, we define predicted volume based on the set of hospitals that are potential entrants to the 

procedure, instead of the set that are currently performing it. 

 Only a few other papers have attempted to distinguish between the competing 

explanations using an endogenous variables approach. Luft, Hunt and Maerki (1987) instrument 
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for hospital volume using the number of appendicitis procedures, the size of the hospital, 

teaching affiliation and medical staff as instruments. These would only be valid instruments if 

the relative qualities of different procedures within a hospital are unrelated. Their identification 

did not rely on patient flow data at all, likely because of the lack of availability of necessary data 

or computational power at the time of their study. A recent paper, Gaynor, Seider and Vogt 

(2005), analyzes the impact of scale effects on CABG outcomes using an approach that is 

identified from forces similar to ours.4 Their estimates suggest that hospital volume causes better 

outcomes. Some other papers have used fixed effects estimators to control for unobserved 

hospital heterogeneity that may be correlated with volume (Hamilton and Ho (1998), Hamilton 

and Hamilton (1997), and Farley and Ozminkowski (1992)). 

There is even less work that estimates the extent of forgetting for surgical procedures. 

The medical literature almost always regresses contemporaneous volume on mortality, implicitly 

assuming perfect forgetting. The only other paper that estimates a model that allows forgetting is 

Gaynor, Seider and Vogt (2005). They estimate the level of forgetting by including lagged values 

of annual volume in their mortality regression. While they have difficulty identifying the impact 

of contemporaneous volume from lagged values because of multicolinearity, their coefficient 

estimates suggest that the volume effects are only contemporaneous suggesting significant 

forgetting. Our work is different from Gaynor, Seider and Vogt (2005) in that our empirical 

specification is consistent with the inherent nonlinearity in learning and forgetting processes. In 

addition, we examine two other procedures besides CABG and we measure hospital volume at a 

higher frequency (quarter versus year) which allows us to better understand the extent to which 

learning is retained over time.  

                                                
4 In contrast to our use of predicted volume based on potential competition, they use the number of CABG surgeries 
and number of hospitals performing CABGs within a fixed radius as exogenous shifters. 



 6 

 Recall that we examine three separate procedures. The advantage of examining multiple 

procedures is that we can understand the extent to which learning, forgetting and selective 

referral differ across the procedures. The three procedures that we examine have quite different 

technologies. The Whipple procedure, which is a treatment for early stage pancreatic cancer, 

involves removing cancerous tumors from parts of five organs. AAA repairs involve opening the 

aortic aneurysm and sewing a vascular graft in place of the weakened segment of the aorta. 

CABG is an open-heart procedure in which blocked coronary arteries are replaced with vessels 

taken from other parts of the body. 

 Our results indicate that for AAA and CABG the relationship between volume and 

mortality appears to be causal, while for the Whipple the results are somewhat ambiguous on this 

point. The point estimates from the static model indicate a 50% increase in the number of 

procedures would reduce the expected mortality rate by 20% (2.1 percentage points) for the 

Whipple procedure, 9.5% (.5 percentage points) for AAA and 12% (.5 percentage points) for 

CABG for a patient with the mean mortality rate and median volume levels.  

 Our parameter estimates from the model that allows learning and forgetting indicate that 

for the Whipple procedure the mortality value of an exogenous increase in volume deteriorates 

slowly while for AAA accumulated learning deteriorates by approximately 50% within a quarter. 

For CABG the mortality value of an exogenous increase in volume in a given quarter is fully 

depreciated by the following quarter. We posit that the pattern of retained learning across the 

procedures is related to the routinization and complexity of the surgery.  

The rest of the paper has the following structure. The next section presents our empirical 

framework. Section 3 discusses the procedures we study and the data used in the analysis. 

Section 4 presents the findings and Section 5 concludes. 
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2. Empirical Framework 

We develop a simple model of surgical learning that we use to estimate the levels of 

learning-by-doing and forgetting for Whipple, AAA repair and CABG surgery. In our model, 

hospital personnel can learn how to better care for patients undergoing a surgical procedure by 

performing the procedure repeatedly. This then allows them to increase the likelihood of post-

operative survival. 

 Consider a patient i who requires surgery at time
 
t i( ) . Throughout this paper a period is a 

quarter of a year. The patient and/or her physician decide at which hospital the patient will obtain 

the surgery. Call this hospital
 
j i( ) . Mortality for the patient will depend on her illness severity 

and also on the quality of care provided by the hospital. Define a latent mortality index 
 
m

i

*  and 

assume that the patient will die if and only if 
 
m

i

*
> 0 , so that mortality is an indicator function, 

  
m

i
= 1 m

i

*
> 0{ } . 

 We write the latent mortality index as: 

(1) 
  
m

i

*
= f !

1
,E

j(i)t( i)
q

j(i)1
,…,q

j(i)t( i)( )( ) + x
i
!

2
+ !

3
z

j(i)t( i)
+ "

i
+#

j( i) t( i)
, 

where 
 
q

j(i)t( i)
 is the quantity or volume of surgical procedures performed in the quarter, 

 
E

j(i)t( i)
 is 

the surgical experience of hospital 
 
j i( )  at quarter 

 
t i( ) , which is a function of current and lagged 

quantities,5 f() denotes the effect of experience on mortality, 
 
x

i
 are the observable risk factors of 

the patient, 
 
z

j(i)t( i)
 are observable characteristics of the hospital that might influence mortality, !  
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are parameters to estimate, and 
 
!

i
 and 

 
!

j( i) t( i)
 are unobserved components of mortality, that 

reflect both patient severity of illness (
 
!

i
) and hospital performance (

 
!

j( i) t( i)
). We let 

 
v

1i
= !

j( i) t( i)
+ "

i
 and assume that 

 
v

1i
 is normally distributed with mean 0 and variance 1. Note 

that a key assumption implicit in (1) is that distance to a hospital does not directly affect 

mortality. Distance will then be used to identify predicted experience below. 

 We allow for learning-by-doing in (1). Specifically, as hospital personnel obtain more 

experience with a surgical procedure they obtain skills that may increase the survival rate. This 

may happen through several different mechanisms that may vary across procedures. For instance, 

volume may improve surgical skills, may help anesthesiologists, intensivists, nursing staffs, 

paramedical staff, and rehabilitation staff perform better and may also result in better 

preoperative care. We let 

(2) 
 
E

j1
= q

j1
 and E

jt
= q

jt
+ !E

jt"1
 for t > 1 , 

where λ is a parameter that represents the fraction of retained learning at a quarterly level. We 

choose a simple square root form for the effect of experience on quality,  

(3) 
 
f E

jt
,!

1( ) = !
1

E
jt

, 

because this appeared to fit the data the best.6 We focus on two cases: perfect forgetting,  ! = 0 , 

and partial forgetting, where !  is estimated. The medical literature has largely assumed perfect 

forgetting.7 

                                                                                                                                                       
5 Note that we are using volume only at the hospital level and not at the physician level. For the Whipple and AAA 
most hospitals will have only one team that can perform the surgery and so the two measures will be equivalent for 
most observations. For CABG surgery, investigating physician volume is an important avenue for future research. 
6 We tried a linear specification for (3). This specification yielded very similar, but less precise, parameter estimates 
and a higher mean squared error than the square root specification in (3). 
7 For example, see Birkmeyer, et al. (2002). 
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 Our principal goal is to estimate 
1

! , the impact of experience on mortality, and, in some 

specifications, the forgetting parameter λ. One strategy would be to estimate (1) (and (2) in cases 

where λ is not fixed) using a probit type analysis. A potential problem with this strategy is the 

endogeneity of experience jtE . Endogeneity will occur if the unobserved component of hospital 

skill, jt! , varies across hospitals, and if patients are aware of this variation. In this case, patients 

may disproportionately select hospitals with a low jt! , and so these hospitals will then obtain a 

high level of experience. This is the selective referral hypothesis. In this case, experience does 

not lead to high quality, but rather the reverse is true.8 

 We control for the endogeneity of experience by estimating a simultaneous equations 

system with two equations. The first equation is the mortality equation given above in (1). 

Experience is the dependent variable for the second equation. Our model is similar to 

instrumental variables in that this equation specifies experience as a function of exogenous 

characteristics, most notably the experience that a hospital would obtain on average given its 

location and other exogenous characteristics. Specifically, our second equation is: 

(4) 
 

E
jt
= !

1
Ê

jt
+ !

2
Ê

jt
+ !

3
Ê

jt

2
+ !

4
z

jt
+ v

2 jt
, 

where 
 
Ê

jt
 denotes the predicted experience for hospital j at time t  and 

 
v

2, jt
~ N 0,!2( ) . We use 

the square root of experience as the dependent variable in (4) to be consistent with (3). 

Consistent with 
 
E

jt
 being endogenous, we allow for a correlation ρ between 

 
v

1i
 and 

 
v

2, j( i) t( i)
. 

We assume that the covariance structure is such that the unobservable components of mortality 

                                                
8 Note that another source of endogeneity is due to !

i
, that patients with a high severity of illness may be more 

likely to select hospitals with high experience levels. This source of endogeneity, which was addressed by Geweke, 
Gowrisankaran and Town (2003), will also be controlled for by our methods. 
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for two individuals 
 
v

1i
1

 and 
 
v

1i
2

 who are treated at the same hospital in the same quarter are 

independent conditional on the error term in (4), which is 
 
v

2, j( i
1

)t( i
1

)
 or equivalently 

 
v

2, j( i
2

)t( i
2

)
.  

 Although our model is non-linear, it is helpful to think of as similar to instrumental 

variables in order to understand our identification strategy.9 In particular, we would expect the 

model to be well identified only when there is some “instrument” that will cause exogenous 

variation in experience. Our idea is that the predicted experience of a hospital, which is a 

function of the distance between patients and hospitals, can serve that role. We construct 

predicted experience 
 
Ê

jt
 by estimating and aggregating a model of patient flows that predicts the 

choices of patients based on exogenous factors, principally distance. 

 Continuing with the idea that 
 
Ê

jt
 is similar to an instrument for 

 
E

jt
, the principal 

identifying assumptions that we employ are that 
 
Ê

jt
 does not enter into (1), is orthogonal to 

 
!

jt
, 

and is correlated with
 
E

jt
. It seems reasonable to assume that distance and hence predicted 

volume (or experience) will not directly affect mortality conditional on the actual experience, 

since time to hospital is not crucial for the surgeries that we examine, and that predicted volume 

will be correlated with actual volume. Thus, the key assumption is that 
 
Ê

jt
 is uncorrelated with 

 
!

jt
, the unobservable component of hospital performance. A sufficient condition for this is that 

 
!

jt
 is randomly drawn and hence uncorrelated with hospital locations. 

 To understand whether this key assumption is reasonable, note that we allow for hospital 

characteristics in 
 
z

j(i)
 including size and teaching status, and hospital fixed effects in some 

                                                
9 Since our model is not instrumental variables, (4) needs to be fully specified and an incorrect functional form for 
(4) will lead to inconsistent parameter estimates in (1). 
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specifications. With fixed effects, a sufficient condition for this assumption to be valid is that 

hospitals of a given type cannot make specific investments to lower their mortality rate in 

response to demand shocks. Investments that improve the performance for these surgeries may 

include training in teamwork and group dynamics,10 higher quality staff, and different hospital 

layouts,11 all of which are difficult to change in the short-run. In contrast, our model would not 

be consistent if 
 
!

jt
 can be chosen in response to

 
Ê

jt
. Even in this case, our analysis will still 

predict how expected volume would affect outcomes and our results will be relevant to policies 

that change expected volume, such as mandates to consolidate services. 

 We derive predicted experience 
 
Ê

jt
 by estimating a conditional logit model of patient 

choices. We specify patient utility as: 

(5) 
 
u

ij
= !

1
d

ij
+ !

2
d

ij

2
+ !

3
d

ij
x

i
+ !

4
d

ij
z

j
+ v

3,ij
, 

where 
 
d

ij
 indicates distance from patient i to hospital j, 

 
x

i
are patient characteristics such as age, 

 
z

j
are hospital characteristics such as teaching hospital status, and 

 
v

3,ij
 is distributed type I 

extreme value. We do not include an outside alternative, since it is unlikely that not obtaining the 

surgery is one of the relevant choices for patients in our sample.12 We estimate (5) using 

maximum likelihood. We create predicted experience 
 
Ê

jt
 by adding the predicted flows using 

(5) to create predicted volume,13 and then converting predicted volume to predicted experience 

using the analogous expression to (2) . 

                                                
10 See Edmondson, Bohmer, and Pisano (2001). 
11 See Herzlinger and Stavros (2002). 
12 Since there is no outside alternative, there is also no reference group with utility normalized to zero, which implies 
that a choice-specific or overall constant term in (5) could not be identified. 
13 See Gowrisankaran and Town (2003) for details of this type of computation. 
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 One significant issue is the set of hospitals to specify as potential competitors when 

calculating predicted volume. As Whipple is an extremely rare procedure and AAA repair is 

somewhat uncommon, there are several hospitals that perform one or two procedures in one 

quarter, none the following quarter, and one the quarter after that, etc. Yet, these hospitals are 

likely in the market in the intermediate quarters. Excluding them will boost 
 
Ê

jt
 for nearby 

hospitals and hence may create an endogeneity problem since the fact that they performed no 

procedures in a given quarter is likely correlated with a nearby hospital having a low 
 
!

jt
. To 

avoid this endogeneity problem, we keep hospitals as potential competitors in quarters where 

they have no patients.  

 A related issue is that a hospital with a high 
 
!

jt
 may deter other hospitals from 

performing the surgery at all, which would cause a similar endogeneity problem to that noted 

above. This potential issue is problematic in particular for CABG, as this procedure has the 

smallest set of hospitals performing the procedure, in spite of having the most patients by far. We 

control for this problem by including the set of potential CABG entrants as the set of hospitals 

with predicted volume. We let the set of potential CABG entrants be the set that perform cardiac 

catheterizations. 

 Note that we are estimating our model in two stages. In the first stage, we estimate the α 

coefficients and use them to derive 
 
Ê

jt
, and in the second stage, we use these predicted 

experience variables as exogenous shifters for experience.14 Another potential way of estimating 

our model would be to perform these two procedures jointly. However, there is little efficiency 

gain from that since the coefficients in (5) are estimated very precisely, given the large number 

                                                
14 This is similar to Dubin and McFadden (1984). 
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of patients relative to hospitals. Moreover, estimating these two equations jointly would require 

having to specify the correlation structure between each 
 
v

3,ij
 and 

 
v

1i
, which is very complex. 

Instead, we need only specify the correlation structure between two variables, 
 
v

1i
 and 

 
v

2, j( i) t( i)
 

which is much simpler. Indeed, since the point of estimating the patient flow model is simply to 

provide exogenous shifters of experience, an alternate way of deriving 
 
Ê

jt
 would have been to 

pick reasonable values of α based on travel times and costs. 

 Our base estimation method for our mortality model specified by (1) and (4) is maximum 

likelihood. As derived in Wooldridge (2002), the likelihood function for this type of model can 

be split up into two parts, the density of observing a given hospital experience level given 

predicted experience and the conditional probabilities of observing a given mortality outcome for 

a patient at that hospital. Specifically, we can write the likelihood for hospital j at time t as: 

(6) 

 

ln L
jt
!,",#,$,%( ) = ln & E

jt
' E( ) $( ) $( ) +

m
i
ln (

1

1' #2
"

1
E

jt
+ "

2
x

i
+ "

3
z

jt
+
#
$

E
jt
' E( )

)
*+

,
-.

)

*
+
+

,

-
.
.

i j( i)= j,t( i)= t

/ +

1' m
i( ) ln ( '

1

1' #2
"

1
E

jt
+ "

2
x

i
+ "

3
z

jt
+
#
$

E
jt
' E( )

)
*+

,
-.

)

*
+
+

,

-
.
.

i j( i)= j,t( i)= t

/ ,

for E = %
1

Ê
jt
+ %

2
Ê

jt
+ %

3
Ê

jt

2
+ %

4
z

jt
,

 

where φ is the standard normal density and Φ the standard normal distribution. Estimation was 

performed in Stata using the maximum likelihood command. We obtain standard errors using the 

robust sandwich formula for the likelihood function. The standard errors are calculated treating 

one hospital over time as one observation, in order to not overstate the significance of results due 

to serial correlation. 
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 We actually use a slightly different specification for the results, principally for robustness 

reasons. To explain, note that the functional form of (4) matters for the consistency of our 

results, since we are estimating a non-linear system of equations. Yet, we have specified (4) with 

a simple linear functional form, rather than trying to guess at the “true” functional form. A 

predictor with more relevant regressors is likely to better approximate the true underlying 

functional form. Our base model does not allow the predictor to depend on patient characteristics 

because it is at the hospital level. Thus, for the reported specifications, we use a patient-level 

variant of (4): 

(7) 
 

E
j(i)t( i)

= !
1

Ê
j(i)t( i)

+ !
2
Ê

j(i)t( i)
+ !

3
Ê

j(i)t( i)

2
+ !

4
z

j(i)t( i)
+ !

5
x

i
+ v

2 j(i)t( i)
. 

As (7) allows for patient characteristics, it can provide a better fit of the error term. For this 

variant, we estimate a similar likelihood function to (6), but where the first line has one 

observation for each patient: 

 

(8) 

 

ln L
jt
!,",#,$,%( ) = ln & E

jt
' E( ) $( ) $( )

i j( i)= j,t( i)= t
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+ m
i
ln )

1

1' #2
"

1
E

jt
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2
x

i
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3
z

jt
+
#
$

E
jt
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*
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-
./

*

+
,
,

-

.
/
/

i j( i)= j,t( i)= t
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1
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"

1
E
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+ "

2
x

i
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3
z
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+
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$
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-

.
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/
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for E = %
1

Ê
jt
+ %

2
Ê

jt
+ %

3
Ê

jt

2
+ %

4
z

jt
+ %

5
x

i
.

 

 

All of our reported estimates use the model specified by (7). 

 For most specifications, we estimated the model specified by (7) with maximum 

likelihood. For the specifications with fixed effects and with perfect forgetting, we used a two-
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step estimator specified by Rivers and Vuong (1988). This entailed first estimating (7) using 

OLS and then estimating (1) with the predicted residual from (7), which we can call 
 
v̂

2 j( i) t( i)
, 

included as a regressor.15 The disadvantage of this method is that it is not efficient. This method 

can also can be used to construct a test of the endogeneity of jtÊ  that is robust to the functional 

form of 2 j(i) t (i)v . 

 

3. Whipple, CABG and AAA Repair⎯The Procedures and the Data 

The Whipple Procedure 

 The Whipple procedure, or pancreaticoduodenectomy, is used primarily in patients with 

early stage, localized pancreatic cancer. During the procedure, the head and neck of the pancreas 

and parts of the stomach, common bile duct, gall bladder and small intestine are removed. The 

procedure is extremely complicated because it requires operating in an area of the body with 

several vital organs and important blood vessels. Many surgeons require 8 to 9 hours to perform 

the surgery, although some surgeons can complete the operation in half that time. The 

complexity of the surgery and its relative rarity (roughly 330 Whipple procedures are performed 

in the entire state of Florida per quarter), make it a strong candidate for a procedure in which 

learning-by-doing would reveal itself in the data.  

 It is rare for a patient undergoing the Whipple procedure to die in the operating room. In-

hospital death most often results from post-operative complications, including bleeding, 

infection, delay in the function of the stomach, pneumonia, and intra-abdominal abscesses. Other 

patients suffer nutritional compromise after the surgery. Experienced surgeons may be more 

likely to prevent patient complications such as bleeding and delay in the function of the stomach, 

                                                
15 See also Newey, 1987 and Wooldridge, 2002. 
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and their shorter operating time may reduce the probability of infection. In addition to the 

surgeon, many other clinicians in the hospitals are likely to affect the probability of post-

operative complications that can lead to patient harm or death. 

 Several authors have found correlations between hospital volume and mortality rates for 

the Whipple procedure. Ho, Town and Heslin (2003) find a correlation between volume and 

mortality for the Whipple. They do not find much evidence of learning spillovers from nearby 

hospitals nor do they find any impact of competition on outcomes. Birkmeyer, et al. (1999a), 

Birkmeyer, et al. (1999b), Gordon et al. (1998) and Glasgow and Mulvihill (1996) all find 

significant correlations between hospital volume and mortality rates (measured by in-hospital or 

3-year mortality rates). None of these studies attempt to distinguish learning-by-doing from 

selective referral as the causal mechanism underlying the correlations between volume and 

mortality for the Whipple. 

 Our outcome measure is in-hospital mortality. This is an appropriate measure for a few 

reasons. First, in-hospital death is a relatively common outcome. In our sample, patients 

undergoing the Whipple procedure have a 10% chance of dying in the hospital. Second, using a 

wider mortality window can begin to blur the quality of the Whipple procedure with the 

progression of the cancer that may be unrelated to the surgery. While these patients have 

pancreatic cancer, it is in an early stage and it is very unlikely that the cancer is the cause of in-

hospital death. Finally, in-hospital death is a common outcome measure that is widely used to 

analyze the volume–outcome relationship for Whipple and other procedures. 

 It is possible that there may be two quality dimensions to the Whipple procedure: the 

probability of surviving the procedure itself and the impact of the surgery on surviving the 

cancer. We will only measure the first dimension of quality. Measuring the second dimension is 
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rather difficult and, as is clear from the probability of in-hospital death, the first dimension is, at 

the very least, an important dimension of Whipple quality.  

We include patient-specific case-mix variables to control for disease severity.  These 

variables specify patient age and gender and indicators for the presence of a myocardial 

infarction, renal failure, liver disease, diabetes and whether the admission was an emergency. 

They are intended to pick up factors that correlate with the ability of the patient to withstand 

complex surgery and post-surgery complications. 

AAA 

 A weakening of the aorta, which is the main blood vessel that carries blood from the 

heart to the rest of the body, causes abdominal aortic aneurysms. As the aorta weakens, the 

vessel balloons. If left untreated, the aneurysm will generally grow larger and eventually rupture. 

Ruptured aortas are medically important: they are the 13th leading cause of death in the U.S., 

accounting for 15,000 deaths each year. Surgical treatment of AAA has been performed for more 

than 50 years. The treatment, which is major surgery requiring hospital stays of 7 to 10 days, is 

to replace the diseased part of the aorta with a graft. In 1999, the FDA approved an endovascular 

grafting technology that allows surgeons to repair the AAA by delivery of a bypass graft through 

a small incision in the groin. This procedure generally reduced hospital stays to a single night. 

The widespread use of endovascular grafting occurs after the period we study here.  

 Death is also a common outcome for AAA surgery. The 30-day, in-hospital mortality in 

our data is 5.6%. We control for many of the factors that are correlated with AAA mortality 

including patient demographics, myocardial infarction, renal failure, liver failure, stroke, and 

patient demographics (Chen, et al, 1996). Consistent with the previous literature, we limit our 

analysis to unruptured aneurisms. Once an aneurism ruptures the patient is at grave risk and 
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requires emergency surgery. The mortality rates for ruptured aneurisms approaches 

50%⎯substantially higher mortality than the 6.5% 30-day, in-hospital mortality for unruptured 

AAAs. In general, patients with ruptured aneurisms should be taken to the closest hospital and 

are not subject to selective referral. 

 There is a large literature (approximately 20 papers) studying the relationship between 

hospital volume and mortality for AAA using data from the US, Canada and Europe.16 This 

literature is almost unanimous in finding an inverse relationship between hospital volume and 

mortality, both inpatient and overall. However, none of these studies effectively controls for the 

potential endogeneity of volume. 

CABG 

 Heart disease is the leading cause of death in the U.S.17 CABG surgery is an operation 

designed to detour blood around a narrowed segment of a heart artery in an effort to restore 

blood flow to the heart muscle. The surgery involves the removing a “clean” vessel (graft) from 

the leg, chest, or arm and attaching it to the areas around the blocked artery in order to restore 

blood flow. In traditional bypass surgery, the heart is stopped and a heart-lung machine 

(cardiopulmonary bypass machine) is used to pump blood and perform the duties of the lungs. A 

recently developed technique – called “beating heart bypass” or “minimally invasive bypass” – 

allow surgeons to perform the surgery without stopping the heart. This method uses a special 

device that stabilizes the part of the heart on which the surgeon is operating. The rest of the heart 

continues to beat while the surgeon operates.  

                                                
16 The more recent US studies include Goodney, Lucas and Birkmeyer, 2003; Cowan et al., 2003; Dimick, et al., 
2002; Dimick, et al, 2002; Sollano et al. 1999; Pearce, et al. 1999; Manheim et al. 1998; and Hannen et al. 1992. The 
Canadian studies are Urbach, Bell, and Austin, 2003 and Chen et al., 1996. The European studies are Kantonen et al 
(1997) and Amundsen et al. (1990). 
17 National Center for Health Statistics at http://www.cdc.gov/nchs. 
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 Dr. David C. Sabiston Jr. performed the first coronary bypass surgery in a human in 

1962. CABG was a relatively rare procedure until the 1980s. Since then the procedure has 

become widespread. In 1999, there were approximately 571,000 CABG procedures performed in 

the U.S.18 The procedure is common, complicated and expensive and has proven to yield 

significant health improvements for those patients suffering from severe angina.19  

 We are aware of nine studies of the relationship between volume and mortality for 

CABG. Halm, et al. (2002) reviews eight papers examining the relationship between in-hospital 

mortality and volume for CABG. Six of the eight studies find a negative and significant 

relationship between volume and mortality. More recently, Birkmeyer et al. (2002) studied the 

mortality rate of Medicare patients undergoing CABG and finds the same relationship for overall 

(not necessarily in–hospital) 30–day mortality.  

 We use 30-day, in-hospital mortality as our primary measure of quality. There are many 

measures of CABG quality in the literature including 30-day, 90-day, 180-day mortality rates 

and hospital readmission. Mortality is widely considered to be an important dimension of CABG 

quality. We focus on the in-hospital mortality rate, as that is the measure used by most of the 

studies of the volume-outcome relationship for CABG, as noted above. We have also performed 

the analysis using the 180–day mortality rate for death at any hospital and the conclusions are 

identical to using the in-hospital mortality rate. For our sample, 30-day, in–hospital mortality is 

approximately 3.7% suggesting that mortality is a relatively common outcome for those 

undergoing CABG, and hence a useful measure of quality. 

 As with Whipple, we include patient-specific case-mix variables to control for disease 

severity.  We chose measures based on the consensus statement prepared by a panel of 

                                                
18 National Center for Health Statistics at http://www.cdc.gov/nchs. 
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researchers from the major CABG reporting programs (Block et al., 1998), using those variables 

which can be constructed from discharge data. Our case–mix variables are age, sex, race, renal 

disease, diabetes, ventricular arrhythmia, stroke, AMI, number of vessels bypassed, angioplasty, 

congestive health failure, and liver failure. In our limited experimentation, our conclusions are 

insensitive to the exact set of risk adjusters. 

Data 

 The data used in this study are hospital discharge data from two sources: the Florida 

Agency for Health Care Administration (AHCA) from 1988 to 1999 and the California Office of 

Statewide Health Planning and Development (OSHPD) from 1993 to 1997. Following previous 

studies in the literature, we defined Whipple surgery by an ICD-9-CM procedure code of 52.7 

(radical pancreaticoduodenectomy) from the AHCA and OSHPD data.20 We excluded patients 

who were undergoing the Whipple procedure due to a trauma accident as indicated by the ICD-9 

codes rather than cancer from the analysis. The raw Florida data had 3,182 observations. We 

dropped those observations with missing values, leaving us with 2,894 observations.21 For the 

California data, we started with 1,640 observations and by removing observations with missing 

values left us with 1,582 observations. In our analysis we merged the California and Florida data 

giving us a total of 4,455 observations. 

We designate AAA by procedure codes of 38.34, 38.44 or 38.64 (regardless of diagnosis 

codes) and procedure codes 39.25, 39.51 or 39.52 together with diagnosis codes 441.0, 441.02, 

441.03, 441.4, 441.7 or 441.9. We started with 14,778 observations from the California data and 

39,056 observations from the Florida data. After removing missing values we have 14,207 

                                                                                                                                                       
19 In California, average hospital charges for CABG in 1997 are approximately $74,000 (investigators’ calculations 
using OSHPD data). 
20 We base all of our procedure indications on whether any of the codes, not just the primary code, matches the listed 
value.  
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California observations and 36,384 Florida observations. This leaves us with a total of 50,520 

observations to estimate the coefficients.  

The CABG analysis uses hospital discharge abstract data from  AHCA and OSHPD. We 

define CABG surgery by ICD-9-CM procedure codes of 36.1x, for any x. CABG is a common 

procedure. We initially extracted 131,155 observations from California and 289,146 from 

Florida. After removing missing values we have a total of 404,565 CABG observations.  

 Both the Florida and the California data contain the home zip code of the patient. We use 

this information to construct approximate distances from the patient home to the hospital. We 

assign patient latitude and longitude by matching the zip code to the Census Bureau’s Tiger 

database that lists the latitude and longitude for the center of each US zip code. We also used zip 

code information to merge in per-capita median zip code income from the Census Bureau. We 

obtain hospital latitudes and longitudes from the American Hospital Association. With this 

information it is straightforward to calculate the distance from the center of each zip code to the 

hospital. We also use information on the teaching status and the number of beds for each 

hospital. For both the Whipple procedure and CABG we obtained information on the beds size 

from the same agency that provided the patient discharge data. Teaching status is determined by 

membership in the Council of Teaching Hospitals. 

Table 1 presents some summary statistics of our data. As mentioned above the mortality 

rate is approximately 10% for the Whipple procedure, 6.5% for AAA repair and 4.3% for CABG 

For all three procedures, Florida hospitals have higher mortality rates despite performing roughly 

two times as many procedures per hospital. CABGs are performed much more frequently than 

the Whipple procedure or AAA repair. The typical patient receives treatment at a hospital 

performs 58 times as many CABGs as Whipple procedures (117 versus 2) and 15 times as many 

                                                                                                                                                       
21 The majority of the missing observations are a consequence of the failure to merge in per capita zip code income.  
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CABGs as AAAs (117 versus 8). More hospitals perform AAA (331) in California than either 

CABG (189) or the Whipple procedure (265).  

Floridians, on average, travel a little further than Californians to receive their care. The 

mean distance traveled is 21.3, 26.0 and 17.2 km for the Whipple, CABG and AAA repair in 

Florida, while the Californian in our data traveled an average of 18.6, 16.5 and 22.6 kilometers 

for the Whipple procedure, CABG and AAA repair, respectively. All of the patient populations 

are elderly⎯the mean age for the three procedures is over 64 years of age.  

While the majority of the variance in quarterly volume occurs between hospitals, 

nevertheless there is significant within hospital variance in volume. OLS, patient weighted 

regressions of quarterly volume on hospitals and year fixed effects yield R2s and (Root MSE) of 

.75 (1.6), .80 (3.8) and .86 (54.6) for the Whipple procedure, AAA repair and CABG, 

respectively.  

 
4. Results 
 
A. Hospital Choice Model 
 

Table 2 presents the results of our multinomial hospital choice model for both Whipple 

and CABG. In addition to distance and distance squared (measured in kilometers) we include an 

indicator for the closest hospital, the number of available/staffed beds, the number of beds 

interacted with distance, age interacted with distance (age dummies for the Whipple), an 

indicator for a teaching hospital, and teaching hospital interacted with distance. 

Columns (1), (2) and (3) present the results for the Whipple, AAA repair and CABG, 

respectively. The CABG estimates are based on a 25% random sample. The coefficients are in 

line with our expectations. For all procedures, distance is inversely related to the probability of 

being admitted to the hospital. The coefficient is negative and precisely estimated for all 
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procedures. The impact of distance is slightly concave as the coefficient on distance squared is 

positive. However, the impact of distance squared is modest given the distances between patients 

and hospitals in Florida and California. In all cases, patients prefer to go to the closest hospital. 

Patients also prefer to go to larger hospitals. The coefficients on the age interacted with distance 

are all negative. Half of these coefficients are insignificant at traditional levels of confidence. All 

else equal, teaching hospitals are more desirable than their non-teaching counterparts.  

The predicted volumes generated from the multinomial choice model are, as expected, 

highly correlated with the actual volumes. Predicted volume will only be a “good instrument” if 

it is correlated with actual volume. To explore the predictive quality of these variables we 

perform the standard F-test of the joint significance of predicted volume (and its square and 

cube) regressed on the square root of actual volume with the relevant risk adjusters included as 

regressors. For the Whipple procedure the p-value of the F-stat is 345 (p-value= .000001). For 

AAA the F-test is 52.6 (p-value = .00001), and for CABG the F-test is 8.59 (p-value = .0001). 

With the exception of CABG, the F-tests are well above typical thresholds used to investigate 

instrument validity. For CABG, while the F-test is highly significant, it is on the borderline of 

the typical instrument validation criteria.   

B. Volume and Outcomes 

Whipple Analysis 

The first column of Table 3 presents the coefficients from the maximum likelihood probit 

mortality-volume regression. The coefficient on the square root volume is negative and 

significant—increasing volume is associated with decreased mortality.22 The implied magnitude 

of the impact of volume on mortality is large. An individual with a 10% chance of dying 

(approximately the mean) at a hospital performing two Whipple procedures a quarter (the 
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median, patient weighted, hospital volume) has an approximately 8.2% (20% less) chance of 

dying at a hospital performing 4 Whipple procedures per quarter. The coefficients on the severity 

variables are generally sensible. The presence of renal and liver disease significantly reduces the 

chance of survival. There does not seem to be a relationship between either the size or the 

teaching status of the hospital and the likelihood of death. Finally, conditional on the other right 

hand side variables, hospitals in Florida have higher mortality rates.  

In column (2) of Table 3 we present the coefficients from the hospital fixed effects 

specification. The coefficient on the square root of volume is a third as large in magnitude as in 

the specification where volume is treated as exogenous. However, the parameter estimates on the 

square root of volume are very imprecise. The confidence interval of the marginal impact on 

mortality of an increase in volume in this specification overlaps the point estimate of the 

marginal impact implied by the simple probit. The Wald test of the joint significance of the 

hospital fixed effect resoundingly rejects the hypothesis that they are equal to zero. This suggests 

that there are important differences between hospitals in the quality of care they provide beyond 

the volume of patients they treat. However, as we discuss below, the results below suggest that 

these hospital differences in quality are uncorrelated with hospital volume.  

In column (3) we present the maximum likelihood results treating volume as endogenous. 

The coefficient on volume in this specification is modest in magnitude and not significantly 

different from zero at traditional levels of confidence. Importantly, the coefficient estimate of ρ, 

the parameter that captures the cross-equation correlation in the error terms, is negative but not 

significant at traditional levels of confidence. That is, the results in this specification fail to reject 

the learning-by-doing hypothesis for the Whipple procedure. The fixed effects, Rivers and 

                                                                                                                                                       
22 Standard errors are corrected for hospital level clustering. 
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Vuong estimates treating volume as endogenous are presented in column (4). The coefficient 

estimates on the square root of volume is negative but imprecisely estimated. The coefficient 

estimate of 
 
v̂

2 j( i) t( i)
 is positive and is also very imprecisely estimated. In sum, the results for the 

Whipple procedure are somewhat mixed but we interpret them to weakly support the volume 

causes mortality hypothesis.    

AAA Repair Analysis 

The results for AAA repair are presented in Table 4. Treating volume as exogenous 

(column (1)), the coefficient estimates imply a negative relationship between mortality and 

contemporaneous procedure experience. The coefficient on volume is negative and precisely 

estimated. The magnitudes of the volume effects implied by the coefficients are nontrivial. 

Starting at a base mortality probability of .063 at a hospital performing 6 procedures in a quarter, 

the coefficient estimates implies that a 50% increase in the number of procedures will reduce 

mortality by approximately .5 percentage points or 9.5%. The coefficients on the severity 

variables are sensible. Mortality is increasing and convex in age, higher for blacks and women, 

and more likely in the presence of myocardial infarction, renal disease, liver disease and an 

emergency admission. Mortality is increasing in the number of co-morbid conditions. Higher 

per-capita zip code income implies lower mortality. Again, conditional on the other right hand 

side variables, patients in Florida have significantly higher mortality rates.  

In the second column of Table 4 we present fixed effects estimates of the volume- 

mortality relationship. The coefficient on volume modestly declines relative to the estimate in 

column (1), but it is still significantly different from zero at the 1% level of confidence. Like the 

case of the Whipple procedure, the joint test that the hospital fixed effects are all equal 

convincingly rejects that hypothesis. 
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Column (3) presents the maximum likelihood estimates treating volume as endogenous. 

The coefficient estimate on volume is negative and similar in magnitude to the estimate in 

column (1), but it is significantly different from zero. The coefficient on ρ is small and is not 

significant at a traditional level of confidence. We do not reject the learning-by-doing hypothesis 

in this model.  

 Column (4) presents the fixed effects, Rivers and Vuong estimates treating volume as 

endogenous. The coefficient estimate from this regression is smaller in magnitude that the 

corresponding coefficients in columns (1)-(3). However, the coefficient is very imprecisely 

estimated and the coefficient on 
 
v̂

2 j( i) t( i)
 is small and is not significant at a traditional level of 

confidence. 

In sum, the results in Table 4 suggest that, increases in volume results in reduced 

mortality and this appears to be the best explanation for the correlation between volume and 

outcomes for the repair of AAA.    

However, it is important to note that the estimates imply two important aspects of the 

data. First, individual hospital heterogeneity is more important than differential volume in 

explaining differential mortality rates across hospitals. Second, better hospitals do not attract 

more patients, conditional on the control variables. These findings suggest that while 

consolidation of facilities may lead to a decrease in mortality—larger decreases may be had by 

simply directing patients to better hospitals. 

CABG Analysis 

In Table 5 column (1), we present the probit model estimates for CABG treating volume 

as exogenous. The parameter estimate on volume is negative and precisely estimated (p-value = 

.001). The implied magnitude of the coefficient estimates is quite large. The coefficients imply 
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that hospitals that a person with a 3.6% chance of dying at a hospital performing 117 CABGs a 

quarter, has a 12% (.5 percentage points) less) chance of dying at a hospital performing 175 

CABGs per quarter. The coefficients on the severity variables are sensible and follow a similar 

pattern to those present for AAA repair. However, there are three notable differences between 

the control variable coefficients between the two estimates. Being black, the size of the hospital 

and zip code income does not impact expected mortality. 

In the second column of Table 4 we present the fixed effects estimates of volume- 

mortality relationship. The coefficient is very similar in magnitude to the volume effects 

estimated without the fixed effects. The parameter is precisely estimated and significantly 

different from zero at the 1% level of confidence. The hospital fixed effects parameters are also 

jointly significant.  

The maximum-likelihood estimates allowing for endogenous volume is presented in 

column (3). The estimated effect of volume is actually larger in magnitude (.040 versus .022) 

that the estimates in column (1). The coefficient on ρ is positive and significant (t-statistic = 

2.02) indicating that there some modest unobserved selection, but in an unexpected direction. 

Hospitals with higher mortality rates have higher volumes. However, given that this particular 

result is somewhat sensitive to model specification we do not place significant weight on it.  

Finally, column (4) presents the fixed effects, Rivers and Vuong estimates treating 

volume as endogenous. The coefficient estimate on volume is very close to the estimate in 

column (1) and but not nearly as precisely estimated (t-statistic = 2.25). The coefficient on 

 
v̂

2 j( i) t( i)
 is positive but insignificant. 

Thus, the CABG estimates indicate that like AAA repair, learning-by-doing is the 

probable explanation for the correlation between volume and outcomes. Again, like AAA repair, 
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better outcomes are possible through consolidation on procedures. However, unlike the AAA 

repair results, individual, time invariant, hospital heterogeneity does not seem important in 

explaining mortality rates. The contribution of the hospital fixed effects to the likelihood is 

modest. These results suggest that efforts to steer patients to high volume hospitals for CABG is 

a reasonable strategy for those patients as hospitals do not appear to differ in the quality of care 

they provide conditional on their volume. This strategy will lead to better outcomes, not only for 

those patients, but also for the other patients that are already likely to receive their surgery in that 

hospital. 

Robustness 

 We examined the robustness of our parameter estimates to different specifications and 

samples of the data. Our first robustness check is to estimate the parameters for each procedure 

separately for each state. In all cases, volume did not appear to be endogenous and the 

magnitudes to the impact of volume on mortality were similar between California and Florida. 

Our results are also insensitive to the exclusion of outliers. We re-estimated the models dropping 

both the lowest 5% volume hospitals and the highest 5% volume hospitals from the sample and 

the parameter estimates and the precision was not greatly impacted.  

Learning-by-Doing and Forgetting  

In Table 6 we present our maximum likelihood results on the amount of 

learning/forgetting in surgery for the three procedures. In these specifications we are allowing !  

in equation (2) to be a free, estimated parameter.23 For all of the procedures, any evidence 

suggesting endogeneity was not overwhelming of volume and therefore we estimate the 

                                                
23 We examined the robustness of our results to models that use the first year’s worth of data to calculate the 
experience and the estimated retained learning parameters are similar to the ones presented in Table 6. 
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parameters treating volume as exogenous.24 Column (1) presents the coefficient estimates for the 

Whipple procedure. The coefficient on the square root of retained experience is negative and 

significant and the coefficient of degree of retained learning is .93 with a modest standard 

error.25 These estimates indicate that the effects of an exogenous increase in volume reduce 

mortality and the mortality benefits persist well into the future.  

Column (2) presents the estimates for AAA repair. Again, the coefficient on the square 

root of retained experience is negative and significant, but for this procedure, there is significant 

but imperfect retained learning. Fifty-one percent of the impact of an exogenous increase in 

volume in a quarter is carried over to the following quarter. Interestingly, for the CABG 

procedure, the parameter estimates indicate that the impact of an increase in volume is fully 

depreciated by the following quarter.   

In order to better understand the dynamics of learning and forgetting implied by our 

coefficient estimates we perform the following simple simulation. We track the impact of a 

transitory and exogenous doubling of volume for the Whipple procedure and AAA repair. We do 

not examine the CABG procedure as the coefficient estimates imply that changes in volume do 

not have any dynamic consequences for mortality. For each procedure we assume a steady-state 

level of experience at the median quarterly volume and the base mortality rate is roughly the 

mean mortality rate for each procedure. In the experiment we then double the volume in period 1 

and volume is assume to return back the median level for the other periods.  

In Figure 1 presents the results of this simulation. For the Whipple procedure, the one-

time increase in volume yields modest one period reductions in mortality but those gains are 

spread out over a significant period. In the period of the increase in volume, mortality decreases 

                                                
24 We also estimated the forgetting parameters treating volume as endogenous but the results were not sensible.  
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by approximately 3% (.32 percentage points). However, mortality is meaningfully lower 6 

quarters into the future. For the AAA repair, the one-time increase in volume leads to a 

significant immediate drop in mortality of 6% (.4 percentage points). The impact of this increase 

in volume is essentially dissipated by the third quarter.  

It is instructive to compare out estimates of knowledge depreciation rates to those from 

other industries. Argote, Beckman and Epple (1990) find a quarterly retained learning rate of .42 

in Liberty Shipbuilding. Darr, Argote and Epple (1995) estimate a retained learning rate of .07 

after one quarter in franchise pizza making. Benkard (2000) finds relatively low knowledge 

depreciation within one airline manufacturing line. He estimates that after one quarter 85% of the 

accumulated knowledge is retained. Like our estimates for different procedures, the few 

estimates from the literature span the possible values for retained learning rates.  

The effect of retained learning differs distinctly across conditions, with history mattering 

most for the Whipple, for AAA somewhat, and not at all for the CABG. Two factors may cause 

this pattern: the routinization of the operation and the frequency of a surgeon performing the 

operation. The Whipple is a non-routine and complex procedure, with outcomes primarily 

depending on physician skill, and surgeons perform the Whipple intermittently while primarily 

performing other types of abdominal surgery. At the other end of the spectrum is CABG which is 

highly routinized, and most surgeons who perform CABGs perform only CABGs and valve 

procedures. While the variation in Whipple outcomes are driven by surgeon skill and practice 

variation, the CABG outcomes are plausibly driven by differences in pre- and post- surgical care. 

This care is provided by teams of nursing and other hospital staff. The composition of these 

teams changes frequently due to scheduling and, to a lesser degree, employee turnover. Our 

                                                                                                                                                       
25 Not surprisingly the estimates on the forgetting parameters are sensitive to the frequency of the data. Using data at 
an annual frequency yields forgetting parameters near zero for all procedures.  
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results are consistent with the notion that the knowledge accumulation is team specific and team 

composition changes relatively frequently. AAA repair likely lies somewhere between the 

Whipple procedure and CABG in the relative roles of the physician and the rest of the hospital 

staff in determining patient outcomes. Vascular surgeons perform many different procedures; 

however, AAA repair likely comprises a large percentage of their surgical portfolio. There is less 

physician specialization than CABG but more than the Whipple procedure.  

An obvious question is: are we measuring learning-by-doing or some other scale effect 

for quality? The most obvious potential causes of these scale effects are better physicians are 

attracted by higher volume hospitals, and, related, higher volume hospitals may be able to afford 

higher quality surgical staff and equipment.26 In this case, the retained learning coefficient would 

be related to the retention rate of surgeons as a function of accumulated experience. The 

coefficients for AAA and CABG imply a turnover that is too high relative to actual surgical staff 

turnover. Thus, our view is that the parameter estimates are inconsistent with other volume 

causing mortality explanations. 

The results on forgetting parameter estimates raise several issues—both for 

understanding the nature of knowledge accumulation within an organization and the impact of 

competition policy and market dynamics on surgical quality. An obvious question is why the 

retained learning rate varies across procedures. These procedures differ in their difficulty and 

volume, each may influence the rate of knowledge depreciation. This is a topic we plan to 

explore in the future. Finally, while it has been known for some time that if there is learning-by-

doing in surgery, there may be some significant welfare gains by consolidating procedures. Our 

results hint at the possibility that in some circumstances a forced uncoupling of merged hospitals 

                                                
26 In general, surgeons are not employees of the hospital.  
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may result in a significant loss of organizational knowledge (at least for some procedures) and 

the de-merger may lead to welfare loss.   

5. Conclusions 

 It has been known for some time that there is a positive relationship between the number 

of procedures and the expected outcome for many surgical procedures. In this paper we examine 

the data for three procedures (the Whipple, CABG, and the repair of aortic aneurysms) in two 

states (Florida and California) in an attempt to sort out the causal relation between volume and 

outcomes. We seek to determine if volume causes improved outcomes or whether hospitals that 

are better at performing a procedure attract more patients. 

 Our results indicate that for at least two of the three procedures learning-by-doing plays 

an important role in explaining the difference across hospitals in their risk-adjusted outcomes. 

That is, for AAA repair and CABG, our results support the presumption of most of the medical 

literature—volume causes mortality reductions. This may also hold for the Whipple procedure. 

Furthermore, our findings suggest that the consolidation of these procedures has the potential to 

improve welfare through a reduction of mortality. Our results also suggest that the degree of 

organizational forgetting differs significantly across procedures, with the Whipple procedure 

having the slowest forgetting rate and CABG having the highest.   
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 Table 1 
Summary Statistics of Estimation Samples 

(standard deviations in parentheses) 
 

Whipple AAA CABG 
Variable FL 

(1) 
CA 
(2) 

FL 
(3) 

CA 
(4) 

FL 
(5) 

CA 
(6) 

In-hospital mortality 10.4% 9.2% 6.6% 6.1% 4.4% 4.1% 
Mean quarterly 

volume  
(patient weighted) 

3.2 
(3.5) 

2.1 
(1.6) 

11.7 
(9.2) 

6.6 
(5.0) 

192.2 
(163.2) 

98.0 
(74.2) 

Number of hospitals 167 265 192 331 132 189 

Mean distance (km) 
traveled to admitting 

hospital1 

21.3 
(25.0) 

18.6 
(21.5) 

17.2 
(19.7) 

16.5 
(20.6) 

22.4 
(22.1) 

22.6 
(24.6) 

Percent female 47.2 47.7 20.3 20.9 28.3 27.6 

Mean age 65.5 
(11.7) 

64.1 
(10.7) 

70.1 
(12.5) 

71.4 
(7.94) 

67.2 
(10.2) 

66.5 
(10.6) 

Mean per capita zip 
code income $22,391 $25,216 $22,575 $24,585 $22,298 $24,417 

Mean number of 
beds of hospital   

(patient weighted) 
 

663.9 
(523.6) 

323.6 
(197.0) 

526.3 
(404.9) 

285.0 
(149.6) 

644.6 
(446.7) 

322.2 
(150.9) 

Percent teaching 
(patient weighted) 39.4 26.4 19.9 13.5 29.6 15.2 

N 2,894 1,582 36,384 14,207 275,948 128,716 
 

1Conditional on the distance being less than 120 km. 
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Table 2 
Multinomial Hospital Choice Model Parameters 

 

Variable Whipple AAA CABG 

Distance -.12 
(.0089) 

-.11 
(.0018) 

-.11 
(.0025) 

(Distance/100)2 .00044 
(.0000098) 

.00075 
(.0000098) 

.00035 
(.0000076) 

Closest .60 
(.082) 

.047 
(.016) 

.47 
(.013) 

Beds/100 .0011 
(.00011) 

.00016 
(.000030) 

.000046 
(.000016) 

Distance!Beds/1000 .00054 
(.00024) 

.00010 
(.000083) 

.0025 
(.000048) 

Distance !  Age -.024 
(.011) 

-.065 
(.0020) 

-.0096 
(.0028) 

Teaching Hospital -.66 
(.13) 

-.36 
(.032) 

1.14 
(.018) 

Distance!Teaching 
Hospital 

.044 
(.0042) 

.011 
(.00094) 

-.0061 
(.0056) 

N 
Log Likelihood 

4,455 
-2,917 

49,020 
-77,466 

96,047 
-125,470 

 
Note: standard errors in parentheses. 
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 Table 3 
Whipple Procedure: Impact of Volume on Mortality 

Variable 

ML Probit: 
Volume 

Exogenous 
 

(1) 

ML Probit: 
Hospital FE, 

Volume 
Exogenous 

(2) 

ML Probit: 
Volume 

Endogenous 
 

(3) 

Rivers and 
Vuong Probit: 
Hospital FE, 

Volume 
Endogenous 

(4) 

Sqrt volume -.21** 

(.065) 
-.064 

(.096) 
-.089 

(.13) 
-.12 

(.19) 

Age -.011 
(.020) 

-.024 
(.029) 

-.011 
(.020) 

-.028 
(.032) 

Age2 .00026 
(.00016) 

.00041 
(.00023) 

.00026 
(.00016) 

.00045 
(.00021) 

Black .042 
(.12) 

-.0030 
(.17) 

.056 
(.12) 

-.028 
(.17) 

Female -.047 
(.058) 

-.11 
(.072) 

-.045 
(.058) 

-.093 
(.073) 

Myocardial infarction -.21 
(.17) 

-.70* 
(.30) 

-.23 
(.17) 

-.66* 
(.33) 

Renal failure 1.56** 
(.14) 

2.01** 
(.23) 

1.56** 
(.14) 

2.26** 
(.27) 

Liver disease .79** 
(.17) 

.72** 
(.23) 

.79** 
(.17) 

.80** 
(.24) 

Emergency admit .27** 
(.090) 

.20** 
(.11) 

.27** 
(.089) 

.21** 
(.098) 

Number of comorbid 
conditions  

.12** 
(.015) 

.18** 
(.023) 

.12** 
(.015) 

.18** 
(.026) 

Logarithm of zip code 
income 

-.16 
(.083) 

-.10 
(.12) 

-.17 
(.084) 

-.099 
(.13) 

Teaching hospital -.20 
(.13) --- -.24 

(.14) --- 

Logarithm of number of 
beds 

-.010 
 (.057) --- -.045 

(.079) --- 

Florida .36** 
(.089) --- .37** 

(.092) --- 

 ρ (for ML) or 
 
v̂

2 j( i) t( i)
 (for 

Rivers and Vuong) 
--- --- -.067 

(.058) 
.072 
(.22) 

Likelihood -1,183 -908 -3,689 -786 

N 4,475 3,337 4,475 3,263 

Note: Standard errors in parentheses. Annual dummies also included as regressors. 
**Significant at 1% level 
*Significant at 5% level 
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Table 4 
AAA: Impact of Volume on Mortality 

Variable 

ML Probit: 
Volume 

Exogenous 
 

(1) 

ML Probit: 
Hospital FE, 

Volume 
Exogenous 

(2) 

ML Probit: 
Volume 

Endogenous 
 

(3) 

Rivers and 
Vuong Probit: 
Hospital FE, 

Volume 
Endogenous 

(4) 

Sqrt volume -.078** 

(.014) 
-.045* 

(.018) 
-.056 

(.033) 
-.038 

(.066) 

Age -.021** 
(.0033) 

-.021** 
(.0052) 

-.021** 
(.0033) 

-.024** 
(.0051) 

Age2 .00030** 
(.00030) 

.00031** 
(.00041) 

.00030** 
(.000029) 

.00033** 
(.00041) 

Black .17** 
(.063) 

.14** 
(.068) 

.18** 
(.064) 

.14** 
(.071) 

Female .18** 
(.022) 

.18** 
(.022) 

.18** 
(.022) 

.19** 
(.024) 

Myocardial infarction .98** 
(.046) 

1.00** 
(.048) 

.98** 
(.046) 

.96** 
(.048) 

Renal failure 1.05** 
(.032) 

1.06** 
(.034) 

1.05** 
(.032) 

1.08** 
(.035) 

Liver disease 1.29** 
(.19) 

1.30** 
(.20) 

1.29** 
(.19) 

1.25** 
(.21) 

Emergency admit .63** 
(.035) 

.62** 
(.036) 

.63** 
(.035) 

.63** 
(.040) 

Number of comorbid 
conditions  

.12** 
(.0052) 

.14** 
(.0056) 

.12** 
(.0052) 

.14** 
(.0062) 

Logarithm of zip code 
income 

-.12** 
(.029) 

-.081** 
(.033) 

-.12** 
(.031) 

-.084** 
(.034) 

Teaching hospital .10 
(.042) --- .099 

(.043) --- 

Logarithm of number of 
beds 

.040 
(.028) --- .017 

(.042) --- 

Florida .099* 
(.036) --- .095* 

(.038) --- 

ρ (for ML) or 
 
v̂

2 j( i) t( i)
 (for 

Rivers and Vuong) 
--- --- -.022 

(.030) 
-.00031 
(.078) 

Likelihood -9,648 -9,235 -69,058 -9,237 

N 50,520 50,520 50,520 50,520 
Note: Standard errors in parentheses. Annual dummies also included as regressors. 
**Significant at 1% level 
*Significant at 5% level 
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Table 5 
CABG: Impact of Volume on Mortality 

Variable 

ML Probit: 
Volume 

Exogenous 
 

(1) 

ML Probit: 
Hospital FE, 

Volume 
Exogenous 

(2) 

ML Probit: 
Volume 

Endogenous 
 

(3) 

Rivers and 
Vuong Probit: 
Hospital FE, 

Volume 
Endogenous 

(4) 

Sqrt volume -.022** 

(.0046) 
-.014* 

(.0057) 
-.040** 

(.0088) 
-.027* 

(.012) 

Age -.021** 
(.0051) 

-.018** 
(.0050) 

-.021** 
(.0051) 

-.018** 
(.0050) 

Age2 .00027** 
(.000039) 

.00025** 
(.000038) 

.00027** 
(.000040) 

.00025** 
(.000038) 

Black -.0059 
(.031) 

-.038 
(.033) 

-.016 
(.032) 

-.038 
(.033) 

Female .14** 
(.0097) 

.13** 
(.0096) 

.14** 
(.0096) 

.13** 
(.0096) 

Myocardial infarction .27** 
(.016) 

.26** 
(.015) 

.27** 
(.015) 

.26** 
(.015) 

Renal failure .94** 
(.023) 

.93** 
(.023) 

.93** 
(.024) 

.93** 
(.023) 

Liver disease .99** 
(.074) 

.98** 
(.073) 

.98** 
(.075) 

.98** 
(.073) 

Emergency admit .095** 
(.014) 

.11** 
(.012) 

.070** 
(.020) 

.11** 
(.013) 

Number of comorbid 
conditions  

.13** 
(.0047) 

.14** 
(.0041) 

.13** 
(.0047) 

.14** 
(.0041) 

Logarithm of zip code 
income 

-.030 
(.023) 

-.041** 
(.015) 

-.016 
(.026) 

-.041** 
(.015) 

Teaching hospital .11* 
(.049) --- .096 

(.056) --- 

Logarithm of number of 
beds 

.054 
(.037) --- .11 

(.053) --- 

Florida .17** 
(.041) --- .19** 

(.040) --- 

ρ (for ML) or 
 
v̂

2 j( i) t( i)
 (for 

Rivers and Vuong) 
--- --- .073* 

(.036) 
.014 

(.011) 

Likelihood -59,225 -58,276 -1,102,228 -58,275 

N 404,575 404,565 404,565 404,565 
Note: Standard errors in parentheses. Annual dummies, indicators for the presence of ventricular arrhythmia, 
performance of an angioplasty, and indicators for the number of vessels bypassed also included as regressors. 
**Significant at 1% level 
*Significant at 5% level 
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Table 6 
Impact of Experience with Forgetting on Mortality 

 

 Whipple AAA CABG 

Sqrt experience -.098** 

(.038) 
-.062** 
(.016) 

-.022** 
(.0053) 

Retained learning .93** 
(.080) 

.51** 
(.16) 

-.0093** 
(.000013) 

Logarithm of zip code 
income 

-.15* 
(.082) 

-.11* 
(.029) 

-.030 
(.023) 

Logarithm of number of 
beds 

.023 
(.058) 

.054 
(.028) 

.054 
(.037) 

Teaching -.16 
(.12) 

.064 
(.045) 

.11* 
(.049) 

Log Likelihood -1,180 -9,645 -59,224 
N 4,475 50,520 404,565 

Note: Standard errors in parentheses. The specifications also include patient severity and annual dummies as 
explanatory variables. 
**Significant at 1% level 
*Significant at 5% level 
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Figure 1 
 

Dynamic Impact of Transitory Doubling of Volume in Period 1 
for the Whipple Procedure and AAA 

(Base volume: Whipple = 2; AAA = 8) 
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