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A gold standard? 
The birth of modern statistics is often credited to R. A. Fisher, who introduced two 
key elements. The first of these was a systematic exposition of experimental design 
and the second was to lay the foundations for ‘classical’ statistical inference through 
the use of the ‘likelihood’ approach (Fisher, 1922). In this talk, I shall look at the 
ideas behind what is now accepted as good statistical design practice; my particular 
concern is with the analysis of data from the Social sciences. I shall argue that we 
need to rethink some of the assumptions that ordinarily go into the design of social 
research; that we need to make certain clear distinctions between social, (and much of 
medical and other research), and research in the natural sciences. In particular, I will 
highlight the crucial role played by the original ideas of experimental design, implicit 
in the term ‘experimental’ itself, in the area of agriculture and later incorporated into 
activities such as clinical drug trials and animal experimentation.  

A key central concept in Fisher’s expositions was the notion of ‘randomisation’. If 
one can assume that the measurements being studied have a truly random distribution 
then, with a few more assumptions about conditioning, independence and variance 
structures, one can apply a suitable statistical model that then allows inferences to be 
drawn from the data about the values of ‘parameters’ and in particular about 
‘confidence intervals’ for them. Likewise, one can derive ‘hypothesis tests’ to make 
statements about the existence of group differences etc. This notion of a random 
distribution for measurements survives throughout modern statistics; without it, there 
would be no statistical theory. 

The importance of randomisation is its use as a practical device for generating 
measurements so that they actually do satisfy the basic statistical assumption of a 
random distribution. Thus, in an agricultural field experiment, as Fisher emphasised, 
fertilisers should be applied to different crop plots at random in order to satisfy the 
randomisation assumption of the statistical model used to analyse the subsequent data. 
If allocation is truly random, then the only reasons for differences in crop yields are 
those due to different properties of the fertilisers together with the chance variation 
arising from the randomisation process. The statistical model formally incorporates 
both these elements and Fisher’s genius was to show, in a wide variety of situations, 
how the model could be used to yield inferences about the fertilisers, taking account 
of the random variation. Note that in this scenario the emphasis is on treating the 
random variation as ‘noise’ that is as essentially of no interest having been generated 
solely by the exigencies of the need to take account of inherent natural variation of 
crop growth in real fields. I shall return to this issue later, but for now note that this 
model of randomisation was hugely successful in agriculture, and subsequently in 
medicine, introduced by e.g. Bradford Hill for drug trials (Hill, 1951). I shall refer to 
it as the ‘randomisation principle’. 

 1  



The text books in statistics and experimental design adopted the randomisation 
principle, and the notion of a randomised controlled trial (hereafter referred to as an 
RCT) is now generally accepted as a ‘gold standard’ in applied statistical work. If one 
wishes to make sound inferences about differences between, for example, public 
health programmes or reading schemes, it is generally taken for granted that a 
properly conducted RCT is the best. In the area of so called ‘evidence based 
medicine’ (see for example Chalmers, 1993) this finds strong support, as well as in 
the Social sciences where it is far less common, and other approaches are typically 
regarded as second best. This notion of a ‘gold standard’ is closely tied up with the 
idea of making causal inferences, although they are logically distinct categories. 
Certainly, in the case of agriculture, or drug trials, establishing that, on average, one 
treatment is superior to another does not necessarily tell us anything about causal 
mechanisms. Nor, as I shall argue, is it necessary to have an RCT to draw causal 
conclusions. I shall also argue that the so-called ‘gold standard’ may, in some 
circumstances, turn out to comprise a rather baser metal. 

Confounders 
The notion of ‘confounding’ factors is fundamental in much of statistical inference. 
To illustrate this we can consider research carried out on the link between smoking in 
pregnancy and perinatal mortality; a link now well recognised in health education 
campaigns and even featured on cigarette packets although it was not always so. 

In the 1970s, a number of large-scale studies disagreed about the relationship between 
maternal smoking in pregnancy and perinatal mortality. Table 1 summarises these 
disagreements (Goldstein, 1977 gives details). 

Table 1. Percentage low birthweight by smoking category with ratios of 
mortality rates (mortality ratios) for six large-scale perinatal mortality studies. 
Ordered by mortality ratio. 

Study % <2.5kg Mortality ratio: 
smokers/non-smokers 

 Smokers Non-smokers  

Rantakallio 6.1 3.5 1.01 

Yerushalmy 6.4 3.2 1.03* 

Niswander & 
Gordon 

9.5 4.3 1.12 

Ontario study 8.9 4.5 1.27 

Butler et al. 9.3 5.4 1.28 

Comstock et al. 11.1 5.9 1.40* 

* Neonatal mortality. 

The most striking thing about this table is the strong positive relationship between the 
mortality ratio for smokers/non-smokers and the percentage of low birthweight babies 
in the different studies. This relationship can be understood if we study the 
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relationship between perinatal mortality and birthweight, which is given in Figure 1, 
adapted from Goldstein (1997). 

Figure 1. Relationship between perinatal mortality and birthweight (British 
Perinatal Mortality Survey, 1958) 

The average reduction in birthweight when a mother smokes is about 200g. We see 
immediately from Figure 1 that for those mothers destined to have relatively heavy 
babies, above about 3500g, a reduction in birthweight will have little effect on the 
mortality risk, even improving it. For lower birthweight babies, however, a reduction 
of this amount will have a relatively large effect on the risk. Thus, in those studies 
where the percentage of low birthweight babies tends to be small, the overall 
mortality ratio will tend to be small, as is observed. 

It appears that smoking acts on mortality largely by reducing expected birthweight. In 
this case, birthweight is an intermediary ‘confounding’ variable and an understanding 
of its role is crucial in interpreting results such as those in Table 1. Even in 
populations such as that of the Rantakallio study with no apparent average higher risk 
from smoking, there will be subpopulations, those with low birthweight, for whom the 
mortality risk can be expected to be much higher for smokers. Even if we could have 
carried out a RCT in this situation (and some have tried using random allocation in 
prenatal health education programmes) the crucial issue is that of understanding the 
underlying pathways of influence. What we have here is an illustration of the 
overriding scientific importance of replication under different circumstances, 
compared to which randomisation is an issue of lesser concern. It is also worth 
mentioning that human beings, unlike crops, may consciously interact with the 
‘treatment’ they are given. Thus, in a randomised smoking cessation trial, it may be 
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the case that there is a greater probability for those women destined to have heavy 
babies to cooperate with the study, whatever group they are randomly assigned to. 
Since these are the ones for whom smoking cessation matters least, the study will tend 
to underestimate the effect of smoking – an example of what is termed ‘informative 
non response’. Again, the application of randomisation cannot compensate for such a 
mechanism, and indeed may make the investigator unwisely optimistic about her 
inferences. Such remarks, of course, also apply to conventional drug trials, which rely 
upon the cooperation of patients. It is also worth pointing out that power calculations 
for such trials typically are concerned with detecting average effects, whereas what 
may be more important is the ability to explore interactions involving smaller 
subpopulations, and this will generally demand far larger samples. 

The level of randomisation 
Consider again an agricultural experiment with fertilisers applied to crops and 
suppose that yield is a function of soil type and that soil type varies systematically 
across the fields used in the trials, say from North to South. If a particular treatment 
was applied in a systematic fashion for example always in the North part of a field, 
then any ‘effect’ of that treatment might be spurious, simply reflecting soil 
differences. The allocation of fertiliser at random to plots across the fields guards 
against this on average. If a large enough sample, or set of trials, is used then even 
small differences due to fertiliser would be apparent without need for the standard 
apparatus of statistical inference. Thus, randomisation has the additional function of 
helping to guard against  ‘confounding’ effects.  

Suppose now that a further factor begins to affect crop yield in a particular fashion 
when a field overall contains more than a certain amount of a particular fertiliser per 
square meter, say more than 90% of the field is covered by this fertiliser. Such an 
effect might operate, for example, through some kind of influence on the behaviour of 
crop predators. This effect, if present, is clearly important commercially since in 
practice fertiliser will be applied on a whole field basis. Yet, the experiment, with its 
reliance on randomisation of treatments across plots within fields, will fail to detect 
such an effect; the randomisation creates an experimental situation that is artificial, so 
that results from the experiment will not necessarily apply in other environments. Of 
course, if we suspected that such a ‘field composition’ factor existed, we could 
modify our procedure, for example, by using a sample of fields and allocating 
fertilisers at random to fields. In medical trials, such designs are often known as 
‘cluster randomised’ trials and I will return to these later. The point here is that the 
level at which randomisation takes place may matter, and this constitutes an important 
modification or elaboration of the principle of randomisation.  

All of this is to emphasise the need to consider carefully the role of conventional 
wisdom about RCTs, and I now turn to a specific example from the social sciences 
where these and other considerations should cause us to think carefully about the 
randomisation principle. 

Class size and achievement 
I shall take as my illustration research into the relationship between pupil class size 
and progress in achievement. This has been one of the most researched areas of study 
in education, even though out of the thousands of such studies published perhaps only 
about 10 satisfy minimal standards of satisfactory design. These standards include 
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having longitudinal data (Goldstein et al., 2000). Of these there is just one large scale 
RCT, known as the STAR study (Word et al., 1990) and I will look at this in some 
detail since it illustrates most of the points I wish to make.  

The STAR study was carried out in the state of Tennessee in the late 1980s. There 
were 65 schools with at least three entry forms that were selected, and children 
randomly assigned to small (about 15), regular (about 25), and regular with teacher-
aide kindergarten classes. The study children were followed for up to 6 years. Despite 
its size and expense (some $11million) it suffers from some notable weaknesses: 

1. There is ‘contamination’ of effects among classes of different sizes within the 
same schools; i.e. lack of treatment independence. Applying a single treatment 
to each school (cluster randomisation) would have been better. 

2. It is zero blind because all the participants including children knew the 
treatment to which they were assigned. 

3. There was a lack of entry assessment to improve precision and inference 
details and to allow a check on the success of the randomisation procedure. 

Children were assigned to small or large classes within schools. Inevitably, 
information about the progress of children in the different size classes will be 
available within the school and to all the responsible teachers, and so is likely to 
compromise the requirement for treatments to function independently. The nature of 
educational systems and social systems in general, is such that the complexity of their 
structures typically does not allow us to assume the independent operation of units 
within them. When an RCT changes such a structure in a research study, this implies, 
in a strict sense, that its conclusions can be accepted only, if at all, for populations 
with a similar structure. In order to generalise beyond such a structure would require 
an understanding of the interactions among the units at different levels within a 
population. In the case of the STAR study, this would require an understanding of 
how the interactions among teachers of different sized classes can influence teaching 
and learning. In fact, randomisation at the school level would have been better, 
although requiring more schools and creating serious logistical and possibly ethical 
difficulties (parents were allowed to switch classes after a year within the school – it 
would not have been possible to do this across different schools). Furthermore, such a 
study design would not in general apply to any real world population where there is 
inevitable variation within schools in terms of class size and where such variation may 
be determined by policies designed to take advantage of any demonstrated class size 
effects. Thus, the important requirement of generalisability would seem to be violated. 

An important characteristic of most medical trials is that they are at least double blind, 
with neither the patient nor the administering physician knowing which treatment (or 
placebo) is being allocated to a patient. In the STAR study, we have an example of a 
zero blind study where everyone, including the children, was aware of the treatment to 
which they had been allocated. The usual reason for maintaining blindness is that 
knowledge of the treatment being administered, together with expectations about its 
possible effect, may of itself influence the outcome. For example, in one study 
(Shapson, Wright et al. 1980) over 90% of teachers were found to believe that larger 
classes produced worse results and this expectation seems to be prevalent in all 
educational systems. In the STAR study, this would apply to teachers particularly, but 
also to parents. Yet it is difficult to see how any experiment of this kind can avoid 
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being zero blind, or at best single blind. To set up the study requires co-operation and 
the treatment, crucially, is at the group level; it is a social treatment rather than one 
applied to individuals and this is one of the important distinguishing characteristics of 
social research and it has important consequences, as I shall outline shortly. 

The third issue is perhaps less important, yet symptomatic of the way in which 
researchers have sometimes relied too heavily upon the theoretical properties of 
randomisation to allow valid comparisons. Leaving aside the other problems, a 
comparison of test scores at the end of kindergarten year does allow valid 
comparisons to be made between the effects of small and large classes. These 
comparisons, however, can only be average ones; we cannot know for example 
whether initially low achieving children fared better or worse, relatively speaking, 
than initially high achieving ones (the answer seems to be, incidentally that the former 
have the most to gain from small classes (Blatchford et al., 2002)). This is a serious 
deficiency since it denies the possibility of certain kinds of information that may be 
socially important and is a good example of a naïve reliance upon the randomisation 
principle. 

These problems represent both practical and theoretical difficulties with RCTs. There 
is, however, a further problem that, in some circumstances can lead to an RCT leading 
to a quite erroneous conclusion as a direct result of randomisation. 

To see this take a hypothetical example and assume: 

1. That the percentage of low achievers in the population = 10%.  

2. That class size is not associated with achievement  

3. That achievement is lowered where a class has at least 33% of low 
achievers. 

With random allocation, we have the probabilities in Table 2. 
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Table 2. Probability of observing low achieving class for classes of different sizes with 
randomly selected pupils, where the overall percentage of low achievers in the population = 
10%. 

Class size 
Prob. of  class 33% low achievers ≥

15 0.013 

20 0.0023 

25 0.0005 

In a study with 200 classes size 15, and 200 classes size 25: 

Expected percentage of 1 or more 'low achieving' class among large classes = 10% 

Expected percentage of 1 or more 'low achieving' class among small classes = 93% 

 

 

Thus, in most (93%) studies there will be at least one small class with lowered 
achievement but lowered achievement for one or more large classes will occur in only 
a small minority (10%) of the studies.  The inevitable inference would be that small 
classes tend to lower achievement, whereas in fact this is spurious and occurs only 
because randomisation has made the occurrence of the triggering event (a high 
percentage of low achievers) extremely unlikely in large classes. For the same reason, 
randomisation makes it impossible to study the effect of this compositional variable in 
large classes because the event is so rare. By contrast, if the real population contains 
sufficient large classes with the compositional variable in operation then a purely 
observational study would be expected to allow such a comparison, and hence 
exhibits a theoretical advantage over a randomised study. This example of how the 
randomisation principle can lead to misleading inferences by altering the composition 
of a group is not confined to educational settings and can be found elsewhere in the 
social and medical sciences where compositional effects operate. 

More than on average 
I have already argued for the scientific and practical importance of focussing on 
‘interactions’ between the ‘treatment’ of interest and other variables, so that for 
example we study how subgroups are affected. Another aspect of this is in the study 
of variability more generally. Traditional statistical analysis has concentrated largely 
on models that explain or predict the average value of a response, such as educational 
achievement, in terms of other factors, such as class size or social background. The 
remaining ‘unexplained’ variation is typically regarded as ‘noise’ and of little intrinsic 
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interest. Consider, however, the STAR study again. In a reanalysis, Goldstein and 
Blatchford (1998) show that in the second year of schooling the difference in reading 
progress for Black children between those in small (15) as opposed to large (25) 
classes amounts to about one fifth of a standard deviation of the test score; it is 
effectively zero for White children. This is an interesting differential finding, but in 
addition, they show, using a multilevel model, that this difference is not constant, 
varying from school to school. Moreover, the between-school standard deviation of 
this difference is relatively large, about one quarter of a standard deviation, so that the 
effect for Black children appears to be very small or even negative in some schools 
and very large in others. This may of course reflect the vagaries of the study design, 
but might also suggest that there are other mediating variables influencing the class 
size differences. Either way, such information on variability needs to be taken into 
account when interpreting and acting upon the results of an analysis. In particular, if 
policy is formulated based on the average group differences we should not expect it to 
be effective in all circumstances. 

Whither? 
I have argued against the automatic adoption of randomisation as a gold standard; so, 
what is its status and what could we put in its place? One of the attractions of 
randomisation is that it appears to be a conceptually simple method of coming to 
replicable conclusions. It also often provides a means of presenting results in a 
relatively simple form. I have also argued that, even where randomisation is relevant 
or even crucial, this does not relieve the data analyst from the modelling of any real 
underlying complexity. I want to conclude by saying a little more on the issue of 
complexity. 

There is an important distinction between the complexity of the system being studied, 
for example the factors associated with class size and progress in achievement, and 
the complexity with which the results of an investigation are summarised and 
reported.  Thus, it is unnecessary to understand the complexities associated with 
selecting a representative survey sample, adjusting for non response bias and 
adjusting standard errors in order to appreciate the results in terms of estimated 
percentages having, say, particular voting intentions. Likewise, one does not need to 
follow the intricacies of a multilevel analysis to appreciate findings on the effects of 
class size. In both cases, however, it is necessary to perform the technicalities in order 
to ensure that any results are as robust as possible and that statements can have good 
estimates of statistical uncertainty attached to them, for example in the form of 
confidence intervals.  

Some have argued (see e.g. FitzGibbon, 1995) that complex modelling is unnecessary 
since for many purposes much simpler approaches produce similar results. While this 
view has some force, particularly where there is a lack of adequate software or 
expertise to carry out more complex analysis, it is essentially misguided. Encouraging 
people to apply simple models to complex systems is likely to encourage a view that 
the systems really are simple, with all the dangers which that brings. The use of 
simple models, for example ordinary regression, when, say, complex multilevel 
structures are present, will tend to hide subtleties which, as I have suggested, may be 
among the most interesting aspects of the data. Rather, what is needed is the 
development and especially the application of statistical techniques to data at a level 
of sophistication that attempts to capture the key elements of the complexity that 
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exists in the real world. At the same time, those who carry out such analyses have a 
responsibility to communicate them in ways that are intelligible, without being 
oversimplified.  

Implementing such a perspective is easier said than done, and one might ask who 
would be able and who willing to do this? We certainly cannot look to politicians in 
power who, overall, seem more concerned to obfuscate than to illuminate issues. The 
media, at times, will recognise the issues, but their own general lack of understanding 
of quantitative matters often hinders their reporting. This leaves the universities, the 
learned societies and similar bodies, and this is, in my view, one of the major 
challenges facing such institutions today. Most especially, those who are entrusted 
with education, at all levels, should be prepared to do two things. The first is to be 
clear about their commitment to the uncovering of social complexity and the 
avoidance of facile oversimplification. The second is to struggle to maintain such a 
commitment in the face of indifference from the powers that be, as well as the 
outright hostility of those for whom the height of intellectual achievement is a well-
spun sound bite.  

Thank you for listening. 

 

Harvey Goldstein 
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