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Abstract

We develop a simple agency model that helps explain the ambiguous logical and
empirical connection between environmental uncertainty and incentive strength. Our
model stresses that two kinds of uncertainty (which we label volatility and noise) are
important in the determination of optimal incentive strength. We define noise as
uncertainty to which the agent should not react by changing his actions, and volatility as
uncertainty whose outcome does change the agent’s optimal action choice. We show that,
consistent with standard agency theory, an increase in noise reduces optimal incentive
strength. Our surprising new result is that an increase in volatility actually increases
optimal incentive strength in most circumstances. We also show that, when effort is
contractible, the optimal linear contract in the presence of noise is first best and puts no
weight on output. However, in the presence of volatility the principal will use output-
based compensation in an optimal linear incentive contract. Our results shed light on, and
are consistent with the “controllability principle,” by which agents should not be held
accountable for risks that are beyond their control, and should be held accountable for
controllable risks.

We would like to thank Luis Garicano and Canice Prendergast for their thoughtful comments, and
participants in seminars at Columbia, Cornell, Syracuse and USC.
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In his paper, “The Tenuous Tradeoff between Risk and Incentives,” Prendergast (2002)

argues persuasively that both casual and formal empiricism fail to confirm one of the

central predictions of standard agency theory: that there should be a negative tradeoff

between the amount of uncertainty in the environment and the strength of the incentives

that an optimal incentive contract delivers. The intuition behind the standard model is

simple and compelling: since employees are risk averse and firms are risk neutral, more

volatile environments should lead firms to offer more “insurance” against risk to their

employees, and thus reduce the slope of any incentive contract offered.

This simple logic has not convinced all observers, however. There is an alternative logic

that has also been discussed, although not modeled, in the literature. This logic is

articulated in an early paper by Demsetz and Lehn:

“In less predictable environments, however, managerial behavior …
figures more prominently in a firm’s fortunes…. Hence, noisier
environments should give rise to more concentrated ownership structures.”
Demsetz and Lehn (1985) p. 1159.

This argument would suggest that in more volatile environments, incentives should be

stronger, not weaker. These conflicting predictions are both borne out (!) in empirical

findings: as Prendergast shows, no convincing empirical relationship has been established

between the uncertainty of the environment and the strength of incentives.

In this paper, we argue that this logical and empirical ambiguity results from a failure to

distinguish between different types of uncertainty, which we label “noise” and

“volatility.” Noise is uncertainty whose realization does not affect the agent’s optimal

action choice, either because the agent cannot react to it, or because it does not change his

optimal actions. Examples include such random factors as measurement error in output,

acts of God which shift the magnitude of measured output without changing how the
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agent’s actions affect output, or events to which the agent cannot respond. Volatility, in

contrast, is uncertainty that does affect the agent’s optimal action, and which the agent is

able to react to. Examples of volatility include events that change the way that output is

produced, changing the value of the agent’s actions.

The distinction between noise and volatility is a product of two characteristics, one

affecting the information structure and the other the production function. The first

characteristic is whether or not the uncertainty affects the agent’s marginal product of

effort; the second is whether the agent observes the realization of the uncertainty before

choosing his effort level. The figure below shows how we distinguish between noise and

volatility.

Agent receives signal
before acting?

YES NO

YES Volatility NoiseUncertainty affects
marginal product of

effort? NO Noise Noise

We develop two models with exactly the same production functions and costs, but with

different timing. In the first model, a risk neutral principal and a risk averse agent agree

to an incentive contract, and then the agent chooses his effort level before the state of the

world is revealed. In the second model, the agent has pre-decision information (PDI): the

state of the world is revealed to the agent before choosing his effort level. In both models,

the state of the world is characterized by two random variables, one of which (θ) affects

the agent’s marginal product of effort, and the other (ε) does not. We show that, in the

no-PDI model, increases in the variance of θ and ε reduce the slope of the optimal linear

contract. In the PDI model, we show that an increase in the variance of the random

variable that does not affect his marginal product (ε) leads to a reduction in the slope of
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the optimal linear incentive contract, while an increase in the variance of random variable

that does affect his marginal product (θ) actually leads to an increase in the optimal

incentive strength under most circumstances. This last result is our main finding.

The result that an increase in volatility can increase optimal incentive strength depends

crucially on the fact that the uncertainty affects the marginal product, and that the agent

receives this information before choosing his effort level. Our interpretation of this result

shows why both of these elements are necessary. In a model with pre-decision

information that affects the agent’s optimal action, the randomness in the problem should

not be interpreted as noise. Rather, it is valuable information about what the agent ought

to do. The fact that the agent possesses this information before choosing his action gives

the principal an opportunity to make use of this information through her design of the

incentive contract. An increase in the variance of θ now not only increases the amount of

risk that must be borne by the agent, but also increases the amount of information that the

agent has. The principal wants to increase the strength of the incentive contract in order

to get the agent to “pay more attention” to his private information.

This same intuition applies to our second result. In a model with observable and

contractible effort, the distinction between noise and volatility again becomes salient. In

the model without PDI, contractible effort leads to first best outcomes, with the principal

simply using a contract that gets the agent to set effort at the optimal level. The principal

has no use for output-based pay, which would inefficiently impose risk on the risk averse

agent. Similarly, in a model with PDI, if the uncertainty is of the type that does not affect

the marginal product, then the principal again uses a contract that sets effort at the

optimal level, and uses no output-based pay. However, if the agent has pre-decision

information about his marginal product, then the optimal linear contract will be based on

both effort and output. The principal will put weight on output, thereby imposing some

risk on the agent, in order to get him to use his private information in his effort choice

decision.

The intuition behind these two results highlights one other important assumption of our

model: communication between the agent and the principal after the information is
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revealed to the agent is not possible. This might be because such communication is

infeasible, for example when a machine operator senses that her machine is malfunction-

ing and must react immediately, or when a salesman gets information from a customer

during a sales call and must respond on the spot. Alternatively, it might be that the sort of

information that is revealed is “soft,” in the sense of Stein (2002), and thus cannot be

communicated efficiently to the principal. In either case, we have in mind situations in

which it is not possible for the principal to design a mechanism which ties the agent’s

payoff to the report of some signal sent after the state of the world is revealed, but before

his action is chosen.

Both the assumptions and results of this model are reminiscent of Hayek’s (1954)

analysis of the market economy, and Jensen and Meckling’s (1992) analysis of “specific

knowledge,” and its role in organization design. Hayek argues that the “miracle” of the

price system is not so much that it efficiently allocates scarce resources, as that it is a

system that makes efficient use of highly dispersed information. He argues that the

utilization of what he calls “on-the-spot” knowledge, which cannot be efficiently

aggregated or communicated to a central planner, is critical to economic efficiency. For

Hayek, the price system is not so much a mechanism for getting people to take efficient

actions, as a system that gets them to use their individual, idiosyncratic information

efficiently.

Similarly, Jensen and Meckling argue that the existence of specific

knowledge—information available to the agent which is costly to transmit to the

principal—is the main reason for decentralization in organizations. They argue that the

utilization of specific knowledge is enhanced when organizations decentralize, but that an

attendant cost is the increased need for incentives. They also argue that organizations in

more volatile environments are likely to be characterized by greater amounts of dispersed

specific knowledge, and are thus likely to be characterized by higher-powered incentives

and more output-based pay.

Finally, our definition of volatility—uncertainty that can be and should be acted on by the

agent—brings theoretical clarity to a standard piece of managerial prescription. The so-
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called “controllability principle” states that managers should be held accountable for

events that they control, and not held accountable for events that are beyond their control.

(Dekin and Maher 1991) An adequate understanding of this simple prescription has

eluded theorists for decades. (See Antle an Demski 1988) Indeed, even an understanding

of the seemingly contradictory notion of controllable risk was lacking. However, our

model provides a plausible definition of a “controllable risk,” and delivers results that are

consistent with the controllability principle. Events whose outcomes either have no effect

on managers’ optimal actions, or to which managers cannot react, are “uncontrollable.”

Increases in these sorts of risks should be met with a decrease in the strength of

incentives. However, risks whose outcome the manager can and optimally should react to

can be thought of as controllable, and managers should face strong incentives when

dealing with these types of risks.

The paper proceeds as follows. In Section 2, we specify the model, and show how it

compares to other models in the agency literature. We discuss the role of “post-

contractual, pre-decision information” (PCPDI, or simply PDI) in agency models, and

show how this type of information affects the intuition and the results in such models. We

also discuss why solutions to the sort of PDI models that we construct have not been

tackled in the past.

In section 3, we derive the conditions for the optimal incentive contract with and without

PDI, and with and without observable agent actions. While we are unable to derive a

closed-form solution for the optimal slope of the incentive contract in many of these

models, we are able to partially characterize the optimal contract, and to derive the results

above. In Section 4 we discuss applications and possible empirical tests of this model.

Section 5 concludes.

II. The Basic Model

Output is:
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V = a +

where a  is the agent’s effort, and ( )2,~ N   and ( )2,0~ N  are two independent

random variables that characterize the state of the world. The principal and the agent

share common knowledge about the distributions of θ and ε. Output should be interpreted

as the benefits to the owners of the firm before the agent has been paid. To ensure

tractability, and to make interpretation of the results simple, we restrict the agent’s

compensation to be linear. The agent’s compensation (without contractible effort) is:

VbSPay V+=

where S  is the fixed component of the agent’s compensation and Vb  is the “piece rate”

or sensitivity of compensation to output. To avoid wealth effects on the manager’s risk

aversion, we assume that the agent has constant absolute risk aversion, 0> . Finally,

the agent’s disutility of effort measured in pecuniary terms is quadratic in effort, that is,

2/)( 2kaac =  where 0>k . Therefore, the agent’s expected utility is given by:

U(•) = − exp − S+ bvV −
2k a

2

 

 
 

 

 
 

 

 
 

 

 
 .

The principal knows that the agent will accepts any employment contract that gives the

agent his reservation level of certainty equivalent, W. We make two different

assumptions about the timing of effort choice and information revelation. In our first

model, the timing is as follows:

In this version of the model, the principal and the agent agree on a contract, the agent

chooses effort, and then the uncertainty about θ and ε is revealed. Both θ and ε are

“noise” parameters, in that they garble the link between the agent’s action and output. As

we will show in section 3, an increase in “noise” unambiguously decreases the slope of

Contract signed Agent chooses
effort

Uncertainty
resolved
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an optimal incentive contract. Furthermore, since the principal and the agent have the

same information about how actions affect outcomes, the principal knows what she wants

the agent to do. If effort is observable, then the (risk neutral) principal will set effort at

the optimal level, and perfectly insure the (risk averse) agent against risk.

With pre-decision information, the timing is as follows:

As discussed in the introduction, we assume that it is not possible for the agent to

communicate to the principal his private information before choosing his effort level.

Under these assumptions, it is no longer appropriate to think about θ as noise. θ gives the

agent private information about his marginal product. Indeed, in this model 2  is a

measure of how much private information the agent possesses. The agent’s effort

depends on θ, and, as will be shown below, expected output ( [ ]VE ) is an increasing

function of 2 .

Finding solutions to models with a multiplicative random term, especially with post-

contractual pre-decision information, is very difficult, at least under the assumption that

the agent is risk averse.1 With PDI, when the contract is written, effort is uncertain for

both the principal and the agent.  Thus, the agent’s participation constraint, and the

principal’s maximization problem, are evaluated treating θ, ε, and a(θ) as random

variables. However, the agent’s incentive compatibility constraint (the agent’s effort

choice decision) is evaluated after θ and ε are realized. Because of the complexity of the

first-order conditions in this model, we are not able to get closed-form solutions for the

optimal contract. However, we are able to derive comparative statics about this optimal

contract.

                                                

1 Baker (1992) solves models of this sort for risk neutral agents.

Contract signed Uncertainty
resolved (to agent)

Agent chooses
effort
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Our view on the importance of pre-decision information is not new. Holmstrom (1979)

notes near the end of this seminal paper:

In many respects the model we have analyzed is very primitive. One
unrealistic feature is the assumption that the agent chooses his action
having the same information as the principal, that is, before anything
about θ [which characterizes the state of the world] is revealed.
Commonly this will not be the case. After the sharing rule is fixed, the
agent will often learn something new about the difficulty of his task, or the
environment in which it is to be performed.

Holmstrom goes on to show that, even in the presence of PDI, his informativeness result

continues to hold. However, he does not (nor does he try to) show how an optimal

contract under PDI varies with increasing risk.

Harris and Raviv (1979) also build a model (Model 2 in their paper) in which the agent

has pre-decision information. They show that, when the state-of-the-world is

unobservable to the principal and the agent is risk averse, both the principal and the agent

prefer a contract that includes monitoring of the agent (i.e. observing effort) to one that

does not. They do not show, however, that the optimal contract will still depend on output

even when effort is perfectly observable by the principal.

Prior models with multiplicative uncertainty when the agent does not receive private

information include Sung (1995) and Feltham and Wu (2001). Sung (1995) establishes

that linear contracts are optimal in a continuous-time setting where an agent’s effort

controls the variance of firm value. Feltham and Wu (2001) consider the granting of

options when the agent’s preferences exhibit mean-variance separation.2 Christensen

(1981) demonstrates that the principal can be strictly worse off when an agent privately

informed. In a closely related paper, Bushman, Indjejikian, and Penno (2000) study the

benefits from delegation. While they focus on the case of risk-neutral agent, they do

derive the first order conditions for model in which firm value is the product of effort and

a random variable.

                                                

2 In our setting, where the agent receives private information, mean-variance representation does not arise.



Baker-Jorgensen 10 Preliminary: 3/28/03

III. Solving the model with and without pre-decision information

A. Model without PDI

In this section, we initially assume that the agent chooses his action before θ and ε are

revealed. We begin by assuming that effort is not contractible. The principal maximizes

the expected value of output minus payments to the agent, subject to the agent’s

participation constraint and his incentive compatibility constraint. The agent has expected

utility equal to:

−E e
− S + bvV − c a( )( ) 

 
 

 

 
 = −e

− S − c a( )( )E e− bvV 
  

 
  

= −e
− S − c a( )( )e− bv a +

bv( )2

2
a2 2 + 2( )

.

The certainty equivalent is:

(1) CE S + bvV,a( ) = S + bv a −
bv

2a2

2
2 −

bv
2

2
2 − c a( )

 We assume that the agent has an outside option that yields utility W. The participation

constraint is thus:

(2) S + bv a −
bv

2a2

2
2 −

bv
2

2
2 − c a( ) ≥ W

The agent chooses effort before observing θ or ε. Thus, the agent maximizes his certainty

equivalent:

(3) Max
a

S + bv a −
bv

2a2

2
2 −

bv
2

2
2 − c a( )

 
 
 

  

 
 
 

  
.

The solution to this maximization problem yields the agent’s optimal action choice given

that he does not possess pre-decision information.
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(4) a* =
bv

k + bv
2 2

Note that, if 2  or β are zero, this reduces to the standard result in the literature (that is,

in a model without a multiplicative error.) However, the second term in the denominator

arises because the agent’s optimal action choice is reduced by his anticipation that higher

levels of effort will lead to higher risk; since he is risk averse, he reduces his level of

effort by an amount that depends on his risk aversion parameter and the variance of the

multiplicative random term.

Given this optimal effort, the agent’s certainty equivalent is

CE S + bv a* +( ),a* =
bv

k + bv
2 2

 

  
 

  

= S + abv − a2 bv
2

2
2 +

k
2

 

 
 
 

 

 
 
 
−

bv
2

2
2

= S +
bv( )2

2 k + bv
2 2( ) −

bv
2

2
2

Since the agent’s participation constraint

( ) W
bk

b
aabSCE ≥





+

=++
22

** ,

is binding, the principal chooses the fixed compensation such that

( )
( )

2
2

22

2

22
V

V

V b
bk

b
WS +

+
−=

The principal chooses the pay-to-performance to maximize
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E V − S − bvV[ ] = 1− bv( )E V[ ] − S = 1− bv( )E a* +[ ]− S

= 1− bv( ) bv

k + bv
2 2

 
 
 

  

 
 
 

  
− W +

bv( )2

2 k + bv
2 2( ) −

bv
2

2
2

The principal’s maximization problem is:

(5) Max
bv

2

k + bv
2 2( )

bv −
bv

2

2

 
 
 

 
 
 

−W −
bv

2

2
2

Before solving for the optimal contract, two preliminary results are easily established: the

principal is made unambiguously worse off by an increase in either σ2
ε or σθ

2.3 The first

of these results is obvious from examination of equation 5. The second is equally obvious

once we establish that bv* is less than one, which we do below.

The first order condition is:

0 =
∂
∂bv

E V − S − bvV[ ]

=
2

k + bv
2 2( )2 1− bv( ) k + bv

2 2( ) − bv −
b2

2

 

  
 

  2 bv
2( ) 

 
 

  

 
 
 

  
− bv

2

=
2

k + bv
2 2( )2 1− bv( )k + bv

2 − bv
3( ) − 2bv

2 − bv
3( )[ ] 2{ }− bv

2

(6) =
2

k + bv
2 2 −

kbv
2

k + bv
2 2( )2 − bv

2 −
2bv

2 2 2

k + bv
2 2( )2 (FOC)

Several terms in this expression are intuitive. The first is the marginal effect of an

increase in 
Vb  on output, without considering the effect of the agent’s risk aversion on

                                                

3 This result is consistent with Kim (1995) and Kim and Suh (1991). In their models, the agent’s effort
affects only the mean, but not the variance, of firm value.
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effort choice: it is of course positive. All of the other terms are negative if *
Vb  is positive.

The second term is the marginal disutility of effort brought about by an increase in 
Vb ,

again ignoring the effect of the agent’s risk aversion on effort choice. The third term,

which depends on 2 , is due to the effect of ε (the additive random variable) on the

agent’s risk aversion. The fourth term combines all of the risk effects that come from the

multiplicative random marginal product of effort. Note that, if β is zero  (that is, the agent

is risk neutral), then the third and fourth terms are zero, and the optimal bv is one.

We are now able to derive several results from the “no PDI” model. In order to do so, we

rewrite equation (6) and define a function L:

L bv | k, , 2 , 2( ) =
2

k + bv
2 2( )2 1− bv( )k − bv

2 2{ } − bv
2,

which equals the first order condition. We show in Appendix A1 that the second order

condition for this problem is satisfied, and that the optimal bv is between 0 and 1. Thus:

 
∂

∂bv
L bv | k, , 2, 2( ) < 0.

Differentiating L with respect to 2  and 2  allows us, by the implicit function theorem,

to derive two results:

Results 1&2: In a model with non-contractible effort and without PDI:

 (R1)
dbv

*

d 2 < 0

(R2)
dbv

*

d 2 < 0

Proofs: See Appendix A2.

These results are to be expected. Since both ε and θ only add noise to the relationship
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between the agent’s actions and output, an increase in their variances reduces the slope of

an optimal contract for a risk-averse agent.

Contractible Effort

We now assume that the principal can observe effort perfectly, and pays for it with a

linear piece rate equal to ab . She also pays for output, V.

VbabSPay Va ++= .

With contractible effort, the principal can write a contract that induces the agent to

choose the optimal effort level (given the information available) while permitting the

agent to bear no risk.

Results 3&4: In a model with contractible effort and without PDI:

(R3) ba
* =

(R4) bv
* = 0.

Proofs: See Appendix A3.

In this model, the principal sets the piece rate on effort equal to the (expected) marginal

product of effort, and puts no weight on output in the incentive contract. Note that the

principal could also have used a forcing contract, specifying that the agent choose effort

equal to µθ/k. Either of these contracts achieve optimal effort levels with no risk to the

agent.

An important feature of this model without pre-decision information is that the principal

knows, as well as the agent, what the optimal action is. Thus the agency problem is one

of inducing the agent to take the action that the principal wants, and the principal’s

problem is to infer (from a potentially noisy signal) what the agent did. The agent has no

specific knowledge in this model. Thus, if the principal has a noiseless signal about that

the agent did, she can write a first-best incentive contract. This is very different from the

model with pre-decision information, where the principal does not know what she would

like the agent to do, and so uses incentive contracting to get the agent to utilize his

specific knowledge.
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B. Model with PDI

In our PDI model, we again begin under the assumption that the principal cannot contract

on effort. She pays:

VbS V+ .

Now, however, the agent’s effort choice decision is taken after θ and ε have been

revealed to him. This implies that his maximization problem is:

a
Max −e

− S+bV −c a( )( )   
   

=
a

Max −e
− S+ vb a−

2ka

2

 
 
 

 
 
 

 

 
 

  

 

 
 

  

The solution to this maximization yields:

(7) a* ( ) =
bv

k
.

Note that, under PDI, the agent’s optimal action is a function of θ, the (privately

revealed) marginal product of effort.

With the optimal effort shown in equation (7), the agent’s expected utility at the time of

the signing of the contract (prior to observing ) can be evaluated as

E U S + bV a* ( ) +( ) − k

2
a* ( )( )2 

 
  

 
 

  
 

  

= exp − CE S + bV a*( ) +( ) − k

2
a* ( )( )2 

 
  

 
|

 

  
 

  
 
 
 

 
 
 

f ( )d∫

= exp − S −
2

bV
2 2 +

bV( )2

2k

 

 
 

 

 
 

 
 
 

 
 
 

f ( )d∫

= exp − S −
2

bV
2 2 

 
  

 
 
 
 

 
 
 

exp −
bV( )2

2k

 
 
 

 
 
 

f ( )d∫
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This expression can be converted into the certainty equivalent below. (See Appendix B1

for derivation.)

(8) CE S,bV ,a*( )( ) = S −
2

bV
2 2 +

bV
2 2

2 k + bV
2 2( ) +

−1

2
ln 1+

bV
2 2

k

 

 
 

 

 
 .

Since the agent’s participation constraint

CE S,bV ,a*( )( ) ≥ W

is binding:

S −
2

bV
2 2 +

bV{ }2

2 k + bV[ ]2( ) +
−1

2
ln 1+

bV[ ]2

k

 

 
 

 

 
 = W

or

(9) −S = −
2

bV
2 2 +

bV{ }2

2 k + bV[ ]2( ) +
−1

2
ln 1+

bV[ ]2

k

 

 
 

 

 
 − W

Expected output given the optimal effort choice shown in Eq. 7 is:

[ ] ( )[ ] [ ] [ ] [ ]( ) ( ) kbkEVARbkEbaEVE VVV /// 222* +=+===

The risk-neutral principal has (ex ante) expected pay-off of:

(10) E V − S + bVV( )[ ] = 1− bV( )E V[ ] − S = 1− bV( )bV

2 + 2( )
k

− S

Combining equations 9 and 10 yields the principal’s maximization problem:

(11) Max
bv

E V − S + bVV( )[ ]{ } = Max
bv

1− bV( )bV

2 + 2( )
k

−
2

bV
2 2

 
 
 

  
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+
bV{ }2

2 k + bV[ ]2( ) +
−1

2
ln 1+

bV[ ]2

k

 

 
 

 

 
 − W

 
 
 

  

Differentiating (11) with respect to 
Vb  yields the first order condition for an optimal

linear contract. Once again, define this first order condition to be a function J as follows:

(12) J bV | 2 , 2, ,k,( ) = 0 =

− bV
2 + 2bV

k

k + bV
2 2( )2

+ bV
2

k + bV
2 2( ) +

1− 2bV( ) 2 + 2[ ]
k

(FOC)

There are several things to notice about this first order condition. Note first that if σθ
2=0,

then the optimal bv is the same as in Holmstrom-Milgrom (1987):

 bv*=
2

2 + k 2
.

This is because, with σθ
2=0, the agent receives no action-relevant pre-decision

information. He still receives pre-decision information (about ε), but this information has

no effect on his action choice, nor on the optimal linear contract.4 Notice also that, as σ2
ε

goes to infinity, bv goes to zero.

As in the no-PDI model, we will not derive a closed form solution to *
Vb . However, we

can characterize *
Vb  in several important ways. First, we show that an optimal *

Vb  exists,

and is between 0 and 1 for all possible parameter values. (See Appendix B2 for proof.)

We can then use the implicit function theorem to sign the derivatives of *
Vb  with respect

                                                

4 This result only holds with linear contracts and exponential utility functions. If the realization of ε
affected either the slope of the incentive contract, or the marginal utility of effort, then his pre-decision
observation of ε would affect his action choice.
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to , 2  and 2 . In Appendix B2, we show that the second order condition for the

principal’s problem is satisfied for all values of 
Vb . Therefore we know that

(13)
dJ

dbv
* < 0.

Differentiating J with respect to , 2  and 2  yields the following three expressions.

(14) ∂
∂

J bV | 2, 2 , ,k ,( ) = −bV
2 − 2 2 k bV

3 2

k + bV
2 2( )3 − 2 bV

3 2

k + bV
2 2( )2 < 0

(15) ∂
∂ 2

J bV | 2 , 2, ,k,( ) = − bV < 0

(16) ∂
∂ 2

J bV | 2 , 2, ,k,( ) = −
2k bV

3 2

k + bV
2 2( )3 +

kbV

k + bV
2 2( )2 +

1− 2bV( )
k

This set of derivations allows us to compute comparative statics on *
Vb .

Results 5: With pre-decision information and non-contractible effort:

 (R5)
dbv

*

d
< 0

Proof: By the implicit function theorem, since

dJ

dbv
* < 0 and

dJ

d
< 0.
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Results 6: With pre-decision information and non-contractible effort:

 (R5)
dbv

*

d 2 < 0

Proof: By the implicit function theorem, since

dJ

dbv
* < 0 and.

dJ

d 2 < 0

These two results confirm that this model of pre-decision information does not overturn

any of the standard results in agency theory. If the agent is less risk averse, the optimal

slope of the incentive contract is higher. Also, if the variance of the additive noise

component of the production function (ε) increases, the optimal slope decreases.

Result 6: With pre-decision information and non-contractible effort, there exist

parameter values where:

(R6)
dbv

*

d 2  > 0.

The fact that 
dbv

*

d 2  may be positive is the main result of this paper. Intuition about this

result can be developed by rewriting Equation 12 (the first order condition):

(17) 0 = ( 2 + 2)
k

− bv ( 2 + 2)
k

− bv
2

−
v
3b

2 k 2 + 2k 2 + v
2b

2( 2 + 2)[ ]
k(k + v

2b
2)2

The first term represents the marginal effect of an increase in 
Vb  on output. Note that it is

increasing in 2 . The second term is the marginal effect of 
Vb  on the disutility of effort.

The third term is the effect of 
Vb  on the agent’s disutility for risk that is coming from the

additive noise (that which comes from ε) in the production function. Finally, the fourth
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term is the effect of an increase of 
Vb  on the agent’s risk aversion coming from the

multiplicative noise.

This expression makes it clear how an increase in σθ
2 can increase *

Vb . Since an increase

in 2  raises the marginal value of 
Vb  (the first term in Eq. 17), and all of the remaining

terms become more negative as 
Vb  increases (by the second order condition), then if 2

makes the second and fourth terms more negative, it drives *
Vb  up.

The conditions under which 
dbv

*

d 2  > 0 can be seen by looking at Equation 16. It is clear

that 
dbv

*

d 2  will be positive when *
Vb  is small. As discussed above, *

Vb  can be driven

arbitrarily small by allowing 2  to get large (by inspection of Equation 17). Thus, we

can assure that 
dbv

*

d 2  is positive by choosing 2  to be sufficiently large. However, we

have also performed simulations on 
dbv

*

d 2 , and have found that it is positive over most of

parameter space. Only when 2  is very small, or µθ
 is very large is 

dbv
*

d 2  negative.

Contractible Effort

We now model an agent who gets pre-decision information, but whose effort level is

observable and contractible. Once again, we choose a functional form for pay in which

both effort and output are rewarded linearly by the principal.5

                                                

5 There is a non-linear contract which achieves outcomes arbitrarily close to first-best with contractible
effort. This contract involves paying the agent a bonus equal exactly to his disutility of effort (ka2/2). This
makes him indifferent about his effort level. Then add an arbitrarily small bonus paid on V-c(a), to get him
to choose the optimal effort level.. While this contract works in theory, it is highly vulnerable to small
errors in the measurement of output, since the agent is paid for whatever he does.
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VbabSPay Va ++= .

In a model with pre-decision information, the principal no longer wants to set the agent’s

effort level at µθ/k, because the agent has private information that would allow him to

adjust his effort with differing states of the world. Thus, a forcing contract will not be

optimal.

The expected utility of the agent is

−E e
− S + baa + bvV − c a( )( )

| ,
 

 
 
 

 

 
 
 

= −e− S + baa − c a( )( )E e− bvV | , 
  

 
  =

− e
− S + baa − c a( )( )e− bv E V | ,[ ]

and the agent’s certainty equivalent is

CE S + baa + bvV,a | ,( ) = S + baa + bva + bv − c a( ).

The first order condition for the agent’s optimal action choice is:

0 = ba + bv − ka

or

a*( ) =
ba + bv

k

and the agent’s certainty equivalent for any given realization of the productivity

parameter, θ, is easily evaluated as

CE S + baa + bvV ,a( ) =
ba + bv

k
| ,

 
 

 
 = S +

ba + bv( )2

2k
+ bv

The derivation of the agent’s expected utility at the time of contracting is shown in

Appendix B3. Combining this with the agent’s (binding) participation constraint allows

us to derive the principal’s profit net of compensation to the agent:
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E V[ ] − S + E baa*( ) + bvV[ ]{ } = 1− bv( )E V[ ] − ba E a*( )[ ]− S

= 1− bv( )k −1 ba + bv
2 + 2( ){ } − ba

ba + bv
k

 
 

 
 − S

(See Appendix B3.)

Differentiating the principal’s profit net of compensation with respect to 
ab  and 

Vb  yields

the two-equation system of non-linear equations shown below.

( ) { }
( )22

2210
V

aV
aV

bk

bb
kbb

+
++−−=

and

0 = 1− 2bV( ) 2 + 2( ) − 2ba + k
bV

2 − bV + ba{ }
k + bV

2 2( ) −
bV + ba{ }2 bV

2( )
k + bV

2 2( )2 − bV
2

 

 
 

  

 

 
 

  

We are unable to solve this system of equations, or even to derive a set of comparative

statics comparable to those calculated above. However, it is possible to prove that setting

either 
ab  or 

Vb  equal to zero leads to a contradiction. (See Appendix B4.) Thus we can

establish the following results:

Results 7&8: In a model with pre-decision information and contractible effort, the

optimal contract will put weight on both effort and output.

 (R7) 0* ≠ab

(R8) 0* ≠Vb .

Proof: See Appendix B4.
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This result establishes the fact that, even when effort can be costlessly monitored and

contracted upon, the principal will still choose to put weight on output in an optimal

linear contract when the agent has pre-decision information.

IV. Implications and Empirical Tests

We show that, as the uncertainty of the environment increases, the optimal slope of an

incentive contract may increase. The intuition driving this result is simple, and derives

from the difference between what we have labeled “volatility” (variability that affects the

manager’s optimal action choice) and the “noise” which is usually modeled in agency

theory. θ in this pre-decision information model is not noise, but a valuable signal that the

agent possesses allowing him to choose effort in a state-contingent way. This distinction

between volatility and noise is what drives the new results in this model, and ultimately

must be at the heart of any attempt to confirm this model empirically.

Before we discuss empirical tests, however, it is worth differentiating our results from

those of Prendergast’s model. Although both models are motivated by the positive,

negative, or ambiguous empirical relationship between risk and incentive strength, there

are other predictions of the two models that differ. The most important distinction is that

our model makes no prediction about (indeed has no role for) delegation. While

Prendergast’s model derives a prediction of a positive relation between risk and

incentives by assuming that increased volatility leads to increased delegation, we make

no such prediction. Thus we would not argue that a positive empirical relationship

between risk and incentives is the result of “omitted variable bias,” caused by the

statistician’s inability to observe decision rights. Rather, this relationship results from the

fact that, when the agent has more pre-decision information, it is more valuable to give

him higher-powered incentives. Thus, in contrast with Prendergast, we would expect to

find instances in which, holding delegation constant, there could be higher incentives in

riskier environments.

The fact that our model has no role for delegation may make it a better one for studying

the relationship between risk and CEO incentives. As Prendergast points out, his model is

not a particularly good one for understanding CEO pay, since there is likely to be little
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variation in the amount of delegation to the CEO from the board. Virtually all boards

delegate virtually all decision rights to their CEOs. Thus, our model may be the more

appropriate one to explain any positive relationships found between CEO pay and

environmental uncertainty.

One other distinction between our model and that of Prendergast is that our model

predicts the simultaneous use of both input-based and output-based pay. In the

Prendergast model, there is some level of risk at which the firm switches from monitoring

inputs to monitoring outputs. In our model, the firm uses both types of incentive at all

times, choosing the optimal weight to put on each.

Our model helps resolve the ambiguous findings on the relationship between risk and

incentive strength, and suggests an empirical strategy for clarifying this ambiguity. The

novelty in our model is that we predict that certain types of risk should increase optimal

incentive strength, while other types should decrease incentive strength. Risk of the sort

that affects managers’ optimal action choices (which we have called volatility) will

increase the slope of optimal incentive packages. Risk that is “uncontrollable,” in the

sense that managers ought not or cannot change their actions in response to the state of

the world, should reduce the slope of the incentive contract. How might one test this

prediction from our model?

One strategy would be to look for indicators that the risk that a firm faces is more or less

likely to be controllable. Thus, one might expect that events that affect an entire industry

are more likely to be controllable by managers than events that are idiosyncratic to

particular firms. This suggests an empirical test in which the total variance in

performance of a firm is decomposed into the industry variance and the firm-specific

variance. If industry-wide turbulence is more controllable, then the effect of industry

variance on incentive strength should be less negative than the effect of firm variance,

and perhaps even positive.

On the other hand, it is surely true that there are certain types of events (such as macro-

economic fluctuations) whose consequences managers have little ability to mitigate. To

the extent that the variability in a firm’s value is driven mainly by such uncontrollables,
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we would predict that it would have a lower-powered incentive scheme than that for a

firm whose variability is driven by controllable risks. Thus our model would predict that,

holding the total variability of firm value constant, high-beta firms should have lower-

powered incentives than low-beta firms.

Another possible empirical approach might be to look for firms whose performance

variability is driven by changes in its output prices or exchange rates, versus firms whose

performance variability is driven by changes in input markets. If one assumes that

variability in input markets provides managers with more opportunities to adjust and

react, then this sort of variability might increase incentive strength, or at least not

decrease it as much as variability that derives from instability in output market prices.

V. Conclusion

We develop a very simple model of an agent with valuable specific knowledge, and show

that increases in turbulence in such a model can lead to increases, rather than decreases,

in incentive strength. While the solution to this model is quite messy, the intuition is very

clear. An agent with post-contractual pre-decision information has knowledge about his

optimal action choice that the principal lacks. This knowledge can be measured by the

variance of the pre-decision signal received by the agent. When this variance increases,

the value of getting the agent to “pay attention” to the signal goes up, and so may

outweigh the countervailing benefit of shifting risk away from the risk-averse agent.

We believe that the approach that we have developed is superior in many respects to the

standard one in the literature, in which the principal is as well informed as the agent

about optimal actions. It incorporates much of the intuition of the multi-tasking models of

Holmstrom and Milgrom (1991), and provides a formal but intuitive way to model

concepts like specific knowledge and controllability. Unfortunately, the model is very

hard to solve, and requires particular assumptions about the structure of the random terms

and the agent’s utility function. Nonetheless, we feel that the benefits from working with

this model outweigh the costs.



Baker-Jorgensen 26 Preliminary: 3/28/03

References

Baker, George P. 1992. Incentive Contracts and Performance Measurement. Journal of
Political Economy 100 (June): 598-614.

Bushman, Robert, Raffi Indjejikian, and Mark Penno. 2000. Private Pre-decision
Information, Performance Measure Congruity and the Value of Delegation.
Contemporary Accounting Research 17 (Winter): 561-587.

Christensen, John. 1981. Communication in Agencies. The Bell Journal of Economics 12
(Autumn): 661-674.

Dekin, Edward and Michael Maher. 1991 Cost Accounting. 3rd edition. Irwin,
Homewood, IL.

Demsetz, Harold, and Kenneth Lehn. 1985. The Structure of Corporate Ownership:
Causes and Consequences. Journal of Political Economy 93 (December): 1155-1177.

Feltham, Gerald A., and Martin G. Wu. 2001. Incentive efficiency of Stock versus
Options. Review of Accounting Studies 6 (March): 7-28.

Harris, Milton and Artur Raviv. 1979. Optimal Incentive Contracts with Imperfect
Information. Journal of Economic Theory 20: 231-259.

Holmstrom, Bengt. 1979. Moral Hazard and Observability. Bell Journal of Economics 10
(Spring): 74-91.

Holmstrom, Bengt, and Paul Milgrom. 1987. Aggregation and Linearity in the Provision
of Intertemporal Incentives. Econometrica 55 (March): 303-328.

Holmstrom, Bengt, and Paul Milgrom. 1991. Multi-task Principal-agent Analysis:
Incentive Contracts, Asset Ownership, and Job Design. Journal of Law, Economics, &
Organizations 7: 24-52.

Jensen, Michael and William Meckling. 1992. Specific and General Knowledge and
Organizational Structure. Contract Economics, Lars Werin and Hans Wijkander, eds.
(Oxford: Blackwell)

Kim, Son Ku. 1995. Efficiency of an Information System in an Agency Model.
Econometrica 36 (January): 89-102.

Kim, Son Ku, and Yoon S. Suh. 1991. Ranking of Information Systems for Management
Control. Journal of Accounting Research 29 (Autumn): 386-396.



Baker-Jorgensen 27 Preliminary: 3/28/03

Prendergast, Canice. 2002. The Tenuous Trade-off between Risk and Incentives. Journal
of Political Economy 110 (October): 1071-1102.

Stein, Jeremy. 2002. Information Production and Capital Allocation: Decentralized
versus Hierarchical Firms. Journal of Finance LVII (October).

Sung, Jaeyoung. 1995. Linearity with Project Selection and Controllable Diffusion Rate
in Continuous-time Principal-agent Problems. The Rand Journal of Economics 26
(Winter): 720-744.



Baker-Jorgensen 28 Preliminary: 3/28/03

Appendix A: No Pre-Decision Information

Non-contractible effort case.

A0-1: Proof that principal prefers non-negative bv.

Refer to the principal’s objective function in (5):

( ) [ ] ( )
2

22

22

2
22

22
,| VV

V
V

VV

b
W

b
b

bk
VbSVEbl −−









−
+

=−−≡

Note that for any two contracts with opposite sign on the slope, the principal prefers the

positive slope, that is,

( ) ( )2222 ,|0,| VV blbl −≥≥ .

Hence, the optimal slope is non-negative, 0* ≥Vb .

Further note that ( )WSabV −=== ,0,0  is a feasible solution which yields expected

payoff of ( ) Wl −=22 ,|0  to the principal. Consequently, since 2# >∀ Vb :

( ) ( ) Wlbl V −<< 2222# ,|2,|  it follows that 2* <Vb .
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A1: Proof that second order condition is negative for positive bv.

The first-order condition for the principal’s choice of 
Vb  is:

( ) ( ) ( ){ } 222
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By differentiation
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Substituting in the first order condition in the second term
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Since this expression is negative for every positive values of *
Vb , every positive solution

to the first order condition is a local maximum. We also know that the function,

( )V
V

bL
b∂
∂

 is continuous and differentiable everywhere which means that every positive

interior local maximum is also a global interior maximum, since (from A0-1) the optimal
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*
Vb  is non-negative. As is standard, we rule out the only remaining possible optimum,

0* =Vb , by assuming that it is worthwhile for the principal to hire the agent.

Finally since L is a continuous function and

L 0 | k , , 2 , 2( ) = 2 > 0

L 1 |k, , 2 , 2( ) =
2

k + 2( )2 − 2{ }− 2 < 0

the unique interior optimum, [ ]1,0* ∈Vb .
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A2: Proofs that 
dbv

*

d 2 < 0 and 
dbv

*

d 2 < 0.

The first result follows immediately from A1 and implicit function theorem since

( ) 0,,,| 22
2

<−=
∂

∂
VV bkbL  for all 0>Vb .

To prove the second result note that
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A3: Proof that ba* =  and bv*=0

When both effort and firm value are available for contracting, the agent receives the

contract VbabS Va ++ , then his expected utility is

( )( )[ ] ( )( ) [ ] ( )( )
( ) ( )222
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The first order condition for an interior optimum is
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 so any effort level can be implemented even though

0=Vb . Given this optimal effort, the agent’s certainty equivalent is
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and the participation constraint reduces to
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( )
( ) W

b
bk

bb
S V

V

Va −−
+
+=− 2

2

22

2

22

Clearly the optimal pay-to-performance, b, is zero (and independent of the variance of the

performance measure used.

 Define the principal’s objective function similar to (5):
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 The first order condition with respect to ab  is

( ) ( )
( )2222

22 1
,|,0

V

Va

V
Va

a bk
bb

bk
bbm

b +
+−








+

=
∂
∂=

or ( )Va bb −= 1 . Further

( )

( ) ( )
( )

( ) ( ) ( )
( )

( )
( ) ( ) ( )

( )
22

22222

2
222

2222

222

222

22

2

2

,|,

VV

V

Va
Va

V

Va

V

V

VVaVVa

V

VVaV

Va
V

bb
bk

bb
bb

bk

bb

b
bk

bbbbkbb

bk

bbbbk

bbm
b

−
+

+−+−
+

+−=

−
+

+−++−












+
+−+=

∂
∂

By substition of ( )Va bb −= 1  then

( ) ( )( ) 00,|, 22
222

22 <−
+

+−=
∂
∂

VV

V

VaVa
V

bb
bk

bbbbm
b

 for all 0≥Vb ,

from which it follows that 0* =Vb , =*
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Appendix B: Pre-Decision Information

Appendix B1: Derivation of agent’s ex ante certainty equivalent with PDI and non-

contractible effort.

The agent’s expected utility is:

E U S + bV a* ( ) +( ) − k

2
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we first analyze the term in the square bracket in the exponent
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and the agent’s expected utility is
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Thus, the agent’s certainty equivalent is



Baker-Jorgensen 37 Preliminary: 3/28/03

CE S,bV ,a*( )( ) = S −
2
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2 2 + K
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Appendix B2: Proof that 0<bv*<1 with PDI and non-contractible effort.

First, show that the second order condition for a maximum is satisfied.

∂J

∂bV

bV | 2, 2 , ,k ,( )

= −2

2 + 2( )
k

− 2 + 2k
k + bV

2 2( )2
− bV 2 k + bV
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+ 2
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2 2( ) −bV 2bV
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k
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= 1
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2 2( )3
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  
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2
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2 2( )3
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4 4 
  

 
  −
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So ∂J

∂bV

bV | 2, 2 , ,k ,( )  <0 for all values of 
Vb . Thus the principal’s problem is

globally convex.

Now show that J bV = 0 | 2, 2 , ,k ,( ) > 0 :

J bV | 2 , 2, ,k,( ) =

− bV
2 + 2bV

k

k + bV
2 2( )2

+ bV
2

k + bV
2 2( ) +

1− 2bV( ) 2 + 2[ ]
k
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when 0=Vb , J = 

2 + 2[ ]
k

>0.

When 1=Vb :

J = − 2 k k + 2( )2 
 
  

 
+ 2k 2 + k 2 k + 2( ) − 2 + 2( ) k + 2( )2

= − 2 k k + 2( )2 
 
  

 
+ 2k2 + k2 2 + k 4

− k 2 2 − k 2 2 − 2k 4 − 2k 2 2 − 2 4 2 + 2( )
= − 2 k k + 2( )2 

 
  

 
− k 4 − 2k 2 2 − 2 4 2 + 2( ) < 0

Since ∂J

∂bV

is everywhere negative, and J is positive at 0=Vb , negative at 1=Vb , it must

be that 10 * << Vb .



Baker-Jorgensen 40 Preliminary: 3/28/03

Appendix B3: Derivation of agent’s ex ante certainty equivalent and principal’s net

profit with PDI and contractible effort.

The agent’s expected utility is:
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Note that
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is a constant that does not depend on .

The integral in the agent’s expected utility can now be written as
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where the last equality follows from recognizing that the integral of any (normal)

probability distribution function is 1. At the time of contracting, the agent’s expected

utility is therefore
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Consequently, the agent’s certainty equivalent at the time of contracting is
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To evaluate the objective function of the principal, apply the derived decision rule of the

agent to rewrite the principal’s gross profits as
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The principal’s profit net of compensation to the agent is
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If the optimal solution is interior then it is determined by the two first order conditions for

choice of ab :
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And choice of Vb :
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These two equations can be written as
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By substitution from above, we find that
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Appendix B4: Proofs that neither b nor b1 can be zero.

THEOREM B4.1:

Assume that effort is observable and contractible and 02 > . Then the principal will use

firm value for contracting, that is, 0≠Vb .

PROOF OF THEOREM B4.1:

Proof by contradiction. Assume that ( ) ( )aaV bbb ,0, = . Then the optimal effort would be

( ) kba a /= . The first order conditions would reduce to

k
b

kb a
a +−= 20 [1.1]

and

( )
k
b

kb a
a +−+= 20 22 [2.1]

Since [1] implies that =ab  while [2] implies that

( ) +=+=
222

ab

the contradiction arises whenever 02 > . Note that additive risk, 2 , plays no role for

this result. Hence, the optimal contract does put some weight will be put on firm value.

THEOREM B4.2:

Assume that effort is observable and contractible and that 0=  then 0=ab
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PROOF OF THEOREM B4.3:

When 0= , the first order conditions reduce to
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a
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It follows immediately from [1.2] that 0=ab . This implies that [1.3] reduces to

( ) ( )
2

22

2
2210 V
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V
V bk

bk
b

kb −
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which is a third order polynomial

[ ] [ ] [ ] [ ]22224242223 320 kkkbbkb VVV +−−++−=

that identifies (at least) one solution to Vb .

THEOREM B4.3:

Assume that 0≠ . When effort is observable and contractible, the principal uses firm

value for contracting, that is, 0≠ab , almost surely (i.e., except on a set of parameters of

measure zero).

PROOF OF THEOREM B4.3:
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Proof by contradiction. Assume that ( ) ( )0,, bbb aV = . Then the optimal effort would be

( ) kba V /= . The first order conditions would reduce to

( ) ( )kb

b
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22
210 [1]

and
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These equations define the roots of two polynomials in b: the first is a third order

polynomial and the second is a fifth order polynomial where only the latter depends on

2 . Hence the polynomials only coincide “rarely”. To make this statement more precise,

note that [1] implies that

( ) ( )kb

b
kb

+
=−

22
12

or 5.>b  and hence
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b
k

k

b
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−

Substituting these two equations into [2], we find that [2] reduces to the third order

polynomial:

( )( ) ( ) ( ) ( ){ } ( ) 22
2

222 12
1212210 bkb

k

b
bbb −

−
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These two reduced first order conditions are non-trivial and do not coincide since they

have different slope almost everywhere (since 0≠b  according to Theorem B4.1).


