For Objective Causal Inference,
Design Trumps Analysis



Statistics 140, W.G. Cochran, 1968
Classical Experimental Design

Clear separation between:

 “Science” (and...)
X  Y(0) Y(1)

Units

N

X = Covariates unaffected by treatments
Y(0) = Potential outcomes under control treatment
Y(1) = Potential outcomes under active treatment

Notation due to Neyman (1923) in context of randomized
experiments



Classical Experimental Design

* Clear separation between Science and what we
do to learn about Science:

— Randomized assignment of treatments
— W = Vector of N treatment indicators

* This distinction and the consequential clarity
should be maintained and should not be
forgotten when designing observational studies

 Cochran & Stat 140, great advantage to start here



Causal Inference is a Missing Data Problem

RCM (Holland, 1986) for work in 1970’s
Maintains critical distinction from experimental design
 Same notation for science whether try to learn

about it from randomized experiment or
observational study.

 Earlier, “Y_,.” used in nonrandomized studies with
W a predictor in regressions, paths, arrows

Yobs = {Yobs,i}
Yobsi = W;Y;(1) + (1-W,)Y,(0)
Entangles Science and assignments




Assignment Mechanism

Creates missing potential outcomes
Pr(W[X,Y(0),Y(1)) (AM)

Randomized experiments are:
unconfounded: AM =Pr(W|X), and

probabilistic: 1 > Pr(W,|X.) > 0 for all i
Earlier, words describing AM but no explicit

mathematical notation or expressions (e.g., Roy,
1953)

Same is true for potential outcomes before
Neyman’s (1923) notation (e.g., Fisher, 1918)



3.

4.

Design Observational Studies to Approximate

Randomized Trials

Hide outcome data until the design phase is complete

Think very carefully about decision makers and the key covariates
that were used to make treatment decisions

If key covariates are not observed or very noisy, usually best to give
up and seek better data source
Find subgroups (subclasses or matched pairs) in which the treatment
and control groups have balance — essentially the same distribution
of observed covariates

Not always possible to achieve balance

Inferences are limited to subgroups where balance is achieved

#1 - #4 combine to create an objective design that approximates a
randomized trial in each subclass that is balanced with respect to
observed covariates



Cochran (1968) — lllustrative Example with One Key
Covariate

Population: Male smokers in U.S.

Treatment = cigar/pipe smoking

Control = cigarette smoking

Outcome = death rate/1000 person years
Decision maker is the individual male smoker

Reason for a smoking male to choose cigarettes
versus cigar/pipe?

Age is a key covariate for selection of smoking
type for males



Subclassification to Balance Age

To achieve balance on age, compare:

— “young” cigar/pipe smokers with “young” cigarette
smokers

— “old” cigar/pipe smokers with “old” cigarette smokers
Or better, compare:

— Young, middle aged, old

— Even more age subclasses

Design phase, no outcome data, objective:
— Approximates a randomized trial within subclasses
Now look at outcome data



Comparison of Mortality Rates for Two Smoking
Groups in U.S.

Cigarette Cigar/Pipe

Smokers Smokers

Mortality Rates per 1000 13.5 17.4
person-years, %
Adjusted Mortality Rates
using subclasses, %

2 age subclasses 16.4 14.9

3 age subclasses 17.7 14.2

9-11 age subclasses 21.2 13.7

Source: Cochran WG. The effectiveness of adjustment of subclassification in
removing bias in observational studies. Biometrics 1968; 24:295-313.

But 20 four-class covariates = over million million subclasses



Propensity Score Methods

Rosenbaum and Rubin. “The Central Role of the Propensity Score in
Observational Studies.” Biometrika 1983.

Observational study analogue of complete randomization
The propensity score is the probability of treatment versus control

as a function of observed covariates
— Model the reasons for treatment versus control at the level of the
decision makers
— For example, logistic regression model to predict cigarette versus
cigar/pipe smoking with age, education, income, etc. as predictors
Then subclassify (or match) on the propensity score as if it were the
only covariate, e.g., 5-10 subclasses

If correctly done, this creates balance within each subclass on ALL
covariates used to estimate the propensity score



Example: GAO Study of Breast
Conservation versus Mastectomy

Six large and expensive randomized clinical trials had been
completed showing little difference for the type of women
randomized in the trials and participating clinics

Question: Same results in U.S. general practice?

Observational data available

— SEER Database: covariates, treatments, post-surgery outcomes
Design phase

— Hide outcomes

— Think hard about decision rules and key covariates

— Key covariates for decisions by doctors/women: Age, marital status,
region of country, urbanization, race, size of tumor, etc., all available in
SEER and considered sufficient

— Balance covariates between treatment and control using subclasses



Estimated 5-year Survival Rates for Node-negative
Patients in Six Randomized Clinical Trials

Estimated Survival Estimated
Women Rate for Women Causal Effect
Breast Mastectomy
Conservation (BC) (Mas) BC Mas BC — Mas
Study n n % % %

US-NCl+ 74 67 93.9 94.7 -0.8
Milaneset 257 263 93.5 93.0 0.5
Frencht 99 62 94.9 96.2 -1.3
Danish} 289 288 87.4 85.9 1.5
EORTCH} 238 237 89.0 90.0 -1.0
US-NSABPt 330 309 89.0 88.0 1.0

1Single-center trial; £ Multicenter trial

Reference: Rubin DB. Estimated Causal Effects from Large Datasets Using Propensity
Scores. Annals of Internal Medicine 1997; 127, 8(I1):757-763.



Estimated 5-year Survival Rates for Node-Negative
Patients in the SEER Database within Each of Five

Propensity Score Subclasses

Estimated Survival

Estimated

Women Rate for Women Causal Effect
Propensity Breast Mastectomy
Score Conservation (BC) (Mas) BC Mas BC — Mas
Subclass
n n % % %

1 56 1008 85.6 86.7 -1.1

2 106 964 82.8 83.4 -0.6

3 193 866 85.2 88.8 -3.6

4 289 978 88.7 87.3 1.4

3} 462 604 89.0 88.5 0.5
Averages Across Five Subclasses 86.3 86.9 -0.6

Reference: Rubin DB. Estimated Causal Effects from Large Datasets Using Propensity

Scores. Annals of Internal Medicine 1997; 127, 8(I1):757-763.



Diagnostics for Accessing Balance

Assessing balance simpler in large samples, just as with
randomized experiments

To illustrate diagnostics, use a marketing application that
involved a weight loss drug

Units = doctors

Treatment = sales rep “visits” doctor to discuss
Control = no visit

Decision-makers = sales reps

Key covariates = prior Rxs, medical specialty, years in practice,
size of practice, etc.



Histograms for background variable:
Prior Rx Score (0-100) at Baseline

Not visited One or more visits
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Source: Rubin DB and Waterman RP. Estimating Causal Effects of Marketing Interventions Using Propensity

Score Methodology. Statistical Science 2006; 21(2):206-222.



Histograms for background variable:
Specialty

P Not visited One or more visits
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Histograms for summarized background
variables: Linear Propensity Score
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Histograms for a variable in a subclass of
propensity scores: Prior Rx Score
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Histograms for a variable in a subclass of propensity
scores: Specialty
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Marketing Example:
Achieved Balance

Within each narrow subclass of propensity scores, the
treatment and control groups will be as balanced as if
randomly divided

Claim: This holds for all subclasses in which there are
both treated and control subjects, and holds for all
covariates that were used to estimate the propensity
score

Works best when the propensity score subclasses have
large sample sizes and are relatively narrow

Five to ten propensity score subclasses often fully
adequate to balance all covariates

No outcome data used in the design stage



Simple Noncompliance, Instrumental
Variables, and Bayesian Generalizations

 Template for other observational studies
involves more complex randomized
experiment

* [llustrate with completely randomized
experiment with noncompliance with assigned
treatment

* Return later to combined analysis with
observational study design



Sommer and Zeger Vitamin A Data

Row True Compliance Treatment @ Treatment Y Number of
Type Assignment Received obs Children

1 ? 0 0 0 11514
2 ? 0 0 1 74
3 N 1 0 0 2385
4 N 1 0 1 34
5 C 1 1 0 9663
6 C 1 1 1 12

23682

Reference: Sommer and Zeger (1991). On Estimating Efficacy from Clinical
Trials. Statistics in Medicine.



Results of Three Standard MoM

Method Estimate Calculation Row Comparison
. 12 + 34 T4
ITT -0.0026 T 9663+2385+12+34 11514+ 74 3,4,5,&6vs.1&2
Astreated | -0.0065 @ -po-rooolo— 5&6vs.1,2,3,84
12 74

Reference: Sommer and Zeger (1991). On Estimating Efficacy from Clinical
Trials. Statistics in Medicine.



MoM CACE Analysis

ACE = p,, - NACE + p,- CACE
-0.0025 = 0.2 - NACE + 0.8 - CACE

-0.0025 = 0.8 - CACE =» CACE =-0.0025/0.8 =-0.0031



Bayesian Analysis of Sommer & Zeger Data
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Imbens G.W. and Rubin D.B. (1997) Bayesian Inference for Causal Effects in
Randomized Experiments with Noncompliance. Annals of Statistics 25(1):305-327.



Bayesian Analysis of Sommer & Zeger Data,
Marginal Posterior Distributions with and
without Exclusion Restriction

Estimand Exclusion Mean Standard Median 5th 95th
restriction deviation percentile percentile

CACE No 3.1 2.5 3.2 -0.9 7.0

ITT,/" No 0.5 10.1 0.2 -14.1 17.5

CACE Yes 3.1 1.2 3.1 1.2 5.1

Imbens G.W. and Rubin D.B. (1997) Bayesian Inference for Causal Effects in
Randomized Experiments with Noncompliance. Annals of Statistics 25(1):305-327.



Bayesian Analysis of Sommer & Zeger Data
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Imbens G.W. and Rubin D.B. (1997) Bayesian Inference for Causal Effects in
Randomized Experiments with Noncompliance. Annals of Statistics 25(1):305-327.



Bayesian Analysis of Sommer & Zeger Data
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Imbens G.W. and Rubin D.B. (1997) Bayesian Inference for Causal Effects in
Randomized Experiments with Noncompliance. Annals of Statistics 25(1):305-327.



Bayesian Analysis of Sommer & Zeger Data
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Imbens G.W. and Rubin D.B. (1997) Bayesian Inference for Causal Effects in
Randomized Experiments with Noncompliance. Annals of Statistics 25(1):305-327.



Hypothetical Example Illustrating Frequentist Superiority of Bayes
over IVE (MoM) and MLE, Population Parameters with Exclusion
Restrictions and Monotonicity

T P(C = t| ) D/(0) D(1) Y|C=tZ=0,n Y|C=tZ=0n
c 0.25 0 1 N(0.1, 0.16) N(0.9, 0.49)
n 0.45 0 0 N(1.0, 0.25) N(1.0, 0.25)
a 0.30 1 1 N(0.0, 0.36) N(0.0, 0.36)

Imbens G.W. and Rubin D.B. (1997) Bayesian Inference for Causal Effects in
Randomized Experiments with Noncompliance. Annals of Statistics 25(1):305-327.



Hypothetical Example lllustrating Frequentist
Superiority of Bayes over IVE (MoM) and MLE,

One Sample
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Imbens G.W. and Rubin D.B. (1997) Bayesian Inference for Causal Effects in
Randomized Experiments with Noncompliance. Annals of Statistics 25(1):305-327.



Hypothetical Example lllustrating Frequentist Superiority of
Bayes over IVE (MoM) and MLE, Frequentist Evaluation under
Monotonicity and Exclusion Restrictions

90% interval

Root mean Median

Estimator Mean bias Me.dlan squared absolute Coverage Mgdlan
bias rate width
error error
Posterior -0.10 .0.07 0.48 0.30
mean
_ 0.91 1.61
Posterior -0.08 -0.06 0.51 0.32
median
MLE -0.14 -0.12 0.51 0.31 0.74 1.11
IVE 0.55 0.13 2.31 0.54 0.91 2.78

Imbens G.W. and Rubin D.B. (1997) Bayesian Inference for Causal Effects in
Randomized Experiments with Noncompliance. Annals of Statistics 25(1):305-327.



Using a More Complex Template: Randomized
Block Experiment with Noncompliance

Causal effect of Large versus Small treating hospitals
on cardia cancer survival

Dataset from Karolinska Institute, Stockholm

Medical researchers accept unconfounded
assignment of “home (diagnosing) hospital” type, but
NOT treating hospital type because of self-selected
transfers

Consider transfers between hospital types as a form
of noncompliance with assignment



Using a More Complex Template: Randomized
Block Experiment with Noncompliance

* Design has two distinct phases

* Phase 1, no outcome data available:

— Propensity score analysis to approximate randomized block
experiment for home hospital type

— Ensure subclassification can create balance on covariates for large and
small home hospital types

 Phase 2, uses intermediate outcome data on transfers:

— Outline of the analysis for estimating causal effect of treating hospital
type

— Ensure within each subclass that there appear to be compliers who are
treated in both and large and small treating hospitals



Figure 5.1: Cardia Cancer, Number of People, Subclassified by Propensity Score
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Reference Rubin, D.B. For Objective Causal Inference, Design Trumps Analysis.

Annals of Applied Statistics, 2008.




Figure 5.2: Cardia Cancer, Difference in Means for Binary Covariates and Pscore
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Reference Rubin, D.B. For Objective Causal Inference, Design Trumps Analysis.
Annals of Applied Statistics, 2008.



Figure 5.3: Cardia Cancer, t-statistics for Continuous Covariates
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Reference Rubin, D.B. For Objective Causal Inference, Design Trumps Analysis.
Annals of Applied Statistics, 2008.



Outline of Analysis within Each Subclass

* Critical that we anticipate compliers in both large and small
treating hospitals within each subclass

* Monotonicity assumption = no defiers; medically very
plausible

ITT=m,  ITT,  + o IT T+, ITT,,

CACE= ITT,; = —— S (¥,(L)- Y,($).

NLS iI€LS

ITT = 7, ITT,,, ITT,s = ITT / 7,5 .



Method of Moments Estimates of the Number of Compliers
Treated in Large and Small Hospital Types Under Monotonicity

Approximate N in LS

“Assigned”/Randomized Treating Principal Stratum
Home Hospital Type Hospital Type Subclass
h T 11 2| 3 |4]| 5
/ L 3 | 3 | 11| 9| 5

S S 141 5 | 8 | 5 2




Table 5.3: Cardia Cancer: Observed Counts in Observed Groups and Approximate
Counts in Principal Strata Under Monotonicity Assumption — Subclass 3

(D (2) 3) (4) ) (6)
“Assigned”/Randomized | Treating Underlying | Approximate | Approximate
Home Hospital Type Hospital # Principal Proportion Nin LS
Type Strata: in Principal
T h= Population Stratum
h # ¢ s | in Principal
Strata
L L 38%
8% / 17 L 7l L s 62% H
S 0 S S 0%
3) L 5 L L 38%
s 13 S S 0%
X 5 8 L s 62% 8

Reference Rubin, D.B. For Objective Causal Inference, Design Trumps Analysis.
Annals of Applied Statistics, 2008.




Summary: Objective Observational Study Design

* Should approximate a randomized experiment

— No ultimate outcome data used or examined — “prospective”

— Carefully consider decision-makers and the covariates used to make
treatment assignments

— |If dataset is missing key covariates, usually do NOT continue

— Use propensity score estimation to help create subclasses or matched
pairs that achieve “balance” on covariates

— Balance means treated and control subjects have distributions of
covariates that are at least as similar as if they had been randomized
into treatment and control

— Analysis takes place within each subclass, and then answers are
combined across subclasses



