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An Introduction to Multilevel
Models

1.1 Hierarchically structured data

Many kinds of data, including observational data collected in the human and biological
sciences, have a hierarchical, nested, or clustered structure. For example, animal and
human studies of inheritance deal with a natural hierarchy where offspring are grouped
within families. Offspring from the same parents tend to be more alike in their physical
and mental characteristics than individuals chosen at random from the population at
large. For instance, children from the same family may all tend to be small, perhaps
because their parents are small or because of a common impoverished environment.

Many designed experiments also create data hierarchies, for example clinical trials
carried out in several randomly chosen centres or groups of individuals. For now, we
are concerned only with the fact of such hierarchies not their provenance. The principal
applications we shall deal with are those from the social sciences, but the techniques
are of course applicable more generally. In subsequent chapters, as we develop the
theory and techniques with examples, we shall see how a proper recognition of these
natural hierarchies allows us to seek more satisfactory answers to important questions.

We refer to a hierarchy as consisting of units grouped at different levels. Thus
offspring may be the level 1 units in a 2-level structure where the level 2 units are the
families: students may be the level 1 units clustered or nested within schools that are
the level 2 units.

The existence of such data hierarchies is neither accidental nor ignorable. Individual
people differ, as do individual animals, and this necessary differentiation is mirrored
in all kinds of social activity where the latter is often a direct result of the former, for
example when students with similar motivations or aptitudes are grouped in highly
selective schools or colleges. In other cases, the groupings may arise for reasons less
strongly associated with the characteristics of individuals, such as the allocation of
young children to elementary schools, or the allocation of patients to different clinics.
Once groupings are established, even if their establishment is effectively random,
often they will tend to become differentiated, and this differentiation implies that the
group and its members both influence and are influenced by the group membership. To
ignore this relationship risks overlooking the importance of group effects, and may also
render invalid many of the traditional statistical analysis techniques used for studying
data relationships.
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2 An Introduction to Multilevel Models

We shall be looking at this issue of statistical validity in the next chapter, but one
simple example will show its importance. A well-known and influential study of pri-
mary (elementary) school children carried out in the 1970s (Bennett, 1976) claimed
that children exposed to so called ‘formal’ styles of teaching reading exhibited more
progress than those who were not. The data were analysed using traditional multiple
regression techniques which recognized only the individual children as the units of
analysis and ignored their groupings within teachers and into classes. The results were
statistically significant. Subsequently, Aitkin et al. (1981) demonstrated that when the
analysis accounted properly for the grouping of children into classes, the significant
differences disappeared and the ‘formally’ taught children could not be shown to differ
from the others.

This reanalysis is the first important example of a multilevel analysis of social
science data. In essence what was occurring here was that the children within any one
classroom, because they were taught together, tended to be similar in their performance.
As a result they provided rather less information than would have been the case if the
same number of students had been taught separately by different teachers. In other
words, the basic unit for purposes of comparison should have been the teacher not the
student. The function of the students can be seen as providing, for each teacher, an
estimate of that teacher’s effectiveness. Increasing the number of students per teacher
would increase the precision of those estimates but not change the number of teach-
ers being compared. Beyond a certain point, simply increasing the numbers of stu-
dents in this way hardly improves things at all. However, increasing the number of
teachers to be compared, with the same or somewhat smaller number of students per
teacher, considerably improves the precision of the comparisons.

Researchers have long recognized this issue. In education, for example, there has
been much debate (see Burstein et al., 1980) about the so-called ‘unit of analysis’prob-
lem, that is the one just outlined. Before multilevel modelling became well developed as
a research tool, the problems of ignoring hierarchical structures were reasonably well
understood, but they were difficult to solve because powerful general purpose tools
were unavailable. Special-purpose software, for example for the analysis of genetic
data, has been available longer but this was restricted to ‘variance components’ models
(see Chapter 2) and was not suitable for handling general linear models. Sample sur-
vey workers have recognized this issue in another form. When population surveys are
carried out, the sample design typically mirrors the hierarchical population structure,
in terms of geography and household membership. Elaborate procedures have been
developed to take such structures into account when carrying out statistical analyses.
We look at this in more detail in Chapter 9.

In the remainder of this chapter we shall look at the major areas explored in
this book.

1.2 School effectiveness

Schooling systems present an obvious example of a hierarchical structure, with pupils
clustered within schools, which themselves may be clustered within education author-
ities or boards. Educational researchers have been interested in comparing schools
and other educational institutions, most often in terms of the achievements of their
pupils. Such comparisons have several aims, including the aim of public accountability
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1.2 School effectiveness 3

(Goldstein, 1997) but, in research terms, interest usually is focused upon studying the
factors that explain school differences.

Consider the common example where test or examination results at the end of a
period of schooling are collected for each school in a randomly chosen sample of
schools. The researcher wants to know whether a particular kind of subject streaming
practice in some schools is associated with improved examination performance. She
also has good measures of the pupils’ achievements when they started the period of
schooling so that she can control for this in the analysis. The traditional approach to the
analysis of these data would be to carry out a regression analysis, using performance
score as the response, to study the relationship with streaming practice, adjusting for the
initial achievements. This is very similar to the initial teaching styles analysis described
in the previous section, and suffers from the same lack of validity through failing to
take account of the school level clustering of students.

An analysis that explicitly models the manner in which students are grouped within
schools has several advantages. Firstly, it enables data analysts to obtain statistically
efficient estimates of regression coefficients. Secondly, by using the clustering informa-
tion it provides correct standard errors, confidence intervals and significance tests, and
these generally will be more ‘conservative’ than the traditional ones that are obtained
simply by ignoring the presence of clustering — just as Bennett’s previously statisti-
cally significant results became non-significant on reanalysis. Thirdly, by allowing the
use of covariates measured at any of the levels of a hierarchy, it enables the researcher to
explore the extent to which differences in average examination results between schools
are accountable for by factors such as organizational practice or possibly in terms of
other characteristics of the students. It also makes it possible to study the extent to
which schools differ for different kinds of students, for example to see whether the
variation between schools is greater for initially high scoring students than for initially
low scoring students (Goldstein et al., 1993) and whether some factors are better at
accounting for or ‘explaining’ the variation for the former students than for the lat-
ter. Finally, there may be interest in the relative ranking of individual schools, using
the performances of their students after adjusting for intake achievements. This can
be done straightforwardly using a multilevel modelling approach and we shall see an
example in Chapter 2.

To fix the basic notion of a level and a unit, consider Figures 1.1 and 1.2 based on
hypothetical relationships. Figure 1.1 shows the exam score and intake achievement
scores for five students in a school, together with a simple regression line fitted to
the data points. The residual variation in the exam scores about this line is the level 1
residual variation, since it relates to level 1 units (students) within a sample level 2 unit
(school). In Figure 1.2 the three lines are the simple regression lines for three schools,
with the individual student data points removed. These vary in both their slopes and
their intercepts (where they would cross the exam axis), and this variation is level 2
variation. It is an example of complex level 2 variation since both the intercept and
slope parameters vary.

The other extreme to an analysis which ignores the hierarchical structure is one
which treats each school completely separately by fitting a different regression model
within each one. In some circumstances, for example where we have very few schools
and moderately large numbers of students in each, this may be efficient. It may also
be appropriate if we are interested in making inferences about just those schools. If,
however, we regard these schools as a (random) sample from a population of schools
and we wish to make inferences about the variation between schools in general, then a
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full multilevel approach is called for. Likewise, if some of our schools have very few
students, fitting a separate model for each of these will not yield reliable estimates: we
can obtain more precision by regarding the schools as a sample from a population and
using the information available from the whole sample data when making estimates for
any one school. This approach is especially important in the case of repeated measures
data where we typically have very few level 1 units per level 2 unit.

We introduce the basic procedures for fitting multilevel models to hierarchically
structured data in Chapter 2 and discuss the design problem of choosing the numbers
of units at each level in Chapter 3.

1.3 Sample survey methods

We have already mentioned sample survey data. The standard literature on surveys,
reflected in survey practice, recognizes the importance of taking account of the clus-
tering in complex sample designs. Thus, in a household survey, the first stage sampl-
ing unit will often be a well-defined geographical unit. From those that are randomly
chosen, further stages of random selection are carried out until the final households
are selected. Because of the geographical clustering exhibited by measures such as
political attitudes, special procedures have been developed to produce valid statis-
tical inferences, for example when comparing mean values or fitting regression models
(Skinner et al., 1989).
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1.4 Repeated measures data 5

While such procedures usually have been regarded as necessary they have not gen-
erally merited serious substantive interest. In other words, the population structure,
insofar as it is mirrored in the sampling design, is seen as a ‘nuisance factor’. By con-
trast, the multilevel modelling approach views the population structure as of potential
interest in itself, so that a sample designed to reflect that structure is not merely a matter
of saving costs as in traditional survey design, but can be used to collect and analyse
data about the higher level units in the population.

Although the direct modelling of clustered data is statistically efficient, it will
generally be important to incorporate weightings in the analysis which reflect the
sample design or, for example, patterns of non-response, so that robust population esti-
mates can be obtained and so that there will be some protection against serious model
misspecification. A procedure for introducing external unit weights into a multilevel
analysis is discussed in Chapter 3 and a discussion of analysing survey data is given in
Chapter 9.

1.4 Repeated measures data

A different example of hierarchically structured data occurs when the same individuals
or units are measured on more than one occasion. A common example occurs in studies
of animal and human growth. Here the occasions are clustered within individuals that
represent the level 2 units with measurement occasions as the level 1 units. Such
structures are typically strong hierarchies because there is much more variation between
individuals in general than between occasions within individuals. In the case of child
height growth, for example, once we have adjusted for the overall trend with age,
the variance between successive measurements on the same individual is generally no
more than 5% of the variation in height between children.

There is a considerable literature on procedures for the analysis of such repeated
measurement data (see for example Goldstein, 1979), which has more or less success-
fully confronted the statistical problems. It has done so, however, by requiring that the
data conform to a particular, balanced, structure. Broadly these procedures require that
the measurement occasions are the same for each individual. This may be possible to
arrange, but often in practice individuals will be measured irregularly, some of them
a great number of times and some perhaps only once. By considering such data as a
general 2-level structure we can apply the standard set of multilevel modelling tech-
niques that allow any pattern of measurements while providing statistically efficient
parameter estimation. At the same time modelling a 2-level structure presents a simpler
conceptual understanding of such data and leads to a number of interesting extensions
that will be explored in Chapter 5.

One particularly important extension occurs in the study of growth where the aim is
to fit growth curves to measurements over time. In a multilevel framework this involves,
in the simplest case, each individual having their own straight line growth trajectory
with the intercept and slope coefficients varying between individuals (level 2). When
the level 1 measurements, considered as deviations from each individual’s fitted growth
curve, are not independent but have an autocorrelated or time series structure, neither
the traditional procedures nor the basic multilevel ones are adequate. This situation
may occur, for example, when measurements are made very close together in time so
that a ‘positive’ deviation from the curve at one time implies also a positive deviation
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6 An Introduction to Multilevel Models

after the short interval before the next measurement. Chapter 5 will explore methods
for handling such data.

1.5 Event history models

Modelling time spent in various states or situations is important in a number of areas.
In industry the ‘time to failure’ of components is a key factor in quality control. In
medicine the survival time is a fundamental measurement in studying certain diseases.
In economics the duration of employment periods is of great interest. In education,
researchers often study the time students spend on different tasks or activities.

In studying employment histories, any one individual will generally pass through
several periods of employment or unemployment, while at the same time changing his
or her characteristics, for example his or her level of qualifications. From a modelling
point of view we need to model the length of time in each type of employment, relating
this to both constant factors such as an individual’s social origins or gender, and to
changing or time-dependent factors such as qualifications and age. In this case the
multilevel structure is analogous to that for repeated measures data, with periods taking
the place of occasions. Furthermore, generally we would have a further, higher level
of the hierarchy, since individuals, which are the level 2 units, are themselves typically
clustered into workplaces, which now constitute level 3 units.1 In fact, the structure
may be even more complicated if these workplaces change from period to period, and
if we wish to include this level in our model we need to consider cross-classifications
of the units (see below). Particular problems arise when studying event duration data
that are encountered when some information is ‘censored’ in the sense that instead of
being able to observe the actual duration we only know that it is longer than some
particular value, or in some cases less than a particular value. Chapter 10 will discuss
ways of dealing with multilevel event history models in detail.

1.6 Discrete response data

Until now we have assumed implicitly that our response or dependent variable is
continuously distributed, for example an exam score or anthropometric measure such as
height. Many kinds of statistical modelling, however, deal with categorized responses,
in the simplest case with proportions. Thus, we might be interested in a mortality rate,
or an exam pass rate and how these vary from area to area or school to school.

In studying mortality rates in a population, it is often of great concern to try to
understand the factors associated with variations from area to area or community to
community. This produces a basic 2-level structure with individuals at level 1 and
communities at level 2. A typical study might record deaths over a given time period
together with the characteristics of the individuals concerned, along with a control
group and level 2 characteristics of the communities, such as their sizes or social
compositions. One analysis of interest would be to see whether any of these explanatory
variables could explain between-community variation. Another interest might be in
studying whether mortality rate differences, say between men and women, varied from
community to community.

1 Formally, we can regard unemployment for this purpose as a particular workplace.
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1.8 Nonlinear models 7

Such models, part of the class known as generalized linear models, have been
available for some time for single-level data (McCullagh and Nelder, 1989), with
associated software. In Chapter 4 we show how to fit multilevel models with several
categorical responses and even models with mixtures of categorical and continuous
responses.

1.7 Multivariate models

An interesting special case of a 2-level model is the multivariate linear (or general-
ized linear) model. Suppose we have taken several measurements on an individual, for
example their systolic and diastolic blood pressure and their heart rate. If we wish to
analyse these together as response variables we can do so by setting up a multivariate,
in this case three-variate, model with explanatory variables such as age, gender, social
background, smoking exposure, etc. We can think of this as a 2-level model by con-
sidering each individual as a level 2 unit, with the three measurements constituting the
level 1 units, rather as occasions did for the repeated measures model. Chapter 6 will
show how this formal device for specifying a multivariate model yields considerable
benefits. For example, by considering further higher levels, in this case say clinics,
we have a simple way of specifying a multivariate multilevel model. Also, if some
individuals do not have all the measurements, for example if they are randomly miss-
ing a blood pressure measurement, then this is automatically taken account of in the
analysis, without the need for special procedures for handling missing data.

A particularly important application occurs where measurements are missing by
design rather than at random. In certain kinds of surveys, known as rotation designs,
and in certain kinds of educational assessments, known as matrix sample designs,
each individual unit has only a subset of measurements made on it. For example, in
large-scale testing programmes, the full range of tests may be too extensive for any one
student, so that each student responds to only one combination. Such designs are viewed
usefully as having a multivariate response, with the full set of tests constituting the com-
plete multivariate response vector, and every student having some tests missing. Such
designs can become rather complex, especially since the students themselves are clus-
tered into schools. By viewing the data as a single hierarchy in which the multivariate
responses are level 1, we obtain an efficient and readily interpretable analysis.

The multivariate multilevel model can also be used as the basis for one approach to
dealing with missing data in multilevel models and this is developed in Chapter 14.

1.8 Nonlinear models

Some kinds of data are better represented in terms of nonlinear rather than linear models.
For example, the modelling of discrete response data is considered formally as a case of
modelling nonlinear data. Many kinds of growth data are conveniently modelled in this
way, especially during periods of rapid and complex growth such as early infancy and
at the approach to adulthood when growth approaches an upper asymptote (Goldstein,
1979). Other examples arise when the response variable has inherent constraints. For
example, biochemical activity patterns in patients may exhibit asymptotic behaviour,
or cyclical patterns, both of which are difficult to model using purely linear models.
Chapter 8 will introduce such models and show how to extend the linear multilevel
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8 An Introduction to Multilevel Models

model to this case. It will also consider cases where variances and covariances can be
modelled as nonlinear functions of explanatory variables.

1.9 Measurement errors

Most measurements made in the human sciences contain some error component. This
may be due to observer error as when measuring the weight of an animal, or an inherent
result of being able to measure only a small sample of behaviour as in educational
testing. It is well known that when variables in statistical models contain relatively large
components of such error, the resulting statistical inferences can be very misleading
unless careful adjustments are made (Fuller, 1987). In the case of simple regression,
when the explanatory or independent variable is measured with error, the usual estimate
of the regression line slope is an underestimate compared to that which would result
if the measurement were available without error. This is particularly important, for
example, in studies of school effectiveness where the fitting of intake achievement
scores is important but where such scores often have large components of measurement
error.

An important case when the latter arise is where the level 2 variable is a ‘compos-
itional’ variable. That is, it is a measurement aggregated from the characteristics of the
level 1 units within the level 2 units. Thus, for example the mean intake achievement
and the standard deviation of the intake achievements of all the pupils in a school are
compositional variables that may, and indeed sometimes do, affect the final achieve-
ments of each individual student. Likewise in a household survey, we may consider
that a measure of the average social status or the percentages of households in each
social group, using all the households in the immediate community, are important
explanatory variables to fit in a model. The problem arises when it is possible to collect
data on only some of the level 1 units, this often being the case with household sample
surveys. What we then have is an estimate of a compositional variable that is measured
with error, in the case of household surveys typically with a very large error. In many
educational studies this also occurs where only a small proportion of students within a
class or school are sampled.

Chapter 13 discusses the problems of dealing with measurement errors in multilevel
models.

1.10 Random cross-classifications and multiple
membership structures

We have already alluded to examples where units are cross-classified as well as clus-
tered. In geographical research, the definition of an individual’s geographical area is
contingent upon the context being considered. Thus, the relevant location unit for pur-
poses of leisure may not be the same as that surrounding the environment of work or
schooling. We can conceive formally of individuals belonging simultaneously to both
types of unit, each of which may have an influence on a person’s life.

In most schooling systems, students move from elementary to secondary or high
school. We might expect that both the elementary and secondary schools attended will
influence a student’s achievements or attitudes measured at the end of secondary school.
Thus the level 2 units are of two types, elementary school and secondary school, where
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1.12 Levels of aggregation and ecological fallacies 9

each ‘cell’ of their cross-classification contains some, or possibly no students. In this
example, a third way of classification could be the area or neighbourhood where the
student lives. Chapter 11 explores such cross-classified structures.

An interesting situation occurs where for a single level 2 classification, level 1 units
may belong to more than one level 2 unit. An example from sociology concerns chil-
drens’and adults’ friendship patterns where an individual may belong to several groups
simultaneously. The characteristics of the members of each group will influence such an
individual, in relation to the individual’s exposure to the group. In a longitudinal study
of schooling, many students will change schools during the course of the study. The
contribution to the response from schools will therefore reflect, for these students, the
‘effect’ of every school they have attended. With a suitable set of weights to reflect
the time spent in each school this can be taken into account in the analysis. Such
‘multiple membership models’ are discussed in Chapter 12.

To handle the complexity of multiple membership and cross-classified structures,
as well as mixtures of these, a special notation and set of diagrams will be introduced
that allows a complete specification of such models.

1.11 Factor analysis and structural equation models

In many areas of the social sciences, where measurements are difficult to define pre-
cisely, an investigator might suppose that there is some underlying construct which
cannot be measured directly but nevertheless can be assessed indirectly by measur-
ing a number of relevant indicators. Structural equation modelling, and in particular
the special case of factor analysis, was developed for this purpose, typically dealing
with individuals’ behaviour, attitudes or mental performance. Where individuals are
grouped within hierarchies, for all the same reasons discussed above, it is important
to carry out such analyses in a multilevel framework. For example, we may be inter-
ested in underlying individual attitudes based upon a number of indicators. Data on
such indicators may be available over time and we can postulate a model whereby the
underlying attitude varies from individual to individual (level 2) and also varies ran-
domly over time within individuals (level 1). The model can then be further elaborated
by studying whether there is any systematic change over time and whether this varies
across individuals. Chapter 7 discusses such models.

1.12 Levels of aggregation and ecological fallacies

When studying relationships among variables, there has often been controversy about
the appropriate ‘unit of analysis’. We have alluded to this already in the context of
ignoring hierarchical data clustering and, as we have seen, the issue is resolved by
explicit hierarchical modelling.

One of the best known early illustrations of what is often known as the ecological
or aggregation fallacy was the study by Robinson (1950) of the relationship between
literacy and ethnic background in the United States. When the mean literacy rates and
mean proportions of blackAmericans for each of nine census divisions are correlated the
resulting value is 0.95, whereas the individual-level correlation ignoring the grouping
is 0.20. Robinson was concerned to point out that aggregate-level relationships could
not be used as estimates for the corresponding individual-level relationships and this
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10 An Introduction to Multilevel Models

point is now well understood. In Chapter 3 we shall discuss some of the statistical
consequences of modelling only at the aggregate level.

Sometimes the aggregate level is the principal level of interest, but nevertheless a
multilevel perspective is useful. Consider the example (Derbyshire, 1987) of predicting
the proportion of children socially ‘at risk’ in each local administrative area for the
purpose of allocating central government expenditure on social services. Survey data
are available for individual children with information on risk status so that a prediction
can be made using area-based variables as well as child- and household-based variables.
The probability (π ) of a child being ‘at risk’ was estimated by the following (single-
level) equation:

logit(π ) = −6.3 + 5.9x1 + 2.2x2 + 1.5x3

where x1 is the proportion of children in the area in households with a lone parent,
x2 is the proportion of households in each area which have a density of more than
1.5 persons per room and x3 is the proportion of households whose ‘head’ was born
in the British ‘New Commonwealth’ or Pakistan. All these explanatory variables are
measured at the aggregate area level and the response is the proportion of children at
risk in each area. Although we can regard this analysis as taking place entirely at the
area level (with suitable weighting for the number of children in each area), there are
advantages in thinking of it as a 2-level model with each child being a level 1 unit and
the response variable being the binary response of whether or not the child is at risk.

Firstly, this allows us to incorporate possibly important variables that are measured
at the child level, for example whether or not each child’s household is overcrowded.
Including such level 1 variables may greatly improve the predictive power of the model.
With the results of such a model we can then form a prediction for each area by
aggregating over the known numbers of children living in overcrowded households.

Secondly, the possibility of modelling the characteristics of children or their house-
holds allows the possibility of an allocation formula that can take account of costs
and benefits related to the actual composition of each area in terms of these child
characteristics.

1.13 Causality

In the natural sciences, experimentation has a dominant position when making causal
inferences. This is both because the units of interest can be manipulated experimentally,
typically using random allocation, and because there is a widespread acceptance that the
results of experiments are generalizable over space and time. The models described
in this book can be applied to experimental or non-experimental data, but the final
causal inferences will differ. Nevertheless, most of the examples used are from non-
experimental studies in the human sciences and a few words on causal inferences from
such data may be useful.

If we wish to answer questions about a possible causal relationship between, say,
class size and educational achievement, an experimental study would need to assign
different numbers of level 1 units (students) randomly to level 2 units (classes or teach-
ers) and study the results over a time period of several years. This would be time
consuming and could create ethical problems. In addition to such practical problems,
any single study would be limited in time and place, and require extensive replication
before results confidently could be generalized. The specific context of any study is
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1.13 Causality 11

important, for example the state of the educational system and the resources available
at the time of the study. The difficulty from an experimental viewpoint is that it is prac-
tically impossible to allocate randomly with respect to all such possible confounding
factors.

A further limitation of randomized controlled trails (RCTs) is that they cannot nec-
essarily deal with situations where the composition of a higher level unit interacts with
the treatment of interest, to affect the responses of lower level units. Thus, in schooling
studies the size of class may affect the progress of students only when the proportion
of ‘low-achieving’ students is above a certain threshold. Randomization will tend to
eliminate classes with extreme proportions so that such effects may not be discovered.
Goldstein (1998) looks at this issue in detail.

None of this is to say that randomized experiments should never be undertaken,
rather that on their own they may have limited potential for making general statements
about causality. Whether an experiment fails or succeeds in demonstrating a relation-
ship, there will almost always be further explanations for the findings which require
study. Even if an experiment appears to eliminate a possible relationship, for example
demonstrating a negligible relationship between class size and attainment, it may be
legitimate to query whether a relationship nevertheless exists for specific subgroups of
the population.

In the pursuit of causal explanations we require some guiding underlying principles
or theories. It is these which will tell us what kinds of things to measure and how
to be critical of findings. For example, in studies of the relationship between perina-
tal mortality and maternal smoking in pregnancy (Goldstein, 1976), we can attempt to
adjust for confounding factors, such as poverty, which may be responsible for influenc-
ing both smoking habits and mortality. We can also study how the relationship varies
across groups and seek measures which explain such variation. We might also, in some
circumstances, be able to carry out randomized experiments, assigning for example
intensive health education to a randomly selected ‘treatment’ group and comparing
mortality rates with a ‘control’ group.

A multilevel approach could be useful here in two different ways. Firstly, pregnant
women will be grouped hierarchically, geographically and by medical institution and
the between-area and between-institution variation may affect mortality and the rela-
tionship between mortality and smoking. Secondly, we will be able often to obtain serial
measurements of smoking, so allowing the kind of repeated measures 2-level modelling
discussed earlier. This will allow us to study how changes in smoking are related to
mortality, and permit a more detailed exploration of possible causal mechanisms.

Multilevel models can often be used to identify units with extreme values. For
example, in school effectiveness studies an exploration of school-level residual esti-
mates (see Chapter 2) may identify those which are highly atypical, having adjusted
for ‘contextual’ variables such as the intake characteristics of their students. These can
then be selected for further scrutiny, for example by means of intensive case studies,
so forming a link between the quantitatively based multilevel analysis and a more
qualitatively based investigation which would seek to identify detailed causal processes.

A discussion of some necessary conditions for causal inference in observational
studies can be found, for example, in Holland (1986) and Cochran (1983).

Finally, many of the concerns addressed by multilevel models are to do with pre-
diction rather than causation. Thus, for example, in Chapter 5 we use a 2-level model
of children’s growth for the purpose of predicting adult height. In studies of school
effectiveness we may be interested in understanding the causes of school differences,
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but we may be concerned also with predicting which school is likely to produce the
best (on average) examination result for a student with given initial characteristics and
achievements.

1.14 Other references

While the present volume aims to provide a comprehensive coverage of the topic of
multilevel models, there are now many other texts which deal with specialized areas.
Many of these are referenced in the appropriate chapters, but there are also several
recent books which provide a good general introduction and/or very detailed worked
examples. Among these are, Kreft and De Leeuw (1998), Snijders and Bosker (1999),
Little et al. (2000), Heck and Thomas (2000), McCulloch and Searle (2001), Hox
(2002) and Bryk and Raudenbush (2002). There are also edited collections of articles
starting to appear on particular application areas; for example, Leyland and Goldstein
(2001) bring together a collection of papers on the multilevel modelling of health
statistics.

1.15 A caveat

The purpose of this book is to bring together techniques for the analysis of highly
structured, multilevel data. The application of such techniques has already begun to
yield new and important insights in a number of areas as the examples in the following
chapters illustrate. As software becomes more widely available, the application of these
techniques should become relatively straightforward, even routine.

All this is welcome, yet despite their usefulness, models for multilevel analysis
cannot be a universal panacea. In some circumstances, where there is little structural
complexity, they may be hardly necessary, and traditional single-level models may
suffice, both for analysis and presentation. On the other hand multilevel analyses
can bring extra precision to attempts to understand causality, for example by making
efficient use of student achievement data in attempts to understand differences between
schools. They are not, however, substitutes for well-grounded substantive theories,
nor do they replace the need for careful thought about the purpose of any statistical
modelling. Furthermore, by introducing more complexity they can extend but not
necessarily simplify interpretations.

Multilevel models are tools to be used with care and understanding.
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