
* Correspondence to: Huiqi Pan, Institute of Education, 20 Bedford Way, London WC1H 0AL, U.K. E-mail:
teuephq@ioe.ac.uk.

CCC 0277—6715/98/232755—16$17.50
( 1998 John Wiley & Sons, Ltd.

STATISTICS IN MEDICINE

Statist. Med. 17, 2755—2770 (1998)

MULTI-LEVEL REPEATED MEASURES GROWTH
MODELLING USING EXTENDED SPLINE FUNCTIONS

HUIQI PAN* AND HARVEY GOLDSTEIN

Institute of Education, University of London, London WC1H 0AL, U.K.

SUMMARY

This paper explores the fitting of multi-level models to growth data over a wide age range using a new class
of extended spline models. These extend conventional splines based on a ‘#’ function representation by
allowing variable order functions and by including fractional polynomial terms. The work focuses on
modelling human growth in height and head circumference with example data sets. The procedures can be
used with covariates and for comparing population parameters. ( 1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

In longitudinal studies, growth patterns are often summarized by certain linear or non-linear
growth models so that a small number of parameters, or functions, of them, can be used to make
group comparisons or to relate to other measurements. Historically, statistical methods for
analysis of longitudinal data can be described in two broad categories: fitting a family of curves to
a population with a between-individual structure, and fitting curves individually to each indi-
vidual. In this paper we shall give examples from human growth but the same general principles
will apply to animal and other forms of growth.

To analyse individual data, growth models are fitted to each individual. The resulting para-
meters that describe events such as the timing, magnitude and duration of the growth, may be
used to compare groups etc. The effects of variables other than age, such as gender and social
background, may also be included as covariates (Guo et al.,1 Ratcliffe et al.2).

Alternatively, a model may treat an individual as a member of a population from the outset to
that we are able to model directly the variations in growth parameters among individuals.
Recently, efficient likelihood based methods have been devised which can handle unbalanced
data, in which the number and time intervals of measurement can vary from individual to
individual. The general multi-level model incorporates this class of methods as a special case and
descriptions can be found in Goldstein,3 Bryk and Raudenbush4 and Longford.5



Models fitted separately to individual subjects have tended to be non-linear in form (for
example Jolicoeur et al.6) whereas the population based models have tended to be linear in the
parameters. More recently, however, population based non-linear models have been studied
(Berkey and Laird,7 Bock et al.8).

In this paper we restrict discussion to linear models. The linear multi-level growth model9 has
important advantages; it can accommodate covariates which change over time, and within-
subject residual terms which have a complex covariance. While this methodology can be extended
in principle to non-linear models,3 linear models are easier to interpret, are flexible and computa-
tionally relatively straightforward.10 A non-linear curve typically requires a large number of
parameters which makes estimation difficult, or else may introduce fixed relationships between
growth events which are unrealistic.12 Berkey13 has pointed to problems of convergence and
non-uniqueness of solutions for non-linear models.

In published population studies there is little which can handle longitudinal growth data with
covariates involving a wide age range, for example, from birth to adulthood. This can be ascribed
to two problems. First is the fact that the large variation in growth between individuals, especially
in adolescence, makes it difficult to find adequate growth functions. Secondly, the structure of the
underlying form of growth curve changes with age and the most flexible curves proposed,
polynomials, cannot be used directly.11

The only linear model proposed to fitting height to both early childhood and adolescence is the
general eight-parameter Reed model by Reed and Berkey.14 The model combines a five-para-
meter model for early childhood and a separate five-parameter model for adolescence. The model
for childhood is smoothly joined to one for the adolescent period in such a way that the curve is
continuous in distance and velocity at the age where the two models are joined, resulting in eight
effective separate parameters.

A major disadvantage of this approach lies in the requirement that the separate ‘piecewise’
polynomials join smoothly. When fitted to a sample from a population it also requires that the
between- and within-individual variations at the joins are the same for both segments. This is
often difficult to achieve (see discussion). A more flexible approach which guarantees the correct
degree of smoothness for both the mean growth curve and the variation is to use the spline
functions known as ‘grafted polynomials’ or ‘#’ functions.

Spline functions in general are piecewise polynomials of degree n whose function values and
first n!1 derivatives agree at the points where they join (Wold,15 Wegman and Wright16). The
abscissae of these join points are called knots. The ‘#’ functions with fixed knots which we use is
defined as
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Smith17 provided a framework for a unified statistical theory of spline regression with fixed knots
and using the ‘#’ function representation. In general, with m!1 knots, m
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We shall refer to this as a conventional#function spline, or simply as a conventional spline. In
this case, f and its first n!1 derivatives will be continuous. Splines with n"3 are cubic splines
and are commonly used.
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In fitting growth curves to populations experience suggests that fixed join points are important.
Variable knot cubic splines were explored by Berkey et al.18 for fitting height curves to long-term
longitudinal data with satisfactory results for the period of the function less than age 11 years but
were found inadequate for the adolescent portion where there were systematic biases. Variable
knot cubic splines lead to non-linear estimation. Allowing joint points to vary across individuals
in a quite general way would entail the equivalent of the estimation of a large number of nuisance
parameters and interpretation may be difficult. An interesting alternative is to have a common set
of join points but allow individual random variation around the ages at which these are fixed. We
shall not consider this possibility in the present paper.

Expression (1) can be extended by including polynomial pieces of different degrees. The
construction of spline models with polynomial pieces of different degrees has been illustrated by
an example of a cubic-quadratic-linear spline17 and there are other examples.19 These functions
can be written as
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where r is typically at most 2 or 3. If no value of r is less than 2, then f has continuous derivatives
with respect to either m

j
or x of order 0, 1,2 r!1. Another form of ‘#’ function which can be

used to structure the model is (m
j
!x)r

`
which can be incorporated as an additional term.11

We can introduce further flexibility while retaining linearity by also including fractional poly-
nomial terms such as logarithms or non-positive-integer terms.20 An example is the following
expression:
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The location of f and m and the orders of the polynomials can be determined by the overall
behaviour of the data assisted by the adoption of the rules of thumb suggested by Wold.15 We
allow the model (3) to have both terms of the form (x!m

j
)r
`

, (f
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!x)r

`
if they do not overlap so

that the model is neither restricted by non-increasing or non-decreasing degrees of polynomials in
each phase of the model. These models are referred to as extended splines.

Little is known about using conventional or extended splines for fitting growth data. This
paper will explore the use of these splines to describe a wide variety of growth patterns, and will
incorporate the models into a more general multi-level structure with covariates.

2. TWO-LEVEL GROWTH MODELS

This section introduces the two-level model using measurements from early age to adulthood.
Early in infancy there is a rapid increase in head circumference while after infancy it increases
slowly at least until 18 years.21 This suggests a more complex pattern of head circumference
growth curve in early childhood than at other ages.

Let y
ij

denote the ith head circumference measurement of person j at time t
ij

(in years). We
propose the following two-level model for growth in head circumference:
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Note that we are assuming simple within-individual variation with e
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This is often known as a random coefficient model.3
This curve has three segments, each of which is continuous with continuous first and second

derivatives at the knots. In the present case the final form of the curve and knots have been chosen
after extensive preliminary investigations and are at 2 and 10 years. In this sense we may prefer to
regard the knots as being estimated rather than fixed. In other applications and data sets these
choices may vary.

We propose the following random coefficient model for height:
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with e
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e
) and where the u

kj
are assumed multivariate normal with 5]5 covariance

matrix )
u
. In this model there are m"6 segments for the ‘descending’ cubic ‘#’ function with

5 knots, at 9, 11, 13, 15 and 17 years of girls and 9, 11, 13, 15 and 17)5 years for boys. As far as
possible we have attempted to maintain the same join points for males and females, but the earlier
cessation of growth for females required an earlier final join point. We also assume an ‘ascending’
quadratic‘#’function with knots at 9 and 11 years.

3. MODELLING HEIGHT

In this section the extended splines are applied to our longitudinal data sets: first modelling height
for males and females separately.

3.1. Preliminary separate-subject models for height

The subjects studied are 89 males with 3044 measurements and 67 females with 2134 measure-
ments from the control group (99 males and 74 females) of the Edinburgh Longitudinal Study,
initiated in 1972 and known to be chromosomally normal; they were born at a time when the
Medical Research Council was conducting a new-born cytogenetic survey.22 The inclusion
criteria were that they had been followed up to at least 16 years of age for males and 15 years for
females in 1992 when this study started. The children were measured 3-monthly during the first
year of life and twice-yearly thereafter. The data used in this section cover ages from 0)25 to 18)5
years. Gross errors have been eliminated. Supine length was measured before two years of age.

First, model (5) is investigated by fitting curves for each individual using ordinary least squares
(OLS) with the specified knots. In males the average residual standard deviation is 0)55 cm with
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Table I. Model (5) of height (cm) for 89 males

Fixed coefficient

Estimate SE

Intercept 149)0 1)7
ln(t) 6)27 0)22
(t!9) 0)17 0)01
(11!t)3

`
!0)62 0)02

(13!t)3
`

0)66 0)01
(15!t)3

`
!0)22 0)01

(17)5!t)3
`

1)23 0)21

Level 2 covariance matrix (correlations in brackets)

Intercept ln(t) t!9 (t!9)2
`

(t!11)2
`

Intercept 25)69
ln(t) !0)94 (!0)13) 2)03
t!9 2)24 (0)89) !0)30 (!0)43) 0)25
(t!9)2

`
!0)32 (!0)18) 0)08 (0)16) !0)05 (!0)28) 0)13

(t!11)2
`

0)10 (0)03) !0)14 (!0)16) 0)04 (0)15) !0)12 (!0)97) 0)38

Level 1 variance"1)03 (SE"0)03) number of subjects"89, number of measurements"3044

a range from 0)29 cm to 0)91 cm. In females the average residual standard deviation is 0)49 cm
with a range from 0)23 cm to 0)80 cm. These results are close to expectation.23

3.2. Random coefficient spline models

Using the chosen knots we fit models separately for males and females. The random coefficient
model is that given by (5). Table I gives the estimates of the parameters. Examining fixed
coefficient contrasts shows that all the fixed coefficients are significantly different from zero
(P(0)01).

A likelihood ratio test3 comparing the model in Table I with a corresponding variance
component model where only the intercept term varies randomly at level 2 is highly significant
(P(0)001) as expected. For a check of this model, a plot of standardized residuals by predicted
values is given in Figure 1. It appears that the residuals are less variable in the middle of
the age range. The only outliers are for measurements after 18 years where the data are sparse
and Figures 1 and 2 use only measurements at ages less than or equal to 18 years. We have
looked at models allowing the level 1 variance to be a function of age but none of these has been
found to fit well. Figure 2 shows an approximately Normal distribution, again with a few outliers.

The estimated mean population curve of the model in Table I together with the cross-sectional
means is shown in Figure 3. The cross-sectional means are derived from varying numbers of
observations within narrow age intervals ($2 weeks about target ages). The mean curve
estimated by the multi-level model uses the precise age at which the measurement was taken.
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Figure 1. Plot of standardized level 1 residual by predicted values for height of males

Figure 2. Plot of standardized level 1 residuals by Normal equivalent scores for height of males

Figure 4 shows the estimated velocity curve which is the first derivative of the multi-level model
based on the estimated fixed parameters.

Table II gives the estimates of parameters for the females using model (5). As with males we
have a highly significant likelihood ratio statistic for testing this model against a variance
components model. A plot of standardized residuals by predicted values is given in Figure 5 and
the Normal plot of standardized level 1 residuals is displayed in Figure 6, showing similar results
as for males but with less extreme outliers.

Figure 7 shows the estimated mean population curve of the random coefficient model of Table
II together with the cross-sectional means. Figure 8 presents the estimated velocity curves from
the model using the first derivative of the model based on the estimated fixed parameters.
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Figure 3. Longitudinally estimated mean curve (line) of height for males with the cross-sectional means (points)

Figure 4. Estimated velocity curve of height for males

3.3. Estimating growth parameters

We use the estimated parameters to calculate the velocity curves for males and females (see
Figures 4 and 5). We can also use the estimated parameters to calculate other growth parameters,
such as the age of pre-pubertal ‘take-off ’ or peak height velocity (PHV).24
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Table II. Model (5) of height (cm) for 67 females

Fixed coefficient

Estimate SE

Intercept 146)3 1)8
ln(t) 5)71 0)29
(t!9) 0)05 0)01
(9!t)3

`
!0)30 0)02

(11!t)3
`

0)32 0)02
(13!t)3

`
!0)22 0)01

(17!t)3
`

!0)09 0)003

Level 2 covariance matrix (correlations in brackets)

Intercept ln(t) t!9 (t!11)2
`

(t!13)2
`

Intercept 42)82
ln(t) !4)80 (!0)47) 2)42
t!9 4)51 (0)94) !0)74 (!0)65) 0)54
(t!11)2

`
!2)56 (!0)69) 0)33 (0)38) !0)31 (!0)74) 0)32

(t!13)2
`

2)58 (0)47) !0)22 (!0)17) 0)32 (0)52) !0)45 (!0)94) 0)70

Level 1 variance"0)94 (SE"0)03) number of subjects"67, number of measurements"2134

Figure 5. Plot of standardized level 1 residual by predicted values for height of females

If we use the model for females as an example, then the ages of minimum or maximum velocity
are given by the solution to the following equation:
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Figure 6. Plot of standardized level 1 residuals by Normal equivalent scores for height of females

Figure 7. Longitudinally estimated mean curve (line) of height for females with the cross-sectional means (points)

If we assume that the u
hj

have a multivariate Normal distribution we can estimate the distribution
of t, for example by simulation,25 with the bs replaced by their estimates. This expression requires
at least one random coefficient to be multiplied by a positive power of t in order to estimate the
distribution of the growth parameters. However, it has not been possible to include random
coefficients higher than the quadratic with the relatively small sample size.

Table III gives the mean values of the growth parameters. The means under the column
‘overall’ are obtained simply using the estimates from the fixed part of Table I for males and
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Figure 8. Estimated velocity curve of height for females

Table III. Average growth parameters for 89 males and 67 females

Growth parameters Overall Simulation
Males Females Males Females

Age at take-off (years) 11)1 9)2 11)2 9)3
Velocity at take-off (cm/year) 5)1 5)5 4)9 5)6
Height at take-off (cm) 144)4 134)1 145)5 135)5
Age at PHV (years) 13)8 11)5 13)8 11)6
PHV (cm/year) 7)8 6)4 7)8 6)7
Height at PHV (cm) 161)4 147)6 161)6 149)2
Height at 18 years (cm) 178)1 165)1 178)9 165)5

Table II for females. Those under the column ‘Simulation’ are from a simulation sample of 100
individuals using the estimates and assuming multivariate normality. The two sets of estimates
are similar. We could also use simulation to derive quantiles for the between-individual distribu-
tion of these growth parameters.

Our results are very close to those obtained by other methods. For males, these estimates are
close to the results of Ratcliffe et al.26 for the 16 earliest born boys of this data set using kernel
estimation.27,18 For females, the estimates are close to the results of Ratcliffe et al.29 by using the
same kernel estimation for the 16 earliest born girls from this data set.

In contrast to the model of Reed and Berkey,14 the velocity curves of Figures 4 and 8 represent
the main features of the pubertal spurt well and are, by definition, smooth at the joins.

The height mean curves in Figures 3 and 7 asymptote for feamles but not for males. There may
be two reasons for this: one is that females stop growing earlier than males and by 18)5 years some
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Figure 9. Between-individual standard deviation calculated from Tables II and III

boys in late development are still growing; another is that relatively small numbers in the final age
group might lead to an average curve being unstable at that age, as discussed by Cole and
Green.30 In order to check the predicted mean value for males of 178)9 cm at 18)5 years using our
model, we applied the BTT model to the data using the AUXAL program of Bock et al.31 The
BTT model is a non-linear model which explicitly includes an upper asymptote and is an
extension to the triple logistic model of Bock and Thissen.32 The predicted value is 178)8 cm,
which is very close to our results.

3.4. Between-individual variation

Figure 9 shows the estimated between-individual standard deviation by age for each gender of the
models in Tables I and II. For most ages, from early childhood to 16 years, these are close to those
found by Tanner et al.33 The standard deviation increases with age gradually at the pre-pubertal
stage and faster at the pubertal stage. The difference in timing between the two genders is also
clear and is reasonably consistent with the timing difference of the pubertal stages. The results are
displayed only up to age 17 years due to small numbers after that age.

4. MODELLING HEAD CIRCUMFERENCE

Head circumference is an important part of growth monitoring. For example, in studying
children with sex chromosomal aneuploidy, head circumference is a predictor of later cognitive
ability.2

Using data from the Fels Longitudinal Study, Guo et al.34 fitted a three-parameter linear
model to the head circumference data for each individual. Roche et al.21 presented a four-
parameter non-linear model for head circumference from birth to 18 years. More recently,

MULTI-LEVEL REPEATED MEASURES GROWTH MODELLING 2765

( 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 2755—2770 (1998)



Table IV. Number of measures of head circumference by
karyotype

Karyotype Individuals Total number
of measures

XY 83 2522
XX 60 1781
XYY 10 261
XXY 11 306
XXX 10 285

Ratcliffe et al.2 studied the effect of karyotype on head circumference in the Edinburgh Longitudi-
nal Study. Extended splines were used to fit data for each individual and the estimates were used
to calculate means and standard deviations for several age groups of controls and chromosomally
abnormal children. In the next section we describe the fitting of our extended spline models to
these head circumference data using karyotype as a covariate.

4.1. Data

The subjects are 31 children with sex chromosome abnormalities (10 XYY, 11 XXY and 10 XXX)
and 143 controls (83 XY and 60 XX), who had been identified by cytogenetic screening of
consecutive liveborn infants between 1967 and 1979. Chromosomally normal male and female
infants were recruited as controls between 1972 and 1976 from the two hospitals in which the
cytogenetic survey was being carried out.22

Twins and low birth weight children were not included in this study. Details can be found in
Ratcliffe et al.2 Table IV shows the number of measurements.

As with height we first fitted each individual separately using ordinary least squares. For males,
the average residual standard deviation is 0)21 cm with the range from 0)10 cm to 0)39 cm. For
females, the average residual standard deviation is 0)24 cm with the range from 0)12 cm to 0)44 cm.
This amount of residual variation is close to that reported by Roche et al.21 and generally
considered acceptable.

4.2. Random coefficient models

We fitted model (4) to the data together with four dummy variables for the karyotypes XX,
XYY, XXY and XXX, with the normal male karyotype XY, as the base category. Thus in
this model we jointly fit males and females. We shall allow just an overall difference between the
karyotypes.

Table V shows the results from the basic two-level model (4) with the four karyotype dummy
variables. We see that normal females are smaller by 0)94 cm, the mean head circumference of the
XXX group is smaller than that of normal males by 2)22 cm and the mean for XXY is smaller than
that of normal males by 1)32 cm.

We have also fitted models including interactions between some of the age terms and
karyotype. These results are summarized in Table VI in terms of fixed part differences, and
Figure 10 shows these graphically.
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Table V. Model (4) of head circumference with covariate of karyotype
Fixed coefficient

Estimate SE

Intercept 39)95 0)26
t !0)20 0)04
t2 0)008 0)002
ln (12t#1) 3)31 0)10
(2!t)3

`
!0)54 0)03

(t!10)3
`

0)003 0)001
XX—XY !0)94 0)17
XYY—XY !0)43 0)34
XXY—XY !1)32 0)33
XXX—XY !2)22 0)34

Level 2 covariance matrix (correlations in brackets)

Intercept t t2 ln(12t#1) (2!t)3
`

(t!10)3
`

Intercept 7)87
t 1)07 (0)80) 0)23
t2 !0)04 (!0)73) !0)01 (!0)97) 0)0004
ln (12t#1) !2)87 (!0)89) !0)51 (!0)93) 0)02 (0)84) 1)32
(2!t)3

`
!0)90 (!0)93) !0)13 (!0)80) 0)01 (072) 0)36 (0)90) 0)12

(t!10)3
`

0)01 (0)45) 0)002 (0)61) !0)0001 (!0)73) !0)005 (!0)47) !0)001 (!0)44) 0)00007

Level 1 variance"0)07 (0)02)
Number of subjects"174
Number of measurements"5178

Table VI. Mean parameters (SE) and the karyotype (dummy varible) effects

Parameter XY XX—XY XYY—XY XXY—XY XXX—XY

Intercept 39)83 (0)34) !0)62 (0)53) !2)27 (1)08) !1)33 (1)01) !0)39 (1)07)
t !0)25 (0)06) 0)11 (0)09) !0)16 (0)18) 0)02 (0)17) 0)38 (0)17)
t2 0)01 (0)002) !0)002 (0)004) 0)002 (0)008) 0)02 (0)007) !0)12 (0)01)
ln (12t#1) 3)42 (0)14) !0)27 (0)21) 0)75 (0)43) !0)10 (0)40) !0)95 (0)43)
(2!t)3

`
!0)53 (0)04) !0)03 (0)06) 0)24 (0)13) 0)01 (0)12) !0)21 (0)13)

(t!10)3
`

0)005 (0)001)!0)005 (0)002) 0)001 (0)003) !0)001 (0)003) 0)003 (0)003)

5. DISCUSSION

Multi-level linear models with extended spline terms provide a flexible tool for fitting growth
data. The use of ‘#’ functions and fractional polynomials allows for the local smoothing of data,
including an upper asymptote, as well as the ability to model random coefficients across
individuals. In addition, covariates are easily introduced as are further levels of nesting, for
example by area.
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Figure 10. Estimated mean curves of head circumference by karyotype (line) with the cross-sectional means (points)

Although we have used long-term complete longitudinal data sets for purposes of comparison
with existing methods, this is not necessary. Using a multi-level model we can utilize any mixed
longitudinal data set, including purely cross-sectional data, so long as there are adequate
numbers of measurements spanning the occasions of interest in the model. By comparing our
results with those from other methods it seems that there is no particular advantage in the use of
non-linear models, especially as these tend to require long-term data.

The important work of Royston and Altman20 on fractional polynomials provides a valuable
contribution to modelling growth data and these models are useful for some kinds of data. In
general, however, the combination of fractional polynomials with spline functions allows greater
flexibility. The computational burden of finding suitable fractional powers is often heavy and it
would be useful to see whether the use of splines in additional to fractional polynomials provided
a good alternative for the data analysed by Royston and Altman.

An alternative to the ‘#’ function is to use constraints to combine segments smoothly at the
joins.11,14,35 Goldstein and Pan36 illustrate the use of constraints in a two-level model. Unfortu-
nately, it appears difficult in general to make the iterative algorithm converge when three or more
segments are included or when covariates other than age are considered because of the need for
smooth constraints at joints both for the fixed and the random parts of the model.

Similar problems may occur when the model of Reed and Berkey14 is incorporated into
a multi-level model. The Reed and Berkey model is composed of two fractional polynomials, for
the pre-pubertal stage and the pubertal stage. In principle it can be estimated by a multi-level
model with smoothness constraints. We need at least five constraints, three for the fixed part and
two for the random part, and this leads to computational difficulties. In contrast, the constraints
are implicit in the use of ‘#’ functions so that these estimation problems do not arise.

The presence of end or edge effects is common in curve fitting and smoothing techniques.30
This problem has been observed in our data and we would suggest including measurements up to
20 years, if possible, to obtain better results.
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We have focused on human growth in length and head circumference not only because of their
inherent interest but also because of their growth regularity. Not all measurements have an
approximately Normal distribution,37 however, and it may be necessary to transform data to
approximate Normality. The procedure of Cole and Green30 based upon smoothed Box—Cox
transformations may be useful for this purpose.

We feel that it is reasonable to assume uncorrelated level 1 residuals in our model. Most of the
data used in this study were collected at about 6 month intervals. A runs test on residuals, for each
individual, was significant in 6 of 89 boys and 5 of 67 girls in height; in head circumference it was
significant in 10 of 83 boys and 7 of 60 girls. We can explicitly extend our multi-level models to
incorporate a time series structure on the level 1 residuals using the methods of Goldstein et al.38
They point out that if measurements are taken close enough together then their deviations from
the fitted smooth curve are bound to be correlated. For height measurements on children prior to
adolescence the point at which this ‘autocorrelation’ becomes apparent is for measurements made
about 3 months apart in the immediate pre-adolescent years.

We have chosen the precise form of model to fit, including join points, after preliminary data
manipulation and modelling. Our analysis has an important exploratory component and we
would hope that further replications of our procedures can be carried out.

Finally, all the methods of this paper can be extended readily to the multivariate case where
several measurements are analysed jointly so that their interrelationships across time can be
studied.
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