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Introduction

In this practical, we will analyse longitudinal data on health functioning from a
study of civil servants, the Whitehall Il study. Health functioning was assessed by
the SF-36, a 36 item instrument that comprises eight subscales covering physical,
psychological and social functioning. These eight scales can be summarised into
physical and mental health components. These are scaled using general US
population norms to have mean values of 50 and low scores imply poor functioning.
Physical health functioning (PCS) and mental health functioning (MCS) were
measured on up to six occasions at approximately 2.5 year intervals. In this
practical, PCS is the response, and there are two levels of data - person (level 2)
and measurement occasion (level 1). In addition, there are three explanatory
variables. The first is the person's age, which varies from occasion to occasion and
is therefore a level one variable. The other two are gender (coded 0 for males and
1 for females) and employment grade at baseline (coded 1 for high grade, 2 for
intermediate grade and 3 for low grade). These vary from person to person and
are thus level two variables.

In this session we will explore the following questions:
1. How does physical functioning change as people get older?
2. Does this vary from person to person?

3. Does physical functioning decline faster in people from low employment
grades compared with those in high employment grades?

Setting up the data structure

Open the worksheet function.wsz which contains 21 variables for 8815 people as
shown below in the Names display:



=% Names

ﬂ Edit name | Data | Toggle Categorical | j Description |Cnpy | Paste | Delete | Help | [ Used columns
Name | Cn | n | missing | min | max | categorical | description i
D 1 8815 0 1 8815 False
FEMALE 2 8815 0 0 1 False
GRADE 3 8815 0 1 3 False
XAGE50 4 8815 0 -1 14 False
XPCS 5 8815 0 -20 7157574 False
XMCS G 8815 0 -20 69.64911 False
VAGE5S0D 7 8815 0 -20 15 False
VPCS 8 8815 0 -20 70.37716 False
VMCS 9 8815 0 -20 T72.92652 False
TAGES0 10 8815 0 -20 19.23751 False
TPCS 11 8815 0 -20 69.6278 False
TMCS 12 8815 0 -20 72.98643 False
QAGES0 13 8815 0 -20 21.40625 False
QPCs 14 8815 0 -20 69.81925 False
oMmCcs 15 8815 0 -20 73.94762 False
MAGES50 16 8815 0 -20 24.08076 False
MPCS 17 8815 0 -20 71.85617 False
MMCS 18 8815 0 -20 75.21274 False
KAGEAS0 19 8815 0 -20 26.73438 False
KPCS 20 8815 0 -20 70.09693 False
KMCS 21 8815 0 -20 73.8034 False
c22 22 0 0 0 0 False
Cc23 23 0 0 0 0 False
c24 24 0 0 0 0 False
~E hi I = n in i n | gty AN v
< >

Column number 1 contains the person identifier. Columns 2 and 3 contain person
level explanatory variables: gender (FEMALE) and employment grade (GRADE).
This is followed by sets of three variables for the six measurement occasions: age,
physical functioning and mental functioning at each occasion (XAGE50, XPCS,
XMCS, at measurement occasion 1 etc). The variable names for measurement
occasions 1 to 6 are prefixed by X, V, T, Q, M and K respectively.

Note that the ages have been centred at age 50. In this data set, -20 represents
a missing value. We can tell MLwiN that -20 is the missing value code by

" Select the Options menu

. Select Numbers(Display precision and missing value code)
" Set the missing value code to -20

. Click the Apply button, then Done

The Names window is updated and now explicitly shows the number of missing
cases for each variable.



=% Names

€| Edit name | Data | Toggle Categorical iizgories | Description | Copy | Paste | Delete | Help | I Used columns
Name | Cn | n missing min | max categorical | description s
ID 1 8815 0 1 8815 False

FEMALE 2 8815 0 0 1 False

GRADE 3 8815 0 1 3 False

XAGE50 4 8815 0 -1 14 False

XPCS 5 8815 523 6.407695 71.57574 False

XMCS 6 8815 523 297561 69.64911 False

VAGES0 T 8815 503 -8 15 False

VPCS 8 8815 1333 11.80435 70.37716 False

VMCS 9 8815 1333 4.231273 72.92652 False

TAGE5S0 10 8815 1186 -5.206024 19.23751 False

TPCS 1 8815 2010 8.400927 69.6278 False

TMCS 12 8815 2010 2458883 72.98643 False

QAGES0D 13 8815 1658 -1.828125 21.40625 False

QPCs 14 8815 2350 9.355224 69.81925 False

aMCs 15 8815 2350 2.383819 73.94762 False

MAGE50 16 8815 2017 0.4668045 24.08076 False

MPCS 17 8815 2346 9.969062 71.85617 False

MMCS 18 8815 2346 2536131 75.21274 False

KAGE50 19 8815 1893 0.3046875 26.73438 False

KPCS 20 8815 2370 7.425531 70.09693 False

KMCS 21 8815 2370 7.716543 73.8034 False

c22 22 0 0 0 0 False

Cc23 23 0 0 0 0 False

c24 24 0 0 0 0 False 3
< »

This arrangement of the data, in which each row of a rectangular array
corresponds to a different individual and contains all the data for that individual,
is a natural one, but it does not reflect the hierarchical structure of measurements
nested within individuals. For a multilevel analysis, the data must first be
restructured so that there is one record per measurement occasion (level 1 unit).
The Split records window (shown below), accessed via the Data Manipulation
menu, is designed to transform an individual’s data record into separate records
(or rows), one for each occasion. In the present case we shall produce six records
per person, that is, 52890 records altogether. The ordering of people will be
preserved, and they will become the level 2 units.



=% Split records

Dinensions
Mumber of occasions r=T] Mumber of variakles Ir="|
L =1 L =]
Stack data
“ariakble 1

Qccasiaon 1
Stacked into
Repesaticarried) data

Imput columns Ottt columns

IC i I© M Free columns

FEMALE FEMALE

GRADE b GRADE w Same as input

Split [~ Generste indicator column | ﬂ Help

There are two types of data to consider: occasion specific data and individual
(time-invariant) specific data. The former (in principle) changes from occasion to
occasion, in this case, the functioning scores and the ages. The latter remain
constant from occasion to occasion, in this case, the person identifiers, gender and
employment grade.

First let us deal with the occasion specific data:

= Open the Split records window
=  Set the Number of occasions to 6
= Set the Number of variables to 3

Doing this produces:



=¥ Split records

Ditnensions
Mumber of occaszions =" Mumber of variables ="
£ =1 3 =1
Stack data
Yarighle 1 |%ariakle 2|Variable 3 L
Occazion 1
Qocazion 2
Qocazion 3
Oocazion 4
Oocazion S
Oocaszion 6 Z
Repeaticarried) data
Input columns Output columns
I i D ~ Free columns
FEMALE FEMALE
ZRADE W GRADE e Same as input
Split [~ Generate indicator column | j Helg

We need to stack the six physical functioning scores into a single column, the six
mental health functioning scores into a single column and the six ages into a single
column.

. In the Stack data grid, click on Variable 1

" From the drop down list that appears, select the six variables XPCS, VPCS,
TPCS, QPCS, MPCS, KPCS and then click Done. (To make multiple
selections, hold the control key down while clicking on variable names.)

. Repeat the above two steps for Variable 2 and the six variables XMCS,
VMCS, TMCS, QMCS, MMCS, KMCS

" Repeat the above two steps for Variable 3 and the six variables XAGE5O0,
VAGE50, TAGE50, QAGE50, MAGE50, KAGES0

Before proceeding check carefully that the Split records window looks like this:



=¥ Split records g@@

Ditnensions
Mumber of occaszions =" Mumber of variables ="
£ =1 3 =1
Stack data
Yarighle 1 |%ariakle 2|Variable 3
Dccasion 1 [HPCS b ey WAGESD
Dccasion 2 | VPCS SMCS W AGESD
Dcegsion 3 [ TPCE TMCS TAGESD
Dcogsion 4 |QPCS CMCS AGESD
Dccasion 5 |MPCS RAMCS M AGESD
Dccasion B (KPCE KhCS WAGESD
Stacked into
Repesticarried) data
Input columns Output columns
I i D G Free columns
FEMALE FEMALE
GRADE GRADE Same as input
HAGESD W HAGESD bl
Split [ Generate indicator column | j Help

Clicking on the column headings allows you to set all six occasion variables from a
single pick list. The first variable on the list is assigned to occasion 1, the second
to occasion 2 and so on. This works fine in our case because the variables appear
on the list in the correct order. If this is not the case, you can specifically assign
variables to occasions by clicking on individual cells in the grid.

" Click in turn on the three empty cells in the Stacked into row of the Stack
data grid. (You may need to enlarge the window to see the whole grid.)

" From the drop-down lists that appear, select c22, c23 and c24 respectively
. Tick the Generate indicator column check box
" In the neighbouring drop down list, select c25

That deals with occasion specific data. Now we will specify the repeated data:

. In the Repeat(carried data) frame, select the three variables 1D, FEMALE,
GRADE as the input columns and ¢26,c27 and c28 as the output columns

The completed set of entries should look like this:



=¥ Split records

Ditnensions
Murmber of occasions lg—i Mumber of variables [3 i
Stack data

Yariahle 1 [Wariable 2|Variable 3
Dccasion 1 [HPCS wMCS WAGESD
Qccasion 2 | VPCS M W AGESD
Dccasion 3 [ TPCS TMCS TAGESOD
Qcogsion 4 | QPCS GIMCS QAGESD
Dccasion 5 |MPCS FARMCS MAGESD
Qccasion 6 [KPCS HhCS W AGESD
Stacked into| 222 23 24

Repesticarried) data
Input columns Output columns

Free columns

Same as input

RAGESD il

Split [v Senerate indicator column |C25 j Help

This will take the six physical functioning scores, each of length 8815, and stack
them into a single variable in c22. The six mental health functioning scores will
be stacked into c23 and the six age variables will be stacked into c24. Each id
code will be repeated six times, and the repeated codes are stored in c26.
Similarly, values of FEMALE and GRADE will be repeated six times and stored in
c27 and ¢28. The indicator column, which is output to c25, will contain occasion
identifiers for the new long data set.

" Click the Split button to execute the changes
" You will be asked if you want to save the worksheet - select No

The Names window now shows the following for c22 through c28:

=¥ Names

¢ | Editname | Data | Toggle Categorical |Categories | Description | Copy | Paste | Delete | Help | I Used columns
Name | Cn | n missing min | max categorical | description o
c22 22 h2890 10932 6.407695 71.85617 False

C23 23 52890 10932 2.383819 7521274 False

c24 24 52890 T257 -1 26.73438 False

C25 25 h2890 0 1 6 True

C26 26 52890 0 1 BB15 False

c27 27 h2890 0 0 1 False

c28 28 h2890 0 1 3 False

C29 29 0 0 0 0 False

C30 30 0 0 0 0 False &
< B .




In the Names window, use Edit name to assign the names pcs, mcs, age,
occasion, person, fem and occupation to c22-c28. Viewing columns 22-28 (by
selecting the View or edit data from the Data Manipulation menu) will now show:

=¥ Data E@g]
goto line |17 view Help | Font | [v Show value labels
nes( 52500 [mesgs280m | age: 52800) |occasion( 5283m| person{52880) | fem{ 52880 | oecupationg 5288 | El
1| 39.591 31.803 5.000 HAGESOr 1.000 1.000 2.000
2| 38,611 44.069 7.000 YAGESDr 1.000 1.000 2.000
3| 39928 51.031 10.416 TAGESOr 1.000 1.000 2.000
421910 53.494 13.648 QAGESDr 1.000 1.000 2.000
5|25.657 40,592 16.620 MAGESOr 1.000 1.000 2.000
B MissiNG MISSING MISSING KAGESOr 1.000 1.000 2.000
7|29.311 26.862 £.000 HAGESOY 2.000 1.000 3.000
a| 228090 30,735 10.000 YAGESDr 2.000 1.000 3.000
g|z4.104 35,480 12133 TAGESOr 2.000 1.000 3.000
10| 21.403 59.795 15,859 QAGESDr 2,000 1.000 3.000
11|17.220 52014 17.565 MAGESDr 2.000 1.000 3.000
12]|22.994 28175 20.853 KAGESOr 2.000 1.000 3.000 =

The data are now in the required form for analysis, with one row per measurement
occasion. It would now be a good idea to save the worksheet, using a different
name, e.g. function_long.wsz.

Initial data exploration
Before we start to do any modelling, we should first carry out some exploratory
analysis. We will begin by looking at the mean of our outcome variable,
functioning score, at each occasion.

= From the Basic Statistics menu, select Tabulate

&k Tabulate ; O] x|
Digplay Output bMode—
[ Percentages of row totals {* Counts
[T Percentages of columnn totals " Meanz
[T Percentages of the grand total
[T ChiSquared [ Starein

Columnz Ii.j j Iid j
[T Faws Iid v'I

[T where valuesin |ig -

are between I_ and I_

Tabulate ? Help

" Select Means as the Output Mode

" A drop-down list labelled variate column appears. Select pcs
" From the Columns drop-down list, select occasion

. Click Tabulate



This produces the output:

Variable tabulated is pcs

1 2 3 4 5 6 TOTALS

N 8292 7482 6805 6465 6469 6445 41958
MEANS 52.0 50.6 50.9 50.0 48._7 48.8 50.3
SD*S 7.31 8.40 8.16 8.74 8.98 9.18 8.43

Now use the Tabulate window to tabulate mean age by occasion.

Variable tabulated is age

1 2 3 4 5 6 TOTALS

N 8815 8312 7629 7157 6798 6922 45633

MEANS -0.234 2.70 5.97 8.86 11.3 14.1 6.65
SD*S 6.11 6.07 6.04 6.04 6.00 5.98 6.04

The age variable has been transformed by measuring it as a deviation from age 50.

We are now almost in a position to set up a simple model, but first we must define
a constant column; this is just a column of 52890 values of 1 (one for each
measurement occasion).

" From the Data Manipulation menu, select Generate Vector
. Fill out the options as shown below and click Generate
" Use the Names window to assign the name cons to c29

=% Generate Vector

Type of vector
f« Constant vector Sequence © Repeated Sequence

Cutput column |E28 ﬂ
Mumber of copies 52890
alue |1
Help Generate R andam numbers .. |

A simple variance components model

We will start by examining how the total variance is partitioned into two
components: between person (level 2) and between occasions within person (level




1). This variance components model is not interesting in itself but it provides a
baseline with which to compare more complex models.

Set up a two-level model with pcs (physical functioning) as the outcome variable
and cons as the only explanatory variable. The Equations window should appear
follows:

=% Equations
pes, -~ N(XEB, Q)
pesy; = Bogcons

ﬁﬂ:}' z.ﬁﬂ +MDj +€D:’j

[ig] ~NO Q)+ Q=[]

ra] 00107 et ]

MHame | + | - | Add Term | Estimates | Honlinear | Clear | Hotation | Responses | Store Help Znumi'lllll;]

Note pcs;; is the physical functioning score at i measurement occasion for the j™
person. At convergence the estimates are:

&N Equations
pes,, ~ N(XE, Q)

pes;; = Byycons
Bo; =50.133(0.075) +uy. +ey,

] ~NCO Q) Q= [40.631(0.738)]
[e0,] N Q)+ Q.= [33462(0.259)]

-2¥oglikelihood(TGLS Deviance) = 282585.513(41958 of 52890 cases in use)

Hame |+ | - | Add Term |Estimates | Honlinear | Clear | Notation | Responses | Store Help Znnm]ﬂlﬂLJ

There is variation in physical functioning between individuals (&7, = 40.6) and also

variation between occasions within person (&2, = 33.5). The likelihood statistic (-2

loglikelihood), found at the bottom of the Equations window, can be used as the
basis for judging more elaborate models. The baseline value is 282585.



A linear growth curve model

A first step in modelling the between-occasion within-person, or level 1, variation
is to fit a fixed linear trend. We therefore add age to our list of fixed explanatory
variables in the Equations window (using Add Term). After adding age, click on
More and at convergence obtain the following:

=% Equations

pes,~ NUEB, Q)

pes; = Bogcons +-0.244(0.005 Jage,
By =51.671(0.080) +up +eg,

0] N0 Q) 2 Q= [39.203(0.711) ]
[eq,] ~NO Q5 Q.= [31597(0.245)]

-2¥oglikelihood(IGLS Deviance) = 280335.095(41958 of 52890 cases in use)

Hame | + | - | Add Term | Estimates car | Clear | Hotation | Responses  Store Help Znom|"|ﬂﬂ LJ

The estimate of the fixed parameter for age is -0.244 indicating that physical
functioning declines with increasing age. Estimates of the random parameters are
somewhat reduced, more so the level 1 variance which is expected because age is
time-varying (i.e. a level 1 variable). There is a reduction in the likelihood
statistic, which is now 280335.

We would expect the linear growth rate to vary from person to person around its
mean value, rather than be fixed, and so we make the coefficient of age random
at level 2 and continue iterations until convergence to give:



=¥ Fquations E@@
pes,~ N(AB, Q)

pes; = fycons + 3age,

oy =S1.743(0.073) +u, +eq,

By = -0.246(0.006) + 1y

vy| ~NO, @) : q,= [30.725(0.682)
ey | 0.346(0.040)  0.090(0.005)
eg,] "N Q2+ Q.= [28.585(0.243)

-2¥aglikelihood(IGLS Deviance) = 279215.799(41958 of 52890 cases in use)

Hame | + | - | Add Term Estimates ; Clear | Hotation | Responses| Store Help Znnm]'mﬂ ﬂ

Note that the coefficient for age now has a subscript j, indicating that it varies at
level 2 (i.e. between individuals).

The deviance, that is the reduction in the likelihood statistic, is 280335 - 279216 =
1119; this is large and is clearly statistically highly significant (comparing to a chi-
squared distribution on 2 degrees of freedom). Hence there is considerable
variation between people in their linear growth rates. We can get some idea of

the size of this variation by taking the square root of the slope variance (o) to
give the estimated standard deviation (+/0.09 = 0.3). Assuming Normality, about
95% of people will have growth rates within two standard deviations of the mean
growth rate (= -0.246), giving a 95% coverage interval of -0.85 to 0.35 for the

‘growth rate’. This suggests that physical health functioning improves with age for
some people.

We can also look at various plots of the level 2 residuals. To obtain a plot of the
standardised level 2 residuals, slope (U,;) versus intercept (G ):

. From the Model menu, select Residuals

" Next to level at the bottom of the Residuals window, select 2:person

. Click Calc

. Click on the Plots tab and, under pairwise, check standardised residuals
" Click Apply
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We see from the above plot that the two level 2 residuals are positively
correlated. From the Estimates window we see that the model estimate is 0.21
(from the Model menu, select Estimate tables, change from FIXED PART to level
2: person and check C). A positive correlation implies that the greater the
expected score at age 50, the faster the growth. However, this statistic needs to
be interpreted with great caution: it can vary according to the scale adopted, and
is relevant only for linear growth models.

Allowing the growth rate to vary across individuals, by fitting a random coefficient
at level 2 to age, implies that the between-individual (level 2) variance depends
on age. To calculate level 2 variance function:

= From the Model menu, select Variance function

= Next to level at the bottom of the Variance function window, select
2:person

. Click on Name to see the form of the level 2 variance function (a quadratic
function in age)

" Next to variance output to, select ¢35
" Click Calc
. In the Names window, assign the name |2var to ¢35

To plot the level 2 variance against age:

" From the Graphs menu, select Customised Graph(s)

. At the top left of the window, change from dataset D10 to an empty dataset
D1 which has no graph settings

" From the drop-down list next to y, select I2var
. From the drop-down list next to x select age
. From the drop-down list next to plot type, select line



" Click Apply

The variance plot is shown below, after adding axis labels. We can see that the
between-individual variance in physical functioning increases with age.

=¥ Graph display

@
o
=
©
=
©
=g
©
=
=
=
©

=

T
o
@
@
2
@

(a ]

\'\r!

! :
-7.3 0.0

Age (centred at 50 years)

Complex level 1 variation

Before going on to further elaborate the level 2 variation we can allow for
complex, that is non-constant, variation at level 1. So far we have allowed the
between-individual (level 2) variance to depend on age, which was achieved by
fitting a random coefficient for age at level 2. Suppose we believe that the within-
individual (level 1) variance might also depend on age. For example, we might
expect greater variance in physical functioning over time for older people than for
younger people. We allow the level 1 variance to depend on age by declaring the
coefficient of age to be random at level 1.

" In the Equations window, click on age and check i(occasion)
" Click Done
" You should find that an i subscript has been added to the coefficient for age,



and two extra terms have been added to the level 1 covariance matrix
= Click More to fit the new model

The model estimates are:

=¥ Equations M=k
pes,~ N(AB, Q)

pCs; = By cons =+ F12%e,

Loy = 51.720(0.073) +u o T Eay

Bi; = -0.243(0.006) + tey

uy| ~Neo, @) : o = [31.006(0.676)
, 0.351(0.040)  0.087(0.005)

eo| ~N(O, @) : q,= |26.067(0.304)
0.136(0.028)  0.007(0.004)

% 141

-2¥laglikelihood(TGLS Deviance) = 279069.930(41958 of 52890 cases in use)

Hame |+ | - | Add Term  Estimates : Clear | Hotation | Responses Store Help Znnml'iﬂll ﬂ

Note that, because age is a level 1 variable, it does not make sense to say that the
effect of age varies between measurement occasions. Rather, the parameters in
the level 1 variance matrix should be thought of as coefficients of the level 1
variance function, a quadratic function in age. To see the equation of the
variance function, and to obtain an estimate of it:

" From the Model menu, select Variance function

" Next to level at the bottom of the Variance function window, select
1:occasion

. Click on Name to see the form of the level 1 variance function (a quadratic
function in age - see below)

" Next to variance output to, select c36

. Click Calc

" In the Names window, assign the name |lvar to c36

From the Variance function window we see that the level 1 variance is the
following function of the level 1 parameters, whose estimates are obtained by
running the model to convergence:

2

— 4 2 " 2
var(z 0CONS +e 1:-_;.-3*3%-:' G, pcons” + Z2g,,,cons age,; + o, 188,



The following plot shows I1var versus age:

=¥ Graph display
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As a result of allowing the level 1 variance to depend on age, there is a
statistically significant decrease in the likelihood statistic of 279216 - 279070 = 146
with 2 degrees of freedom. We shall see later that some of this level 1 variation
can be explained by further modelling of the level 2 variation.

Repeated measures modelling of non-linear
polynomial growth

‘Growth’ in functioning may not be linear for all people over this age range. One
simple way of inducing non-linearity is to add a quadratic term in age, which is
achieved by including age-squared as an additional explanatory variable in the
model. We can ask MLwiN to calculate age? and add it to model as follows:

. In the Equations window, click on age then Modify Term



" Check polynomial, then change poly degree from 1 to 2
" Click Done and respond OK to the message that appears

" The predictor age has been replaced by age™1 and age”2, and variables with
these names have also been added to the worksheet

" Fit random coefficients at level 2 to both age”1 and age”2
" Fit a random coefficient at level 1 to age™1
" Click Start to fit the model

At convergence we have:

=% Equations

pes, -~ N(XB, Q)

pesy = fBycons + By age’l, + B, age"2,
Bo; =51.780(0.074) +uy +ep,

Bi; =-0.197(0.008) +u +e,,

By =-0.004(0.001) + 1

g, [34.097(0.726)
wy| "NO Q) Q= 0950(0.050)  0.105(0.007)
i |-0.077(0.004) -0.001(0.000) 0.000(0.000)

2ai| ~N(O, Q) : Q= [25837(0308)
» 0.059(0.030)  0.005(0.004)

-2¥oglikelibhood(TGLS Deviance) = 278522.965(41958 of 52890 cases in use)

Hame | + | - | Add Term | Estimates ; Clear | MNotation Responses| Store |uelp |ZDDITI|1W j

The likelihood statistic shows a further drop, this time by 547 with 4 degrees of
freedom (one fixed parameter and three random parameters), so there is strong
evidence that a quadratic term, which varies from person to person, improves the
model.

We also find that the parameter estimates in the level 1 variance-covariance
matrix have all decreased. What has happened is that the more complex level 2
variation, which we have introduced in order to model non-linear growth in
individuals, has absorbed some of the residual level 1 variation in the earlier
model. We can view this final model for the random variation as a convenient and
reasonably parsimonious description of how the overall variance is partitioned
between the levels.

We can use the Variance function window to calculate the variance at both level 1
and level 2 for each record in the dataset, and these can be added to obtain the
total predicted variance.



From the Model menu, select Variance function

Next to level at the bottom of the Variance function window, select
1:0ccasion

Next to variance output to, select I1var

Click Calc

Now change level to 2:person

Next to variance output to, select 12var

Click Calc

From the Data Manipulation menu select Command interface

In the box at the bottom of the Command interface window, type:
calc c37="I11lvar’+ 12var’

Press return, then type:

name c37 "~ totvar’

We will now plot the level 1 variance, level 2 variance, and total variance against

age.

From the Graphs menu, select Customised Graph(s)
At the top left of the window, make sure that D1 is selected

You should find that a plot of I1lvar versus age has already been specified. If
not, select llvar for y, age for x, and select line for plot type. By default
the line will be plotted in blue

Now click on the 2" row under ds #. Select I2var for y, age for x, and select
line for plot type. Click on plot style and change the colour to green

Now click on the 3™ row under ds #. Click plot what? Select totvar for y, age
for x, and select line for plot type. Click on plot style and change the
colour to red

Click Apply

The plot below shows the estimated level 1 variance (blue), level 2 variance
(green) and total variance (red) in physical functioning as functions of age. While
the level 1 variance is almost constant across the age range, the level 2 variance
(and therefore the total variance) increases with age.



=¥ Graph display
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Adding person-level explanatory variables

We will now add employment grade (occupation) and gender (fem) to the model.
Before adding occupation to the model, we need to declare it as a categorical
variable so that MLwiN knows to create and add dummy variables. The gender
variable, fem, is already coded as a binary (0,1) variable so can be added in its
current form.

" In the Names window, highlight occupation then click Toggle Categorical so
that the entry in the categorical column changes to True

" Go to the Equations window, click Add Term. Under variable select fem and
click Done

" Click on Add Term again and select occupation. Retain the default
occupation_1 (high grade) as the reference category. Click Done

= Click More to fit the model
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pes, ~ N(AB, Q)

pes; = Byeons + fiage’l, + grage2, + -3.056(0.164)&111]. +-0.825(0.15 7)0ccupaxi011_23. + -l.566(0.le)occupation_.%j
oy =53.280(0.127) +1up +eq,

Bry =-0.193(0.008) 2\, +e

By =-0.004(0.001) + 125,

31.990(0.693)

M’Uj
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uy |-0.076(0.004) -0.001(0.000) 0.000(0.000)
2ol ~NO, Q) : = |25802(0.308)

> 0.063(0.030) 0.005(0.004)

-2%oglikelihood(TGLS Deviance) = 278029.435(41958 of 52890 cases in use)
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Both gender and employment grade are significantly associated with physical
functioning. Women and employees in lower grades have poorer physical
functioning than men and high-grade employees. Note that the intercept now
refers to the reference group, i.e. men in high employment grade, of age 50.

Does growth differ by group? (cross-level interaction
between age and grade)

Does physical functioning decline faster in people from the low employment grades
compared with those in the high employment grades? We will add a cross-level
interaction between age and occupation to explore this.

" In the Equations window, click Add Term. Change order to 1 and select age
and occupation from the two drop-down lists that appear under variable.
Click Done

= Click More to fit the model
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pes;~ N(XB, Q)

pesy = Pogeons + gagenl, + goaget2, +-1.997(0.164 )feny, +-0.725(0.167)occupation_2; +-2.307(0.235)occupation_3; +
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The reduction in the likelihood statistic is 33 with 4 degrees of freedom (four
additional parameters), so there is strong evidence that the growth rate differs by
employment grade.  However, the interactions with the quadratic age terms
appear not to be significant (based on a comparison of the coefficients with their
standard errors). We will therefore see if we can simplify the model by removing
these terms.

" In the Equations window, click on any of the four interaction terms followed
by Modify Term

. Next to poly degree, change from 2 to 1
. Click Done

" Variables age”2.occupation_2 and age”™2.occupation_3 will be removed
from the model

= Click More to fit the model
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pes;~ N(XB, Q)
pes; = frcons + g age”l, + g age’2, +-2.001(0.164)fem, +-0.670(0.160)occupation_2, +-2.258(0.229)occupation_3; +
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The reduction in the likelihood statistic is only 2 with 2 degrees of freedom. We
therefore conclude that the interactions with the age-squared term are not
needed.

The estimate of the average decline in physical functioning by age in the top
employment grade is -0.150. For the low employment grade, it is -0.150 - 0.093 =
-0.243.

We can plot the predicted average growth curve for each grade as follows:

= From the Model menu, select Customised Predictions

" Click on age then Change Range. Click Range. Next to Upper Bound, type
25. Next to Lower, type -10. Next to Increment, type 1. This will produce
predictions for ages 40 to 75 years (because age was centred about 50). Click
Done

. Click on occupation then Change Range. Check category then each of
occupation_1, occupation_2 and occupation_3. Click Done

. Click Fill Grid

. Click on the Predictions tab. The grid contains a row for every combination
of occupation grade and age for each year in the range -10 to 25. Click
Predict to compute the predictions (ignore the message about a -ve definite
covariance matrix)

. Click on Plot Grid. Next to x, check age.pred. Under Grouped by, check
occupation.pred
" Click Apply

The predicted average growth curve for each occupation grade is plotted. Note
that the gender dummy, fem, has been fixed at its sample mean of 0.31 which for
a (0,1) variable is equal to the proportion in category 1. We could have fixed this
at 0 or 1 to obtain the curves for one gender.
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	To plot the level 2 variance against age:

