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1. Introduction 

 1.1 Background  

The program gllamm runs in the statistical package Stata and estimates GLLAMMs (Generalized 
Linear Latent And Mixed Models: Skrondal and Rabe-Hesketh, 2004) by maximum likelihood. 
Stata is a commercial software, while gllamm is a free program, downloadable from the web site 
www.gllamm.org along with the manual (Rabe-Hesketh, Skrondal and Pickles, 2004: 
www.bepress.com/ucbbiostat/paper160) and other useful material. A Stata book (Rabe-Hesketh and 
Skrondal, 2005) describes the usage of gllamm (and other Stata’s commands) for multilevel and 
longitudinal modelling. 

GLLAMM is a class of multilevel latent variable models for (multivariate) responses of mixed type 
including continuous responses, counts, duration/survival data, dichotomous, ordered and 
unordered categorical responses and rankings. The latent variables (common factors or random 
effects) can be assumed to be discrete or to have a multivariate normal distribution. Examples of 
models in this class are multilevel generalized linear models or generalized linear mixed models, 
multilevel factor or latent trait models, item response models, latent class models and multilevel 
structural equation models. 

For random effects modelling, Stata has other commands for fitting specific two-level models. In 
particular, for panel data there is a suite of commands beginning with the prefix xt, such as xtreg 
for the random intercept linear model and xtlogit for the random intercept logit model. For 
survival data, the streg and stcox commands can estimate shared frailty models. Recently the 
new command xtmixed for multilevel (random coefficients) linear models with two or more levels 
has been included in Stata version 9. 

Our review will focus on multilevel generalized linear models using gllamm. For the linear model 
the command xtmixed will be also used. 

All models are fitted using a PC computer with Windows XP system, x86 family 2071 Mhz 
processor and 1024 Mb RAM. 

1.2 Software and hardware requirements 

Detailed information on Stata is available on the official web site www.stata.com . The latest 
version of Stata is 9, which is supported on many operating systems and platforms. 

As for Microsoft Windows, Stata runs under a wide variety of Windows versions and on a 
multitude of platforms. Supported versions include Windows 2000, Windows 2003 Server and 
Windows XP. Also available are 64-bit versions of Stata that will allow access to greater memory 
allocations to handle large datasets. 

Stata for Macintosh requires Mac OS X 10.1 or later, while Stata for Unix can run under Linux, 
IBM AIX, Sun Solaris, HP/Digital Unix and any Alpha series running Digital Unix Tru64. 

Stata is available in three versions: Stata/SE, Intercooled Stata, and Small Stata. These versions 
differ in the size of the dataset that each one can analyze: Stata/SE is for large datasets (up to 
32,766 variables, while the limit of observations is based on the amount of RAM in the computer), 
Intercooled Stata is the "standard" version (up to 2,047 variables, while the limit of observations is 
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based on the amount of RAM in the computer), Small Stata is a smaller, "student" version (datasets 
with a maximum of 99 variables on approximately 1,000 observations). 

The minimum hardware requirement are 128 MB of RAM and 60 MB of disk space. 

1.3 Basics of Stata 

To use gllamm one should know a little bit about Stata to be familiar with features common to all 
estimation commands including gllamm and to be able to prepare the data for analysis.  

Stata is a general package for statistical analyses, data management, and graphics that can be used 
in a command-driven or menu-driven fashion. Within the software, one mainly works with four 
windows named Review, Variables, Results and Command, that are contained within the main Stata 
window. The menus and toolbar provide access to Stata’s dialogs and utilities, such as the Viewer, 
Do-file Editor, and Data Editor. 

Many resources on getting started with Stata are available on the Web. In particular, we suggest the 
UCLA resources to help learn and use Stata:  
www.ats.ucla.edu/stat/stata/ and statcomp.ats.ucla.edu/stata/ . 

Here we only briefly mention how to input/output and save the data. Any kind of input/output can 
be done from pop-up menus or using commands. In particular, for data input the main commands 
are the infile command, which reads unformatted ASCII data files with variables separated by 
spaces; or the insheet command which reads comma separated files and tab separated file (Stata 
examines the file and determines whether commas or tabs are being used as separators and reads the 
file appropriately). Variable names and missing values coded as dot or other symbols can be read in 
without problems. Fixed format files can be read with the infix command. 

The edit command opens the Data Editor, which resembles an Excel spreadsheet and can be used 
to insert data directly. This kind of input is useful when the data are on paper and need to be typed 
in. 

One can view the data using the browse command. Stata works with only one data file at the same 
time. For data output, the save command can be used to save files in Stata’s .dta format. Using the 
Export Tool in the File list, one can output data in standard data formats with space, comma or tab 
delimiters. Results in the form of texts or tables which appear in the Results window can be 
copied/cut and pasted into a word processor file or saved in a log ASCII file using the log 
command. 

A statistical task such as model fitting can be carried out through commands. A Stata command is a 
statement that can be followed by many options. Most of Stata’s commands share a common 
syntax, which is: 

[prefix_cmd:] command [varlist] [if] [in] [, options] 

where items enclosed in square brackets are optional. 

This review will show the syntax for fitting a variety of random effect models using mainly the 
gllamm command. 

Programming statements are available in Stata which enables complex data processing or data 
management. In this review, we use only the necessary basic commands in order to prepare the data 
for fitting specific random effect models. 
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1.4 The gllamm program 

The gllamm program runs within Stata 6, 7, 8 and 9 using a similar syntax to Stata's own 
estimation commands. After estimating a model using gllamm, the command gllapred can be 
used to obtain the posterior means and standard deviations of the latent variables (random effects) 
and other predictions. The command gllasim can be used to simulate from the model. 

The full syntax of the gllamm command with all available options is 
gllamm depvar [varlist] [if exp] [in range] , i(varlist)    
[noconstant offset(varname) nrf(#,...,#) eqs(eqnames) 
frload(#,...,#) ip(string) nip(#,...,#)peqs(eqname) bmatrix(matrix) 
geqs(eqnames) nocorrel constraints(clist)weight(varname) 
pweight(varname) family(familynames) fv(varname) denom(varname) 
s(eqname) link(links) lv(varname) expanded(varname varname string) 
basecategory(#) composite(varname varname...) thresh(eqnames) 
ethresh(eqnames) from(matrix) copy skip long lf0(# #) gateaux(# # #) 
search(#) noest eval init iterate(#) adoonly adapt robust 
cluster(varname)level(#) eform allc trace nolog nodisplay dots ] 

The options are fully described in the gllamm manual (Rabe-Hesketh, Skrondal and Pickles, 2004) 
and in the appendix of Rabe-Hesketh and Skrondal (2005). 

The syntax of the command reflects the structure of the GLLAMM class of models (Skrondal and 
Rabe-Hesketh, 2004), whose components are: 

1. the conditional expectation of the responses given the latent and observed explanatory 
variables, where random effects are just an instance of latent variables ; 

2. the conditional distribution(s) of the responses given the latent and observed explanatory 
variables; 

3. structural equations for the latent variables including regressions of latent variables on 
explanatory variables and regressions of latent variables on other latent variables; 

4. the distributions of the latent variables. 

In this review we consider a subset of GLLAMMs that doesn’t require the specification of point 3. 

gllamm maximises the marginal log-likelihood using Stata's version of the Newton Raphson 
algorithm. In the case of discrete random effects, the marginal log-likelihood is evaluated exactly, 
whereas numerical integration is used for continuous (multivariate) normal random effects. Various 
types of quadrature are available for numerical integration: the rule for determining the points of 
integration can be cartesian or spherical, while the procedure can be ordinary or adaptive. In any 
case it is essential to make sure that a sufficient number of quadrature points has been used by 
comparing solutions with a different number of quadrature points. In most cases adaptive 
quadrature will perform better than ordinary quadrature. This is particularly the case if the cluster 
sizes are large and the responses include (large) counts and/or continuous variables. Even where 
ordinary quadrature performs well, adaptive quadrature often requires fewer quadrature points 
making it faster. 

For simple problems, gllamm is usually easy to use and does not take a very long time to run. 
However, the program can be very slow when there are many latent variables in the model, many 
quadrature or free mass-points, many parameters to be estimated and many observations. The 
reason for this is that numerical integration is used to evaluate the marginal log-likelihood and 
numerical derivatives are used to maximize it. Roughly, execution time is proportional to the 
number of observations and the square of the number of parameters. For quadrature, the time is 
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approximately proportional to the product of the number of quadrature points for all latent variables 
used. For example, if there are two random effects at level 2 (a random intercept and slope) and 8 
quadrature points are used for each random effect, the time will be approximately proportional to 
64. Therefore, using 4 quadrature points for each random effect will take only about a quarter 
(64/16) as long as using 8. For (2-level) discrete latent variables, the time is proportional to the 
number of points, but the increase in the number of parameters must be taken into account. For 
details on the computational aspects refer to Rabe-Hesketh, Skrondal and Pickles (2002) and Rabe-
Hesketh, Skrondal and Pickles (2005). 

2. Model specifications ⎯ Basic models 

In this section, we explore some basic multilevel models that can be fitted using gllamm: Normal 
models, logit/probit models for binary data and Poisson models for count data. We will describe the 
syntax needed for specifying the models, as well as the estimates and computing times. 

2.1 Two-level Normal models 

In general it is not advisable using gllamm for normally distributed responses since plenty of 
software exists for fitting such models without using approximations such as quadrature. However, 
if gllamm is used, adaptive quadrature is likely to give better parameter estimates than ordinary 
quadrature. With both methods, the user must ensure that sufficient quadrature points are used. 

Although adaptive quadrature is likely to give good estimates for continuous responses as long as 
enough quadrature points are used, it is certainly more computationally efficient to use software 
that does not use any approximations for this particular case, e.g. the command xtmixed of Stata. 

The data set to be used is the example which appears in the user's guide to MLwiN (Rasbash et al. 
2005). It consists of 4,059 students (level 1 units) nested within 65 schools (level 2 units). The 
outcome is their examination score at age 16 (EXAM). A key covariate is the prior London Reading 
Test score (STANDLRT) taken at age 11. Both the outcome and the reading scores were standardized 
with zero mean and unit variance and in addition the outcome score was normalized. Another 
student level variable is gender (GENDER: code 1 for girls and 0 for boys). Also considered is the 
school level variable concerning the school gender (SCHGEND, coded 1 for mixed schools, 2 for 
boys schools and 3 for girls schools). Before fitting the models, the data are assumed to have been 
read into Stata and the data file is named exam.dta. 

Five models are fitted, each one an extension of another. 

2.1.1 Model A 

Model A is a variance components model with fixed effects for all three covariates. For the 
categorical variable SCHGEND (school gender), two dummies are put into the model with girls 
schools as the reference category. Only the intercept is allowed to have random effects u0j among 
schools. The model can be written as 

jjijijijij xxxxy 443322110 βββββ ++++=  (1) 

0 00 0 j ijij u eβ β= + +  

where the errors are assumed to be independent with distributions 
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0 0

2~ (0, )
j uNu σ    

0 0

2~ (0, )
ij eNe σ  

The β s in (1) are fixed effects, and 
0

2
uσ  and 

0

2
eσ are two variance parameters to be estimated. This 

model is used to show the usage of the basic statements in the commands gllamm and xtmixed for 
fitting a simple two-level linear model. 

In terms of the components of a GLLAMM, in model A the conditional distribution is Gaussian, the 
link is identity and the marginal distribution of the random effects is Gaussian. These specifications 
are the default in gllamm and the only choice in xtmixed. By default, both gllamm and xtmixed 
assume a random intercept model. 

Table 1 reports the results for Model A obtained using four different estimation methods: xtmixed 
REML; xtmixed ML via the EM algorithm; gllamm ML via adaptive quadrature; gllamm 
nonparametric maximum likelihood (NPML).  

The gllamm syntax for fitting model A with ML via adaptive quadrature is 
xi: gllamm exam standlrt gender i.schgend, i(schid) adapt nip(8) 

The first name after gllamm defines the response variable, while the subsequent names (until the 
comma) refer to the covariates. 

The command prefix xi: declares that Stata will have to produce dummy variables for categorical 
covariates present in the model. Categorical covariates are specified by putting the prefix i. before 
the variable name. For every categorical variable with integer codes 1,2,…,g appearing in the 
independent variables list, g-1 dummy variables will be included. The default reference group of the 
command prefix xi: is the first code, i.e. code 0 (boys) for the individual gender and code 1 (mixed 
school) for the school gender in our case. One can change the default reference category by means 
of the char command. 

The i() option gives the variable that identifies the clusters. 

By default gllamm performs ML with 8-point ordinary Cartesian (Gauss-Hermite) quadrature. The 
option adapt requests adaptive quadrature to be used instead of ordinary quadrature. The nip() 
option specifies the number of integration points: we used the default 8 points, obtaining the same 
results as ML through the command xtmixed, even if the computing time is much longer. 

2.1.2 Model A via nonparametric maximum likelihood 

To perform ML the marginal distribution of the random effects u0j is assumed to be Gaussian. 
Alternatively, it can be assumed a discrete distribution with non-zero probability on a finite number 
of points. The discrete distribution can be interpreted as representing a number of latent classes 
which are homogeneous in the unobserved characteristic represented by the latent variable, e.g. in 
their intercepts. 

If the number of points, or masses, is chosen to achieve the largest possible likelihood, the 
nonparametric maximum likelihood estimator (NPML) can be achieved (Lindsay, 1995; Rabe-
Hesketh, Pickles and Skrondal, 2003). The Gateaux derivative method is used to determine the 
number of masses required for the NPML solution. See the gllamm manual for further details and 
references. 

The gllamm option for fitting a model using a discrete distributions for the random effects is 
ip(f). In such a case the option nip() gives the number of mass points. A constraint on the mass 
points is imposed by default in order to have a distribution with zero mean. 
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The NPML estimates of model A are obtained with an iterative procedure: 

1. a model with 2 mass points is fitted: 
xi: gllamm exam standlrt gender i.schgend, i(schid) ip(f) nip(2) 

2. the results of the model are saved and passed to a new gllamm command which computes the 
Gateaux derivatives 
matrix b=e(b) 

local ll=e(ll) 

local k=e(k) 

xi: gllamm exam standlrt gender i.schgend, i(schid) ip(f) nip(3)/* 

     */ from(b) gateaux(-2, 2, 20) lf0(`k' `ll') 

3. If the maximum Gateaux derivative is not positive the program stops, otherwise the same 
gllamm command goes on and fits a further model with an additional mass point using the 
estimates of the previous step as initial values; 

4. Step 2 and 3 are repeated until the maximum Gateaux derivative is not positive. 

The gateaux(min max n) option is used with method ip(f) to increase the number of mass 
points by one from a previous solution with parameter estimates specified using the from() option 
and number of parameters and log-likelihood specified by lf0(# #). The program searches for the 
location of the new mass point by placing a very small mass at the location given by the first 
argument and moving it to the second argument in the number of steps specified by the third 
argument. The boundaries of the grid for the gateaux search can be chosen by looking at the 
estimated standard deviation of the random effect (in this case we have chosen the values ±2 as 2 is 
about 6 times the estimated standard deviation of u0j). If the maximum increase in likelihood is 
greater than 0, the location corresponding to this maximum is used as the initial value of the new 
location, otherwise the program stops. When this happens, it can be shown that for certain models 
the current solution represents the nonparametric maximum likelihood (NPML) estimate. 

However, before assuming that the NPML estimator has been found, it is advisable to change the 
grid being searched. In our application, we tried several grids. With some grids, e.g. gateaux(−2, 
2, 100), the process does not end because of a negative derivative, but since a computational 
error occurs during the five-point fitting. This could be due to the starting values since these will 
change a bit when changing the grid. In such cases, instead of retaining the four-point estimates, it 
is advisable to try other grids until the search stops ‘regularly’ due to a negative derivative. 

With other grids, e.g. gateaux(-2, 2, 20) and gateaux(-3, 3, 100), the process ends 
‘regularly’ with five mass-points. This appears to be the NPML estimator since a variety of grids all 
lead to the conclusion that no more masses should be introduced (and the final locations and 
probabilities are exactly the same). 

The results are reported in Table 1. 

Note that the discrete distribution of the random effects is quite symmetric around zero and has a 
variance similar to the one obtained with ML. The fixed parameters for individual level covariates 
are nearly identical to those previously obtained, while the estimates for the school level variables 
are slightly different. 

   7



L. Grilli & C. Rampichini - A review of random effects modelling using gllamm in Stata 

2.1.2 Models B and C 

The following extensions B and C of model A could be fitted with gllamm. However here we show 
the REML estimates obtained with the command xtmixed, for reasons of computational efficiency 
and comparability with other software for linear mixed models. The results are reported in Table 2.  

Model B is an extension of Model A including an interaction between the two student level 
variables, London Reading Score and student gender. This illustrates the ease with which the prefix 
xi: allows to generate interactions (this is possible for any Stata command for fitting models).  

Model C extends Model B further by allowing the effect of the prior student's achievement β1 to 
vary randomly among the population of schools: 

)( 215443322110 ijijjjijijjijij xxxxxxy ×+++++= ββββββ  (2) 

0 00 0 j ijij u eβ β= + +  

11 1 jj uβ β= +  

The random effects at the school level u0j and u1j are assumed to follow a bivariate Normal 
distribution with zero mean and unconstrained covariance matrix. This type of covariance structure 
is termed Unstructured (UN) in xtmixed, and it is requested by the option cov(unstruct). 
Other covariance structures of the random effects are available in xtmixed: (i) independent (the 
default): one variance parameter per random effect, all covariances zero; (ii) exchangeable: equal 
variances for random effects, and one common pairwise covariance; (iii) identity: equal variances 
for random effects, all covariances zero. 

2.1.2 Models D and E 

Models D and E extends Model C by allowing a heteroscedastic residual variance at level 1. Such 
models cannot be fitted with xtmixed, but gllamm can do the job. 

In Model D the level 1 variance is allowed to be different for boys and girls using the following 
syntax: 

eq sch_c: cons 

eq sch_lrt: standlrt 

gen boy=(gender==0) 

gen girl=(gender==1) 

eq vargen: boy girl 

xi: gllamm exam  i.gender*standlrt i.schgend , i(schid) nrf(2)/* 

    */ eqs(sch_c sch_lrt) s(vargen) ip(m) adapt nip(7) 

boy and girl are dummy variables for the gender. The eqs() option of gllamm allows fitting of 
random slope models, either structured or unstructured. eqs(eqnames) specifies the equation 
names (defined before running gllamm) for the linear predictors of the random effects. The number 
of random effects is specified in the nrf() option. 

The s(eqname) option allows to specify an equation for level 1 heteroscedasticity since the log of 
the standard deviation at level 1 is modeled by the linear predictor defined by eqname. 
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The ip(m) option requests spherical quadrature (Rabe-Hesketh, Skrondal and Pickles, 2005), 
which is computationally more efficient for multidimensional integration.  

The post-estimation command nlcom allows to calculate the estimated values and standard errors 
(via the delta method) of nonlinear transformations of model parameters. In this case we used it to 
obtain the level one variances: 

matrix list e(b) 

nlcom (s_boy: exp(2*[lns1]boy))  (s_girl: exp(2*[lns1]girl)) 

The command matrix list e(b) allows to see how gllamm names the parameters. 

Model E is another version of Model D. Instead of allowing the residual variance to differ between 
the genders, it models the residual variance as an exponential function of the student intake variable 
as follows 

2
1var( ) exp( )ij e ijxe δσ=  (3) 

where 2
eσ  and  δ  are parameters to be estimated. 

The syntax and model estimates, as well as convergence times are listed in Table 3. 

Since gllamm specifies the linear predictor for the log of the standard deviation at level 1, the post-
estimation command: 

nlcom (s_e: exp(2*[lns1]const )) (delta: 2*[lns1]standlrt) 

allows one to recover 2ˆ eσ  and δ̂ , along with their standard errors (via the delta method). 

2.2 Other useful features of gllamm 

gllamm is a Stata estimation command and thus shares the Stata facilities associated with 
estimation commands. For example: 

 To carry out custom hypothesis tests on any fixed parameters or random parameters, the post-
estimation commands lincom (for linear combinations) and nlcom (for nonlinear 
combinations) are available. 

 To evaluate overall goodness of fit and compare nested models, one can save model results via 
the estimates store name command (where name is user-chosen name for the model) and 
then use the post-estimation command estimates stats that gives log-likelihood, AIC and 
BIC values. To compare the parameter estimates of different models one can use the post-
estimation command estimates table. 

Other useful features of gllamm are the following: 

 Linear constraints on model parameters at any level can be placed using the option 
constraint(clist), where clist specifies the constraint numbers of the linear constraints 
to be applied. Constraints are defined using the constraint command. To find out the 
equation names needed to specify the constraint one can run gllamm with the noest and 
trace options. For example, in model A we can fix the first level variance to 1 and we can 
impose the equality between the coefficients of the two dummies corresponding to schgend: 
constraint define 1 [lns1]_cons=0 

constraint define 2 _Ischgend_1 =_Ischgend_2  
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xi: gllamm exam standlrt gender i.schgend, i(schid) /* 

      */ constraint(1 2) adapt 

 To obtain the empirical Bayes prediction of level 2 residuals (random effects) after the 
command gllamm, one can use the command gllapred with the u option. Together with each 
residual prediction, the posterior standard deviation (also called comparative standard error) is 
reported. Using the option ustd produces standardized posterior means, i.e. estimated residuals 
divided by their sampling standard deviations (also called diagnostic standard errors).  

 Diagnostic measures can be obtained by the command gllapred with the options cooksd 
(Cook's distances for the top-level units), pearson (Pearson residuals), deviance (deviance 
residuals) and anscombe (Anscombe residuals). 

 The robust option specifies that the Huber/White/sandwich estimator of the covariance matrix 
of the parameter estimates is to be used. If a model has been estimated without the robust 
option, the robust standard errors can be obtained by simply typing gllamm, robust. 
Moreover, the cluster(varname) option specifies that the highest level units of the model 
are nested in even higher level clusters where varname contains the cluster identifier. Robust 
standard errors will be provided that take this clustering into account. If a model has been 
estimated without this option, the robust standard errors for clustered data can be obtained using 
the command gllamm, cluster(varname). 

 Two kinds of weight are allowed. (1) The option weight(wt) specifies that variables wt1, 
wt2, etc., contain frequency weights. The suffixes in the variable names determine at what level 
each weight applies (if only some of the weight variables exist, e.g. only level 2 weights, the 
other weights are assumed to be equal to 1). If many observations with the same pattern are 
present in the data set, the use of frequency weights allows to reduce the dimension of the data 
set in a substantial manner, speeding up the computation. (2) The pweight(varname) option 
specifies that variables varname1, varname2, etc. contain probability weights for levels 1, 2, 
etc. As far as the estimates and log-likelihood are concerned, the effect of specifying these 
weights is the same as for frequency weights, but the standard errors will be different. Robust 
standard errors will automatically be provided. The use of probability weights is discussed in 
Rabe-Hesketh and Skrondal (2006). 

2.2 Two-level models for binary/binomial data 

To illustrate how gllamm works with binary/binomial responses, we fitted models to data from the 
1989 Bangladesh Fertility Survey (Huq and Cleland, 1990). The data are a sub-sample of 1934 
women grouped into 60 districts. The outcome variable is use of contraception (use) which equals 
1 for using contraception and 0 otherwise. Three covariates are considered: age at survey centered 
at the sample mean (age); type of region of residence (urban) which equals 1 for urban and 0 for 
rural; and number of living children (nchild: 1=none, 2=one, 3=two, 4=three or more), 
represented by three dummy variables for the last three categories. The random intercept two-level 
model is: 

0

2
0 00

| , ~ (1, )

( ) , ~ (0, )
ij ij j ij

uij ij j j

y u B

g u u N

π

π β σ= + +

x

βx
 (4) 

where g(.) is the link function. 
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We first fitted model (4), using both logit and probit link functions. The gllamm syntax for fitting 
the logit model is 

xi: gllamm use urban age i.nchild, i(district) family(binomial)/* 

        */ link(logit) nip(8) adapt 

To fit the corresponding probit model it is sufficient to replace the link with the option 
link(probit). 

We then fitted a model which allows both a random intercept and a random slope for the effect 
associated with the type of region of residence. The gllamm syntax for fitting this model with logit 
link and adaptive spherical quadrature is: 

eq urban: urban 

eq cons: cons 

xi: gllamm use urban age i.nchild, i(district) family(binomial) /* 

        */ link(logit) nrf(2) eqs(cons urban) ip(m) nip(7) adapt  

The results are reported in Table 4. gllamm yields the same results as other packages using ML via 
the quadrature integration method. 

For binomial data where the outcome is a proportion p based on n observations for each case, the 
option denom(varname) gives the variable containing the binomial denominator for the response. 
The default denominator is 1. 

2.3 A two-level model for count data 

For hierarchical count data, Poisson models can be fitted using gllamm. Here we illustrate the use 
of gllamm on the malignant melanoma mortality data from 354 counties within 78 regions within 9 
European countries. The data consist of observed deaths and expected deaths due to malignant 
melanoma, which produce the standardised mortality rate (SMR), (observed deaths)/(expected 
Deaths). One important environmental variable that might be associated with the mortality rate is 
the county level UV radiation exposure. A detailed analysis is presented in Langford, Bentham and 
McDonald (1998). Due to the small number of countries, we initially treat the data as having a two-
level structure with counties nested within regions. 

Let yij be the observed death count in the ith county from the jth region which is assumed to follow a 
Poisson distribution with mean λij. Denoting with Eij the expected death count, it follows the 
standardised mortality rate SMRij=yij/Eij. 

A simple variance components model for SMR is: 

0 10 )exp(
jij ijxSMR uβ β= + + , 

0
2~ (0, )

j uNu σ , (5) 

where xij is the UV exposure measure, and u0j are the random effects for the regions. Alternatively, 
model (5) can be written as: 

0

0 1 0

| , ~ ( )

log log
ij ij j ij

ij ij ij j

y x u Poisson

E x u

λ

λ β β= + + +
 (6) 

where logEij is an offset. We generate this variable with the command: 
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gen lne=log(nexp) 

The gllamm syntax for fitting model (6) is: 
gllamm nobs uvb, i(idregion) offset(lne) family(poisson) /* 

           */ link(log) nip(8) adapt  

The results are reported in Table 5. Random slope models can be fitted by extending the syntax as 
in the linear case (see Table 3). 

In order to detect overdispersion we include in the model a random intercept at level one 
ζij~N(0,ψ2), as suggested in Rabe-Hesketh and Skrondal (2005, §6.7.1): 

0 10
log)log( j ij ijij ijE u xβ ζλ β+= + + +  (7) 

The mean and variance of the counts given the covariates and the cluster random effect, but 
marginally w.r.t. the random intercept at level one, are: 

2

00 10
log( | , ) exp

2
M

ij j ijij ij j ijEE y ux u
ψβλ β

⎛ ⎞
+= = + +⎜ ⎟

⎝ ⎠
x +  

( ) { }2 2
0( | , ) exp( ) 1M M

ijij j ij ijVar y ux λ λ ψ= + −  

Therefore the variance of the random intercept at level one, ψ2, can be interpreted as an 
overdispersion parameter. 

The gllamm command for the model with overdispersion (7) is obtained by adding the idcounty 
variable in the i() option: 

gllamm nobs uvb, i(idcounty idregion) offset(lne) family(poisson)/* 

           */link(log) nip(8) adapt 

The LRT test comparing the models with and without overdispersion gives a χ2 statistic of 17.77 
that is highly significant. 

We also estimate a three-level model (counties within regions within nations) by adding the nation 
variable in the i() option: 

gllamm nobs uvb, i(idregion nation) offset(lne) family(poisson) /* 

           */ link(log) nip(10) adapt 

To achieve convergence 10 quadrature points are needed. The results are reported in Table 5. 

The LR test for the variance at the nation level is significant. Moreover, w.r.t. the two-level model 
the variance at the region level is substantially reduced. 

In order to test for overdispersion, we re-fit the previous model with the addition of the idcounty 
variable in the i() option. The LR test for overdispersion is still significant (χ2 statistic =17.27). 

3. Model specifications ⎯ other random effects models 

In this section we describe how to fit random effects model for multinomial (ordered and 
unordered) responses, bivariate continuous responses and bivariate binary/continuous resposes. An 
application to meta-analysis is also shown. 
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3.1 Random effects models for a multiple categorical response 

In this section we consider ordinal multinomial models for ordered responses and nominal 
multinomial models for unordered responses. 

As an example, a sub-sample of the British Social Attitudes Survey, a panel study, is considered 
(McGrath and Waterton, 1986). The data consist of 264 adult respondents in 54 districts who 
completed interviews in 1983, 1984, 1985 and 1986. The outcome of interest is a total score, 
ranging from 1 to 7, calculated as the number of positive answers to seven questions about whether 
they supported or opposed a woman's right to have an abortion under different circumstances. The 
score is arranged to reflect attitudes from the most restrictive (code 1) to the most permissive (code 
7) towards to a woman's right to have an abortion. The data are structured as years nested within 
respondents within districts. There were many covariates measuring the background and socio-
economic status as well as the political party preference of the respondent. For the purpose of 
illustrations, we consider only the religion of the respondent: Roman Catholic=1, protestant/Church 
of England=2, others=3 and none=4 for illustration purpose. Moreover, for comparability with the 
reviews of other packages, we fit a two-level model ignoring the district level. 

3.1.1 Two-level random effects proportional odds model 

Let us assume that, conditional on the random effects, the seven response categories follow a 
multinomial distribution, with cumulative conditional probabilities:  

( |s
ij ij jP y s uγ = ≤ )                          (

7 ( )

1
1s

ij
s

γ
=

=∑ ) (8) 

for the ith year of the jth subject.  

The simplest model for ordinal data is the proportional odds model with fixed effects for the three 
religion groups (religion) contrasting to Roman Catholic, and random effects (uj) for 
respondents. The model can be written as: 

( )
3( ) ( )

( )
1

log
1

s
ijs s

lij jij ls
lij

y x u
γ

βα
γ =

⎛ ⎞ ⎛ ⎞⎜ ⎟= = − ∑⎜ ⎟⎜ ⎟ ⎝ ⎠−⎝ ⎠
+ ,              2~ (0, )j uNu σ  (9) 

The six thresholds α(s) will have values between −∞ and +∞ on the logit scale.  

The proportional odds model may be specified in gllamm using the link ologit: 
xi: gllamm score i.religion, i(id) family(binomial) link(ologit) /*  

           */ nip(8) adapt 

The results are reported in Table 6. 

3.1.2 Two-level random effects multinomial model 

Suppose that the response is an unordered categorical variable (s=1,…,7), and we fit a multinomial 
model with a series of odds ratios comparing each of s-1 categories with a base category, s=7 in our 
case. The simplest model with common random effects for each odds ratio would be 
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( )
3( ) ( ) ( )

0(7)
1
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ij s s s
j lijl
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p
u x

p
β β

=

⎛ ⎞
⎜ ⎟ = + + ∑⎜ ⎟
⎝ ⎠

, 2~ (0, )j uNu σ  (10) 
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⎟
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For simplicity, we will ignore the covariates in the fixed part of the model. The syntax for this 
model is as follows: 

gllamm score, i(id) base(7) link(mlogit) family(binom) nip(8) adapt 

ML estimates for this model are given in Table 6. For aggregated data in the form of proportions, 
the weight option can be used to specify the model. 

3.2 Multivariate Normal response model 

Modelling multiple responses, accounting for the dependence between them, is of interest to many 
researchers. By treating the responses as repeated measurements nested within subject, the 
multivariate model fits neatly into the multilevel framework. The example consists of scores on a 
science examination obtained on both a traditional written paper (y1) and coursework (y2) from 
1905 16 years old students in 73 schools in England. The data have a three-level structure of exam 
marks nested within students within schools. Interest in these data centres on the relationship 
between the two components at both school and student levels, whether there are gender (1 for girls 
and 2 for boys) differences in this relationship and whether the variability differs for the two 
components. The bivariate Normal model was considered for this purpose.  

Let i=1,2 indicate the responses at level 1, j the students at level 2, and k the schools at level 3. The 
model to be fitted is as follows:  

1 1 1 11

2 2 2 22

jk k jkjk

jk k jjk

x vy

x vy

α β ε

kα β ε

= + + +⎧⎪
⎨ = + + +⎪⎩

 (11) 
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To fit into the GLLAMM framework the model must be written as a single equation: 

1 (1 )ijk jk jkd dy y y= + − 2  (12) 

where the indicator d is 1 for written paper and 0 for coursework. 

In this model, β1 and β2 are the gender effects on written paper and coursework respectively. At the 
school level, the covariance matrix Ωv represents the variability of marks of the two components 
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among schools, with the correlation coefficient calculated as 
12 1 2v vvρ vσ σ σ= . Similarly, the 

covariance matrix Ωε refers to the student level.  

In order to fit the model with gllamm the data must be prepared appropriately: 

(1) In the dataset the missing values are coded as -1, while the Stata code for missing values is a 
full stop. Therefore the missing values are recoded as follows: 
replace y1=. if y1==-1 

replace y2=. if y2==-1 

(2) For the reshape command in the next step, the student identification code should be unique, 
no matter which school the student comes from: 
egen id = group(school student) 

(3) The dataset should be structured as a three-level hierarchy with the responses stacked in one 
column. To this end the response variable names must have the same prefix followed by 
successive integers (e.g. y1 and y2) and the new unique response must have a name 
corresponding to the common prefix (e.g. y): 
reshape long y, i(id) j(index) 

the reshape command creates a new variable, here called index, containing the response index 
(here index  is 1 if y contains y1 and 2 if y contains y2). 

(4) It is necessary to create dummy variables for the variable index as well as interaction terms 
for the set of dummies and every covariate (here gender) with the following commands: 
generate index1=(index==1) 

generate index2=(index==2) 

generate gender1=gender*index1 

generate gender2=gender*index2 

 
The gllamm syntax for fitting model (12) is the following: 

 
eq index1: index1 

eq index2: index2 

constraint define 1 [lns1]_cons=1.5 

gllamm y index1 index2 gender1 gender2, nocons i(id school) /* 

       */ nrf(2 2)  eqs(index1 index2 index1 index2) /* 

       */ constraint(1) nip(8) adapt  

The eq commands define equations for the random effects, while the constraint command fixes the 
logarithm of the level one standard deviation to a given value. Since the level one variance should 
be null, the log of the level one standard deviation should be fixed to a very low value, but this 
leads to computational problems. A pragmatic solution is to fix the log of the level one standard 
deviation in such a way the corresponding variance is far less than both variances at the student 
level, but not too small (the variances at the student level are estimated by fitting univariate two-
level models: in this case the estimates are 124.86 for written paper and 179.96 for coursework). In 
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this application we have chosen the value 1.5, corresponding to a variance of 20.09. Such a value 
must be added to the estimated variances of the random effects at the student level to recover the 
correct estimates. 

The option nocons prevents gllamm from inserting the overall constant in the model. 

To ease estimation it is advisable to pass initial values to gllamm. Such values can be obtained by 
fitting separate models for each response, using two distinct xtmixed commands (which run very 
fast, but then passing the estimates to gllamm is somewhat tricky); otherwise, one can run a single 
gllamm command with the same syntax as before and the addition of the nocorr option (this 
option requests non correlated random effects at all levels). 

Table 7 shows the estimates obtained with adaptive spherical quadrature using two distinct degrees 
of approximation 7 and 15: a comparison with the estimates produced by other programs reveals 
that 7 points are enough for the estimation of the variances, but the covariances are quite 
underestimated. With 15 points also the covariances are well estimated, even if the computational 
time increases dramatically. 

However, a good precision with a short computational time can be obtained if the the number of 
random effects is reduced by decomposing the student level errors in the following way: ε1j=uj+e1j 
and ε2j=λuj+e2j, where e1j and e2j are i.i.d. Normal with zero mean and variance θ 2, the factor uj is 
Normal with zero mean and variance ϕ 2, and λ is a factor loading (with the loading on the first 
equation fixed to one). Therefore, 2 2

1var( )ε ϕ θ= + , 2 2 2
2var( )ε λ ϕ θ= + , 2

1 2cov( , )ε ε λϕ= , so the 
variance-covariance parameters at the student level can be easily recovered from the estimates of 
θ2,ϕ2, and λ. At the school level the model is specified as before. The gain in computational time 
(on a PC with 2071 Mhz processor) is substantial: half an hour versus about two days! 

The gllamm command to fit the model is: 
eq index1: index1 

eq index2: index2 

eq factoreq: index1 index2 

gllamm y index1 index2 gender1 gender2, nocons i(id school) /*  

        */ nrf(1 2) eqs(factoreq index1 index2) ip(m) nip(7) adapt 

Note that the equations index1 and index2 used for the random effects at the school level include 
a one variable each, while the equation factoreq used for the factor at the student level includes 
two variables. 

The commands to recover the variance-covariance parameters at the student level are: 
nlcom var1: [id1_1]index1^2+exp(2*[lns1]_cons) 

nlcom var2: [id1_1]index1^2*[id1_1l]index2^2+exp(2*[lns1]_cons) 

nlcom cov: [id1_1l]index2*([id1_1]index1)^2 

nlcom rho: ([id1_1l]index2*[id1_1]index1^2)/sqrt(([id1_1]index1^2+/* 

          */exp(2*[lns1]_cons))*([id1_1]index1^2*[id1_1l]index2^2+/* 

           */exp(2*[lns1]_cons))) 

The results are reported in the last column of Table 7. 
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3.3 Multivariate binary-Normal response model 

To illustrate how to fit a mixed response model and make a comparison with the review on MLwiN, 
we dichotomized the first response and fitted a single-level (dropping the school level) null model. 

The total score of written papers y1 was recoded as y1
bin=1 if y1>80 and 0 otherwise (preserving 

missing values). The fitted model is a single-level bivariate binary-Normal null model: 
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Since 1 jy%  is unobservable, its variance is not estimable and in fact it is implicitly fixed by choosing 

the link (e.g.  for the logit link). There are two estimable variance-covariance: 
1

22 / 3ε πσ =
2

2
εσ  and 

12εσ . 

To speed up the computation, the model can be reparametrized using a single random effect with 
factor loadings, with the loading on the first equation fixed to one: 
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Note that the residuals in (14) are decomposed as ε1j=uj+e1j and ε2j=λuj+e2j. Therefore, 
2 2

1 1var( )ε ϕ θ= + , 2 2 2
2 2var( )ε λ ϕ θ= + , 2

1 2cov( , )ε ε λϕ= . 

However, there are four variance-covariance parameters in (14) (ϕ2,θ1
2, θ2

2 and λ), while there are 
only two estimable quantities: the residual variance of y2, namely 2 2 2

2λ ϕ θ+ , and the correlation 
between the total residuals of the two equations, namely 1 2co rr( , )j jε ε =  

2 2 2 2 2
1/ ( )( )2

2λϕ ϕ θ λ ϕ θ+ + . Therefore, it is necessary to impose two restrictions. One restriction 
directly stems from the binary nature of the first equation, so θ2 is implicitly fixed to a value 
determined by the link function (here we use the logit link, so θ2=π2/3). The second restriction 
needed for identification must be stated explicitly: here we fix the factor variance to one, i.e. ϕ2=1 
(for a discussion of drawbacks and alternative constraints, see Skrondal and Rabe-Hesketh, 2004, 
pp. 107-108). 

The gllamm syntax for such a model is: 
eq factoreq: index1 index2 

constraint define 2 [id1_1]index1=1 

gllamm ymixed index1 index2, nocons i(id) nrf(1) eqs(factoreq) /* 
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           */constraint(2) lv(index) link(logit identity) /* 

           */ fv(index) family(binomial gaussian) nip(10) adapt 

The constraint command fixes to one the standard deviation of the factor. The lv option 
declares the equations to which the links listed in link() apply. The fv option has the same role 
w.r.t. family(). 

The results are reported in the last column of Table 8. Since the standard deviation of ε1 is 
21 /π+ 3  instead of 2 / 3π , the α1 estimate needs to be rescaled by a factor 1.142 to get the 

estimate for (approximately) a logit model. In this case 1ˆ 6.093α = − , so the rescaled value is -5.336. 

3.4 A Model for Meta-analysis 

Meta analysis pools results from different studies estimating the same quantity of interest. The main 
focus is on the between-study variation. 

The data can be available in different forms: (a) individual level data for each study, and (b) an 
“effect-size” estimate for each study along with its standard error. 

In case (a) an ordinary two-level model with study level random effects and covariates at the 
individual and study levels can be fitted. 

In case (b) the “effect-sizes” are regressed on some covariates at the study level given the standard 
deviations of the studies. Let yj denotes the “effect-size” estimate for study j, and sj its known 
standard-error. The model is: 

j jjj xy u eα β= + + +   (15) 

2~ (0, )j uNu σ ,  ( )2~ 0,j jN se , 

where 2
uσ  is the variance parameter to be estimated for the between-study variability and xj is an 

explanatory variable at the study level. 

To let ej have the known standard deviation sj, one can use the s() option, together with the 
constraint() option, to specify a model for the log-standard deviation. 

To illustrate the procedure, we use the example from the meta-analysis of teacher expectancy 
effects (Raudenbush and Bryk, 2002). The effect-size and standard deviation, together with an 
explanatory variable for 19 clusters, are available. The syntax for fitting model (15) with gllamm is 
as follows: 

generate lns = ln(sd2)/2 

eq het: lns 

constraint define 1 [lns1]lns=1 

gllamm effect week, i(studyID) constraint(1) s(het) nip(15) adapt 

The results, with and without the covariate week, are reported in Table 9. 

 

   18



L. Grilli & C. Rampichini - A review of random effects modelling using gllamm in Stata 

4. Final remarks 

The gllamm command of Stata is a very powerful tool for fitting a wide range of multilevel 
models. In fact, the command is designed to fit the models belonging to the broad GLLAMM class, 
whose theory is developed in Skrondal and Rabe-Hesketh (2004). The close connection between the 
estimation command and a methodological framework turns out to be a great virtue, especially 
when the researcher wishes to extend the basic models. 

In this review we considered only the basic random effects models. Other relevant models handled 
by gllamm include: survival models, sample selection models, ordinal models with thresholds 
depending on covariates, factor and item response models (IRT), structural equation models 
(SEMs), latent class models and measurement error models. All these models can be defined with 
an arbitrary number of nested levels. 

Even if there is no point-and-click interface, the gllamm syntax is intuitive and easy to learn. 
However, the gllamm user has to know certain features of Stata, e.g. how to save the estimates or 
how to define a constraint.  

To obtain diagnostics, such as residual plots or influence measures, one can use the gllapred 
post-estimation command to compute many kind of residuals and other diagnostic measures and 
then use Stata to produce custom-made plots. 

The estimation method of gllamm is full information ML via numerical quadrature, assuming 
Gaussian random effects. Is also possible to assume a discrete distribution for the random effects 
leading to non-parametric ML. Other estimation methods, such as REML and MCMC, are not 
implemented.  

The main limit of gllamm lies in the computational efficiency. In fact, even if the options can 
always be set to obtain accurate estimates, when the number of random effects (latent variables) is 
over four or five the computational time is likely to become excessive for many users. Since one of 
the factors influencing the computational time is the number of records in the data set, it is crucial 
to collapse the data set and use the weight option whenever possible. Moreover, good starting 
values can speed up estimation: e.g., when adding quadrature points or adding or dropping 
covariates it is useful to use the previous estimates as starting values via the from() option. 

Despite its extraordinary flexibility, there are certain models that gllamm cannot directly fit: cross-
classified models, multiple membership models, models with spatial/temporal autoregressive 
structures, models with “mixed” random effects (in the sense that some random effects are 
continuous and some are discrete). Nonetheless, some of these models can be fitted with gllamm 
using a trick, e.g. the cross-classified model can be fitted by defining a pseudo top-level unit (Rabe-
Hesketh and Skrondal, 2005, ch. 8). 
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Table 1 - Two-level Normal model A (4059 students nested within 65 schools) 

Estimation 
method 

Syntax specification to fit the 
model -2logL 0β̂  

1β̂  
2β̂  

3β̂  
4β̂  

0
2ˆ uσ  

0
2ˆ eσ  Time 

conv. 

REML 

xi: xtmixed exam 
standlrt gender 
i.schgend || schid: , 
variance 

9347.6 -.0094 
(.0779) 

.5598 
(.0124) 

.1674 
(.0341) 

-.1590 
(.0894) 

.0187 
(.1261) 

.0858 
(.0178) 

.5625 
(.0126) <1’’ 

ML 

xi: xtmixed exam 
standlrt gender 
i.schgend || schid:, ml 
variance 

9325.4 -.0092 
(.0763) 

.5600 
(.0124) 

.1672 
(.0341) 

-.1590 
(.0873) 

.0187 
(.1232) 

.0811 
(.0165) 

.5623 
(.0126) <1’’ 

ML adapt. 
quadr.8pt 

xi: gllamm exam 
standlrt gender 
i.schgend, i(schid) 
adapt nip(8) 

9325.4 -.0092 
(.0763) 

.5600 
(.0125) 

.1672 
(.0341) 

-.1590 
(.0873) 

.0187 
(.1232) 

.0811 
(.0165) 

.5623 
(.0126) 3’12’’ 

-.0255 
(.0576) 

.5603 
(.0123) 

.1706 
(.0339) 

-.1270 
(.0437) 

.0003 
(.0645) .0822* .5616 

(.0125) NPML  
(5 mass 
points) 

xi: gllamm exam 
standlrt gender 
i.schgend, i(schid) 
ip(f) nip(5) from(b) 
gateaux(-2, 2, 20) 
lf0(`k' `ll') 

9312.6 
Locations of random effects: -0.598, -0.321, -0.137, 0.100, 0.524 
Probabilities of random effects: 0.071, 0.096, 0.289, 0.408, 0.137 

Total 
≈5’ 
Last 
step 
≈1’ 

 
Note: before estimation the command char schgend[omit] 3 was submitted to define the 3rd category of schgend as the reference category. 
Model A: Variance component model with covariates standlrt, gender and schgend and Gaussian random effects.  
Fixed parameters: 0β (constant), 1β (standlrt), 2β (gender), 3β (schgend 1), 4β  (schgend 2); 

Random parameters: 
0

2
uσ (level 2), 

0
2
eσ  (level 1). 

NPML: discrete distribution of the random effects. The matrix b contains the estimates from the previous step, while the local variables k and ll 
contain the number of parameters and the log-likelihood from the previous step. 
* This value is obtained from the locations and probabilities of the random effects shown below. 
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Table 2 - Two-level Normal models B and C (4059 students nested within 65 schools) – 
xtmixed REML 

Model building Fixed and random 
parameters. 

Syntax specification to fit 
the model 

REML Estimates (SE) Time to 
convergence 

B: Variance 
component with 
interaction, 
gender*standlrt 

 
Fixed 
( 0β , 1β , 2β , 3β , 4β , 5β ) 

Random 

Level 2: (
0

2
uσ ) 

Level 1: (
0

2
eσ ) 

 

 
xi: xtmixed exam  
i.gender*standlrt  
i.schgend || 
schid: , variance 
 

0β̂ =-0.0094 (0.0779) 

1β̂ =0.5626 (0.01837) 

2β̂ =0.1673 (0.0341) 

3β̂ =-0.1588 (0.0894) 

4β̂ =0.0189 (0.1261) 

5β̂ =0.0051 (0.0246) 

0
2ˆ uσ =0.0858 (0.0178) 

0
2ˆ eσ =0.5627 (0.0126) 

-2LogL=9353.20 

 
<1’’ 

C: Random slopes 
of standlrt 
effect  

 
Fixed 
( 0β , 1β , 2β , 3β , 4β , 5β ) 
Random 
Level 2: (

0
2
uσ ,

01uσ ,
1

2
uσ ) 

Level 1: (
0

2
eσ ) 

 

 
xi: xtmixed exam  
i.gender*standlrt  
i.schgend || 
schid:standlrt, 
cov(unstruct) 
variance 
 

0β̂ = -0.01197 (0.0742) 

1β̂ = 0.5503 (0.0257) 

2β̂ = 0.1686 (0.0338) 

3β̂ = -0.1779 (0.0821) 

4β̂ = -0.0004 (0.1162) 

5β̂ = 0.0069 (0.0295) 

0
2ˆ uσ = 0.0837 (0.0174) 

01uσ = 0.0205 (0.0070) 

1
2
uσ = 0.0153 (0.0047) 

0
2ˆ eσ = 0.5504 (0.0124) 

-2logL= 9308.24 

 
<2’’ 

Note: before estimation the command char schgend[omit] 3 was submitted to define the 3rd category of schgend as the reference category. 
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Table 3 - Two-level Normal models D and E (4059 students nested within 65 schools) – 
gllamm ML spherical adaptive quadrature with 7 points 

Model building Fixed and random 
parameters. 

Syntax specification to fit 
the model 

ML Estimates (SE) Time to 
convergence 

D: Level 1 variance 
heterogeneity by 
'girl' (1=boy, 
0=girl)  
 
 

 
Fixed 
( 0β , 1β , 2β , 3β , 4β , 5β ) 
Random 
Level 2: (

0
2
uσ ,

01uσ ,
1

2
uσ ) 

Level 1: (
1

2
eσ ,

2
2
eσ ) 

 

 
eq sch_c: cons 
eq sch_lrt: 
standlrt 
 
gen boy=gender==0 
gen girl=gender==1 
 
eq vargen: boy 
girl 
 
xi: gllamm exam  
i.gender*standlrt  
i.schgend, 
i(schid) nrf(2)  
eqs(sch_c sch_lrt) 
s(vargen) ip(m) 
adapt nip(7)  

0β̂ =-0.0114 (0.0728) 

1β̂ =0.5506 (0.0261) 

2β̂ =0.1685 (0.0340) 

3β̂ =-0.1787 (0.0801) 

4β̂ =-0.0008 (0.1141) 

5β̂ =0.0070 (0.0297) 

0
2ˆ uσ =0.0795 (0.0164) 

01uσ =0.0203 (0.0068) 

1
2
uσ =0.0149 (0.0046) 

1
2ˆ eσ =0.5876 (0.0209) 

2
2
eσ =0.5252 (0.0153) 

-2logL= 9275.07 

≈12’ 

E: Level 1 variance 
as an exponential 
function of 'standlrt'  
 

 
Fixed 
( 0β , 1β , 2β , 3β , 4β , 5β ) 
Random 
Level 2: (

0
2
uσ ,

01uσ ,
1

2
uσ ) 

Level 1: ( 2
eσ ,δ ) 

 

eq varlrt: cons 
standlrt 
 
xi: gllamm exam  
i.gender*standlrt  
i.schgend , i(schid)  
nrf(2)  eqs(sch_c 
sch_lrt) s(varlrt) 
ip(m) adapt nip(7)  
 
 
 

0β̂ =-0.0110 (0.0732) 

1β̂ =0.5519 (0.0256) 

2β̂ =0.1683 (0.0338) 

3β̂ =-0.1786 (0.0806) 

4β̂ =-0.0044 (0.1142) 

5β̂ =0.0074 (0.0295) 

0
2ˆ uσ =0.0798 (0.0164) 

01uσ =0.0207 (0.0067) 

1
2
uσ =0.0144 (0.0045) 

2ˆ eσ =0.5496 (0.0124) 

δ =-0.0541 (0.0231) 
-2logL= 9275.60 

≈12’ 

 
Note: before estimation the command char schgend[omit] 3 was submitted to define the 3rd category of schgend as the reference category. 
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Table 4 - gllamm specifications for 2-level binary response models 

Random intercept model (ML 8pt adaptive quadrature) 
parameters logit link probit link 
constant  -1.6902 (0.1477) -1.0286 (0.087) 

urban 0.7324 (0.1195) 0.4491 (0.0727) 

age  -0.0266 (0.0079) -0.0163 (0.0048) 
nchild=1  1.1093 (0.158) 0.6702 (0.0947) 
nchild=2  1.3765 (0.1748) 0.8348 (0.1049) 
nchild≥3  1.3456 (0.1796) 0.8148 (0.1074) 

0
2
uσ  0.2155 (.0733) 0.07984 (.0269) 

-2logL 2413.34 2412.74 

Time to convergence 51" 1’1" 

Random slope model (ML spherical 7pt adaptive quadrature) 
 logit link probit link 

Constant  -1.7128 (0.1605) -1.0419(0.0949) 

Urban 0.8162 (0.1714) 0.5003 (0.1043) 

age  -0.0265 (0.0080) -0.0164 (0.0049) 

nchild=1  1.1260 (0.1603) 0.6816 (0.0959) 
nchild=2  1.3682 (0.1772) 0.8306 (0.1062) 
nchild≥3  1.3555 (0.1828) 0.8245 (0.1092) 

0
2
uσ  0.3906 (0.1293) 0.1436 (.04688) 

01uσ   -0.4064 (.1753) -0.1504 (.0643) 

1
2
uσ  0.6665 (0.3212) 0.2468 (.1187) 

-2logL 2398.36 2397.56 

Time to convergence 2’ 19” 2’ 44” 

 
 
 
 
 
 
Table 5 - Poisson models for malignant melanoma mortality data. ML adaptive quadrature. 

Two-level model Three-level model 

 No overdispersion With overdispersion No overdispersion With overdispersion 
Fixed effects     

α -0.1386 (0.0494) -0.1472 (0.0482) -0.0640 (0.1336) -0.0865 (0.1299) 

Uvb -0.0344 (0.0100) -.0393 (0.0099) -0.0282 (0.0114) -0.0335 (0.0114)  

Random effects     

Region 2
uσ  0.1699 (0.0310) 0.1556 (0.0295) 0.0484 (0.0109) 0.0406 (0.0105) 

Nation 2
vσ    0.1372 (0.0723) 0.1289 (0.0682) 

ψ2  0.0148 (0.0051)  0.0147 (0.0051) 

-2logL 2250.30 2232.53 2190.62 2173.35 
Overdispersion LRT  17.77  17.27 

Time to converge 6”  1’ 27” 3’ 30’ 24”  

Quadrature points 8 8 10 10 
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Table 6 - Estimates of two-level ordinal and nominal models for Social Attitudes data 

Fixed effects 
Proportional odds 

model Fixed effects Multinomial model 

α )1(  -4.1418 
(0.6323) 

(1)
0β  -1.9176 

(0.2729) 

α )2(  -2.3981 
(0.5991) 

(2)
0β  -1.2622 

(0.2380) 

α )3(  0.4034 
(.5894) 

(3)
0β  0.2999 

(0.2036) 

α )4(  1.3404 
(0.5907) 

(4)
0β  -0.3693 

(0.2128) 

α )5(  2.2307 
(0.5933) 

(5)
0β  -0.3932 

(0.2133) 

α )6(  3.2732 
(0.5921) 

(6)
0β  -0.2718 

(0.2111) 
Religion=2 1.9593 

(0.6343) 
  

Religion=3 0.6907 
(0.6906) 

  

Religion=4 2.7778 
(0.6502) 

  

Random effects  Random effect  

2
uσ  

5.1330 
(0.6976) 

2
uσ  

5.5416 
(1.0732) 

-2logL 3171.29  3426.0046 
Quadrature points 8  8 
Time to converge 1’40”  2’ 18” 
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Table 7 - Bivariate Normal model of student scores. Students nested in schools. Adaptive 
spherical quadrature. 

Model with fixed level one variance Model with a factor 
at student level 

Fixed effects 7 pt 15 pt 7 pt 

α1 49.002 
(1.1993) 

49.008 
(0.9321) 

49.008 
(0.9308) 

α2 69.680 
(0.6265) 

69.623 
(1.1725) 

69.623 
(1.1723) 

β1 -2.442 
(0.5745) 

-2.493 
(0.5607) 

-2.493 
(0.5607) 

β2 6.745 
(0.5681) 

6.757 
(0.6708) 

6.757 
(0.6708) 

Random effects: 
Student level 

   

1

2
εσ  ϕ2+ θ1

2=125.405 
(4.2488) 

ϕ2+ θ1
2=124.433 
(4.3363) 

ϕ2+ θ2=124.432 
(4.3354) 

2

2
εσ  ϕ2+ θ2

2=175.634 
(5.4168) 

ϕ2+ θ2
2=180.070 
(6.2499) 

λ2ϕ2+ θ2=180.070 
(6.250) 

1 2ε εσ  40.638 
(2.4855) 

72.749 
(4.1521) 

λϕ2=72.748 
(4.1519) 

corr (ε1,ε2) 0.274 0.486 0.486 

School level    

1

2
vσ  48.738 

(10.4885) 
46.565 

(9.3531) 
46.586 

(9.2283) 

2

2
vσ  71.210 

(7.0668) 
75.194 

(14.6729) 
75.197 

(14.6539) 

1 2v vσ  4.830 
(3.7582) 

24.937 
(8.9916) 

24.944 
(8.9713) 

corr(v1,v2) 0.082 0.421 0.421 
 

Parameters actually outputted by gllamm 
θ2 fixed at 20.086 fixed at 20.086 74.365 

(2.7247) 
var(u1) 105.320 

(4.2488) 
104.348 

(4.3363) 
var(u2) 155.549 

(5.4168) 
159.984 

(6.2499) 
Cov(u1,u2) 40.638 

(2.4855) 
72.749 

(4.1521) 

 

ϕ2  50.067 
(4.115) 

λ  1.453 
(0.0654) 

 
-2logL 26956.19 26799.51 26799.51 
Time to converge ≈ 2h30’ ≈ 43h 39’ 
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Table 8 - Bivariate models of student scores. Schools ignored. 10 pt adaptive quadrature. 

Responses 

Fixed effects Normal-Normal Binary (logit)-Normal 

α1 46.370 (0.3197) -5.336* (0.4112) 
α2 73.318 (0.3882) 73.398 (0.3929) 

Random effects: 
Student level 

  

1

2
εσ  ϕ2+ θ2= 178.210 (6.0788) fixed by the link 

1 2ε εσ  101.977 (5.8553)  

2

2
εσ  λ2ϕ2+ θ2= 265.417 (8.9960) λ2+ θ2=266.261 (9.0783) 

Corr(ε1,ε2) 0.4689 (0.0195) 0.4558 (0.0205) 
 

Parameters actually outputted by gllamm 
θ2 110.905 (3.9533) 91.555 (49.5759) 

ϕ2 67.3045 (5.694) constrained to 1 

λ 1.515 (0.0699) 13.218 (1.9006) 
 

-2logL 27804.44 14604.12 
Time to converge 2’17” ≈ 3’ 

* This value is obtained by rescaling the estimate -6.093 by a factor 1.142 to adjust the scale of 
the latent response (see Section 3.3, last sentence) 

 

 

 

Table 9 Model estimates based on 19 effect-sizes data in meta analysis. 15 pt adaptive 
quadrature. 

Parameters Null model Model with covariate 

0β  0.0787 (0.0521) 0.4086 (0.0871) 

1β   -0.1580 (0.0359) 

2
uσ  0.0131 (0.0201) 0.0000 (0.0000) 

-2logL -3.1620 6.1321 
Time to converge 5” 5” 
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