
(“Using simulation in parallel computing
for faster sample size calculations in

complex random effects models”)

Toni Price, University of Bristol

Research topic:

Sample size calculations in

complex random effects models

MLPowSim – recap

• Developed in a separate ESRC-funded project

• Generates both MLwiN macro code and R language code for
performing sample size calculations on multilevel models

 Text-based interface

 Uses C code to gather user input and generate output

• Works for a selection of multilevel nested and crossed designs
(balanced and unbalanced)

• Slow to run but very flexible

First step: started putting into a cohesive framework to:

• Streamline duplicated code (e.g. for user input which is similar

across different models)

 Improves code maintenance (e.g. bug fixes impacting fewerlines of

code)

• Improve input validation

 Makes for a better user experience and reduces crashes

• Automate testing of generated code and results

• Add multiple user interfaces, e.g. command line/file input/web-based

toni@goji:~/workspace/svn/dev/phd/mlpowsim/codegen$./src/mlpowsim.rb -h

[INFO] -> Running mlpowsim.rb

Run 'mlpowsim.rb --help' for help with command line options.

[INFO]

Usage: mlpowsim.rb [options]

Generates code for calculating sample sizes in MLwiN or the R language.

-l, --log-level STRING Logging level

(default: info)

-f STRING Path to parameter input file

(if not supplied, parameters will be input from the command line)

-y, --yaml-only Load yaml file and exit

(requires option -f as well; irrelevant options will be ignored)

-p, --file STRING Path to default parameter file *** Note: only used for command line input

(if not supplied, will be set to /home/toni/workspace/

svn/dev/phd/mlpowsim/codegen/test/fixtures/eg008/mlwin/params.yaml)

-o, --output STRING Output location

(default: /home/toni/workspace/svn/dev/phd/mlpowsim/codegen/output)

-c, --confirm-disclaimer Suppress interactive disclaimer confirmation

-v, --version Display version info

-h, --help Display this help message

toni@goji:~/workspace/svn/dev/phd/mlpowsim/codegen$

Running MLPowSim on the command line

File input – Example for a 2-level model
Input params

#

Example p. 39 in MLPowSim user manual

MLwiN code output

See http://www.yaml.org/YAML_for_ruby.html

general:

output_lang: mlwin

rnd_num_seed: 1

sig_level: 0.025

n_sims: 1000

model:

n_levels: 2

is_balanced: yes

structure: nested #=> nested | cross-classified

response_type: normal

est_method: igls

include_fixed_intercept: yes

include_random_intercept: yes

n_explanatory_vars: 0

estimates:

beta_0: -0.177

sigma_sq_u: 0.151

sigma_sq_e: 0.916

sample_size:

level_2:

low: 10

hi: 50

step: 10

level_1:

low: 10

hi: 60

step: 10

toni@goji:~/workspace/svn/dev/phd/mlpowsim/codegen$./src/mlpowsim.rb -c -f test/fixtures/eg008/mlwin/params.yaml

[INFO] -> Running mlpowsim.rb

Run 'mlpowsim.rb --help' for help with command line options.

[INFO]

[INFO] User-supplied params file: 'test/fixtures/eg008/mlwin/params.yaml'

.

<snip>

.

[INFO] ==

[INFO] Params:

[INFO] ------

[INFO] General:

[INFO] Output language: MLwiN

[INFO] Random no. seed: 1

[INFO] Significance level: 0.025000

[INFO] No. of simulations per setting: 1000

[INFO] Model:

[INFO] No. of levels: 1

[INFO] Balanced? Yes

[INFO] Structure: Nested

[INFO] Response type: Normal

[INFO] Estimation method: IGLS

[INFO] Include fixed intercept? Yes

[INFO] No. of explanatory vars: 0

[INFO] Estimates:

[INFO] beta_0: -0.140000

[INFO] sigma_sq_e: 1.051000

[INFO] Sample size:

[INFO] Level_1:

[INFO] Lower value: 20

[INFO] Upper value: 600

[INFO] Step: 20

[INFO] ==

toni@goji:~/workspace/svn/dev/phd/mlpowsim/codegen$

Running MLPowSim via Web interface

 This gives an indication of how MLPowsim generates
code, but …

What does MLPowSim do?

• Takes a model specification

• Steps through a number of different sample size settings

• For each sample size setting:

 Simulates a (user-specified) number of datasets according to model
specification

 For each simulated dataset, estimates model parameters and their
standard errors

 Computes the estimated power according to two different methods:
o “Zero/One” method

o “Standard error” method (suggested by Joop Hox, 2007)

Zero/One method

For a parameter θ of interest:

• Compute (Gaussian) confidence interval for parameter:

• Compute „zero/one‟ value:

• Take average of zero/one values over simulations for sample size setting:

Zero/One method – contd.

Then compute confidence interval for power:

Standard error method

For each parameter of interest:

• Take average of estimated standard errors over simulations:

• Use approximation:

where γ is the effect size

– this formula is for a one-sided t-test for γ with reasonably large d.f.
(say, d.f ≥ 10) [Snijders and Bosker (1999) p. 142]

Standard error method – contd.

• Solve for power (1 – β):

Standard error method – contd.

Then compute confidence interval for power:

Finally:

• For each sample size setting, tabulate computed power values

• Read off required sample sizes for desired level of power!

Improving speed

• Objective: to speed up run-time for generated power calculation
code

• Previously started taking a look at using capabilities of multi-core
processors and parallelization to execute more than one run
simultaneously

• Exploratory code made use of Unix (Linux) „forking‟ to create sub-
processes

• No more done on this yet, but would like to try using snow (“Simple
Network of Workstations”) with provides support for parallel
computing in R
http://cran.r-project.org/web/packages/snow/

 Would have the advantage of doing everything in R (in cases
where power calculations are being run in R that is)

Cross-Classified Model – Example

• Unbalanced design, sampling from a pupil lookup table

• Data from Fife in Scotland

• Response: Exam results at age 16 of 3435 school children (cross-

classification of primary/secondary schools)

• 19 secondary schools & 148 primary schools

Cross-Classified Model – Example contd.

• Model (cross-classified variance components):

• Implemented in MLPowSim in R (since MCMC option in MLwiN was
slow)

y ~ 1 + (1 | level_1id) + (1 | level_2id)

Cross-Classified Model – contd.

• (From MLPowSim manual) Estimated power values increase very

quickly for small sample sizes but tend to plateau at roughly 0.8

after around 3,000 pupils

• Potential enhancement:

 Investigate further alternatives to drawing individuals from a 2 way

table – e.g. when generating the data, set a probability of a family

moving into an area (in which case their child's primary school may be

different from most of the other children's primary school for the

relevant secondary school)

Cross-Classified Model – contd.

• After implementing unit tests to check expected power calculation
output, ran this example on both Linux and Windows

• Got different results so have been looking at possible causes for
the differences

• After quite a lot of digging into detail of the example, it seems this
might be due to computational differences in R on 64-bit and 32-bit
platforms

• From r-devel Mailing List:
(https://stat.ethz.ch/mailman/listinfo/r-devel)
[Amongst other platform-specific differences, an important
difference is]
“… the number of registers available on the CPU, which differs
between i386 and x86_64. Hence computations get done in
different orders by optimizing compilers.”
– Prof Brian Ripley (Feb 10, 2011 03:12pm)

[Demo of current MLPowSim

incl. automated tests for verifying actual

numerical output]

What next?

• Extend cross-classified unbalanced data model (and look more
closely at convergence)

• Add support for more models

• Continue investigating speed improvements through parallelization

• Look at gaining speed improvements through use of an algorithm to
„focus in‟ on required power values rather than running a complete
series of grid-like settings

