Exercise 2.1

Loading the biofam data set
```r
data(biofam)
```

Variable names
```r
names(biofam)
```

Adding an age variable
```r
biofam$age <- 2002 - biofam$birthyr
```

Distribution
```r
summary(biofam$age)
```

Distribution of woman age
```r
summary(biofam$age[biofam$sex == "woman"])
```

Creating the cohort factor
```r
biofam$cohort <- cut(biofam$birthyr, c(1900,1930,1940,1950,1960),
                     right=FALSE)
```

Frequency table
```r
table(biofam$cohort)
```
Sequence analysis for social scientists
Analyzing sequences using dissimilarities
Matthias Studer, Alexis Gabadinho,
Gilbert Ritschard, Nicolas S. Müller
Summer School on Advanced Methods for the
Analysis of Complex Event History Data,
Bristol, 28-29 June 2010

Exercise 3.1
From exercise 2.1
Loading the data set and creating the cohort factor
data(biofam)
biofam$cohort <- cut(biofam$birthyr, c(1900,1930,1940,1950,1960),
 right=FALSE)

Getting help
help(biofam)

Variables a15 to a30 are in column 10 to 25
names(biofam)

Vectors containing state names and long labels
bf.states <- c("Parent", "Left", "Married", "Left/Married", "Child",
 "Left/Child", "Left/Married/Child", "Divorced")

Creating the state sequence object
biofam.seq <- seqdef(biofam[,10:25], states=bf.shortlab, labels=bf.states)

Printing in STS format: we can use the head() function
head(biofam.seq)

Printing in SPS format requires to use explicitly the print() method
since we have to pass the format="SPS" argument
print(biofam.seq[1:6,], format="SPS")
Exercise 3.2

Sequence index plot
seqIplot(biofam.seq, group=biofam$sex, sortv=biofam$cohort)

Sequence frequency plot
seqfplot(biofam.seq, group=biofam$cohort)

Exercise 4.1

1. Using biofam data set

Loading TraMineR and the biofam data set
library(TraMineR)
data(biofam)

Create a cohort factor for later use
biofam$cohort <- cut(biofam$birthyr, c(1900,1930,1940,1950,1960),
 right=FALSE)
print(summary(biofam$cohort))

Create the sequence object
bfstates <- c("Parent", "Left", "Married", "Left/Married", "Child",
 "Left/Child", "Left/Married/Child", "Divorced")
bf.shortlab <- c("P","L","M","LM","C","LC", "LMC", "D")
bf.seq <- seqdef(biofam[,10:25], states=bf.shortlab, labels=bfstates)

Compute the OM distance matrix with substitution costs set according to transition rates
bf.dist <- seqdist(bf.seq, method="OM", indel=1, sm="TRATE")

3. Cluster the sequences in 3 groups (using either Ward or PAM).
library(cluster)

A. Clustering using the "ward" criterion
bf.clusterward <- agnes(bf.dist, diss = T, method="ward")

Dendrogram
plot(bf.clusterward, ask = F, which.plots = 2)
Extracting cluster membership

bf.cl3 <- cutree(bf.clusterward, k=3)

B. Clustering using PAM

bf.pam3 <- pam(bf.dist, k=3, diss=T)

Plot of the quality of the clustering procedure

plot(bf.pam3)

Cluster membership is in bf.pam3$clustering

bf.pam3$clustering[1:10]

Frequency table between Ward and PAM

print(table(bf.cl3, bf.pam3$clustering))

4. Explore the clustering solution graphically
using representative sequences.

seqrplot(bf.seq, dist.matrix=bf.dist, group=bf.cl3,
etrep=.6, tsim=0.1)

5. Name and interpret your clusters.

bf.cl3.factor <- factor(bf.cl3, levels=1:3,
 labels=c("Own Household", "Alone", "Parent Household"))

6. Fit a logistic regression model for one of
your cluster using the cohort,
language (plingu02) and sex covariates.

Creating a dummy variable

own.household <- bf.cl3==1
alone <- bf.cl3==2
parent.household <- bf.cl3==3

Fit the model using glm

own.household.reglog <- glm(alone ~ sex + cohort + plingu02,
 family=binomial(link=logit), data=biofam)
alone.reglog <- glm(alone ~ sex + cohort + plingu02, family=binomial(link=logit),
data=biofam)
parent.household.reglog <- glm(alone ~ sex + cohort + plingu02,
 family=binomial(link=logit), data=biofam)
Printing the output of the logistic regression

```r
summary(own.household.reglog)
summary(alone.reglog)
summary(parent.household.reglog)
```

Exercise 4.2
Sequence discrepancy analysis

1. Using `bf.dist` as distance matrix

```r
## discrepancy of the whole set of sequence
dissvar(bf.dist)
```

2. Compute the association with the cohort covariate using `dissassoc`.

```r
da <- dissassoc(bf.dist, group=biofam$cohort, R=5000)
print(da)
```

3. Plot the empirical null distribution of F

```r
hist(da, col="cyan")
```

4. Interpret the differences graphically using `seqdiff` with all sequences sorted according to the first dimension of an MDS.

```r
## Compute first dimension of an MDS
mds <- cmdscale(bf.dist, k=1)

## Plot the sequences
seq1plot(bf.seq, sortv=mds, group=biofam$cohort)
```

5. Explore the evolution of the association using `seqdiff`.

```r
bf.diff <- seqdiff(bf.seq, group=biofam$cohort)
```

```r
## plot the evolution of the pseudo R2
plot(bf.diff, lwd = 3, col="darkred")
```

Plotting the evolution of discrepancy

```r
plot(bf.diff, lwd = 3, stat="Variance", legendposition="bottomright")
```

6. Fit a regression tree and plot the results.

```r
```
Build the tree

dt <- disttree(bf.dist ~ sex + birthyr + plingu02, data=biofam, R = 5000)

print(dt)

Creating GraphViz file

deqtree2dot(dt, "fg_bfseqtree", seqdata=bf.seq, type="d",
 border=NA, withlegend=FALSE, axes=FALSE, ylab="", yaxis=FALSE)

Running Graphviz

shell("dot -Tsvg -o fg_bfseqtree.svg fg_bfseqtree.dot")

Running ImageMagick to convert the output to jpg

shell("convert fg_bfseqtree.svg fg_bfseqtree.jpg")

Viewing the tree

shell("start fg_bfseqtree.jpg")