
Multilevel ordinal models for examination grades

Antony Fielding1, Min Yang2 and Harvey Goldstein2

1Department of Economics, University of Birmingham, UK
2Institute of Education, University of London, UK

Abstract: In multilevel situations graded category responses are often converted to points scores and linear
models for continuous normal responses �tted. This is particularly prevalent in educational research.
Generalized multilevel ordinal models for response categories are developed and contrasted in some
respects with these normal models. Attention is given to the analysis of a large database of the General
Certi�cate of Education Advanced Level examinations in England and Wales. Ordinal models appear to
have advantages in facilitating the study of institutional differences in more detail. Of particular
importance is the �exibility offered by logit models with nonproportionally changing odds. Examples
are given of the richer contrasts of institutional and subgroup differences that may be evaluated.
Appropriate widely available software for this approach is also discussed.
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1 Introduction

In the England and Wales public examination systems the reporting of pass results is by
grades: A*–E for General Certi�cate of Secondary Education (GCSE) and grades A–E
for the Advanced (A) Level General Certi�cate of Education. Principally for purposes of
selection to higher education, the A-level grades are converted to a University Central
Admissions Service (UCAS) tariff of points scores. These are scored for each subject
examination taken (Aˆ 10, Bˆ 8, C ˆ 6, Dˆ 4, Eˆ 2, with F indicating unclassi�ed or
fail at 0). They are then often summed to provide a total points score for each candidate
in assessing student achievement. Typical diets are three or four of these subjects but
some students take more or fewer. Those taking fewer offer on occasion other
quali�cations at this level.

Most research on A-level examinations to date, particularly in studies of school
effectiveness, has used either the point score by subject or summative scores and they
are used in this form by the Government in the production of ‘performance indicators’
or ‘league tables’ (O’Donoghue et al., 1996). One of the drawbacks to the use of scores
is that information is lost about the actual distribution of grades in particular subjects
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when inferences are made at the level of the school. A school mean score in a particular
subject could be the result of different individual student grade distributions. Thus
an average score could be produced by most students performing very close to the
median grade or by some performing very well and some very badly; the distinction
between two such schools is potentially important.

The present paper develops explanatory models for the actual grades and compares
these with the standard point scoring system. The aim is to gain additional insights
from using the former as opposed to the latter models. This is done using multilevel
models that recognize the essentially hierarchical nature of examination data with
students nested within schools. For the point scoring system standard normal theory
models are applied, while for the grades less well-known ordered categorical response
models are used. A technical advantage of the latter models lies in the fact that they
do not require strong scaling assumptions, but merely the existence of an ordering.
They are also not subject to estimation problems arising from grouped observations
of an assumed continuous response scale. Further they do not require a basic
normality assumption over the scale, although this is not problematic in the point
scores used in our examples. It is also possible that the use of the ordered categorical
models will result in models with fewer higher order �xed or random effect
parameters to �t the data. Many of these comparative criteria are reviewed in
work by Fielding (1999, 2002).

In Section 2 we discuss the source of our database, the variables available and the
educational context of the application. Section 3 reviews normal theory continuous
response multilevel models and we stress the importance in our context of allowing
random regression coef�cients. Multilevel models for ordered categories are introduced
in section 4. Existing work on such models using a variety of estimation procedures (for
example, Ezzett and Whitehead, 1991; Jansen, 1990; Harville and Mee, 1984; Hedeker
and Gibbons, 1994, 1996; Saei and McGilchrist, 1996; Saei et al., 1996; Chan et al.,
1998) is extended because methods in our software provide more �exibility in allowing
random coef�cient speci�cations. We also consider estimation of speci�c random
residual effects. Section 5 compares results on the normal points score and ordered
models for our application and highlights methodological and substantive points of
interest. Sections 6, 7, and 8 detail some important consequences about prior ability
GCSE effects, the prediction of A-level grades, and the use of residual estimates for
institution value added. In Section 9 we extend ordinal logit models by considering
nonproportional changing odds for �xed-effect variables, such as gender, in similar
ways to Hedeker and Mermelstein (1998). Saei and McGilchrist (1998) also allow
nonproportional �xed time effects in panel data. However, we entertain the possibility
of more complexity and also consider developments by considering nonproportional
multilevel random effects for our institutions. The latter prove very informative in the
context of our application. We conclude in the discussion by focusing on the practical
signi�cance of the results, show that the more complex models may improve �t, and
consider future directions.

While a central thrust of this paper is methodological, some important substantive
results emerge, especially in terms of gender differences and institutional variation.
These are highlighted by the use of the variants of the multilevel ordered category
response models considered.
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2 Data and source

In this paper we utilize information provided by the UK Department for Education
and Employment (DfEE) from its database of linked A=AS-level and GCSE exam-
ination results (O’Donoghue et al., 1996). The AS (Advanced Supplementary)
quali�cations are intermediate ones usually taken after one year of study. Grades
are usually scored at one-half the corresponding A-level grade. Each individual’s
outcomes for each subject and quali�cation are recorded. Additionally a limited
range of information is available on certain background factors. We have student’s
gender, date of birth, and previous educational achievements, as well as the type of
their educational establishment, local education authority, region, and examination
board.

In this study, we concentrate on A-level outcomes in 1997 for two subjects:
Chemistry and Geography. There are a number of reasons for these particular choices
of subject. The principal reason is that these two subjects are popular, giving a
reasonable number of entries that could be matched to previous General Certi�cate
of Secondary (GCSE) results. These will be used as prior achievement variables. They
are the normal secondary school quali�cations taken by most students at the end of
compulsory education prior to any further advanced study. Total A-level entries are
30 910 in 2409 institutions for Chemistry and 33 276 in 2317 institutions for
Geography. AS-level entries are only 3.5 and 3.8% respectively of combined totals.
Given this small incidence and also noting that for present purposes modelling
essentially different outcomes simultaneously would add to model complexity, the AS
entries are not included in analyses. In both subjects only 1.8% of students had several
A-level entries and in these cases all entries except the �nal one scored zero. Thus the
single best entry, indicative of achievement in that subject, was entered into our analyses
without loss of substantive meaning. Another reason for the choice of these two subjects
is that they have distinct distributions of grades. As Table 1 shows, the grade

Table 1 Frequency distributions on A-level Chemistry and Geography (1997) on cases that had matching
students’ GCSE results

Chemistry (2409 institutions)a Geography (2317 institutions)b

Grades Number
Overall
(%)

Male
(%)

Female
(%) Entry

Overall
(%)

Male
(%)

Female
(%)

A 6680 21.6 21.8 21.4 4170 12.5 10.8 14.7
B 6666 21.6 21.2 22.1 7407 22.3 20.4 24.5
C 5732 18.5 18.0 19.2 7885 23.7 23.7 23.7
D 4611 14.9 14.8 15.0 6297 18.9 20.3 17.2
E 3606 11.7 11.7 11.6 4271 12.8 14.2 11.1
F 3615 11.7 12.5 10.7 3246 9.8 10.6 8.7
Total 30 910 100.0 100.0 100.0 33 276 100.0 100.0 99.9

aAverage A-level point score: 5.83 (Malesˆ 5.78; Femalesˆ 5.89) Average GCSE point score: 6.30
(Malesˆ 6.16; Femalesˆ 6.47).
bAverage A-level point score: 5.47 (Malesˆ 5.23; Femalesˆ 5.76) Average GCSE point score: 5.85
(Malesˆ 5.70; Femalesˆ 6.04).
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distribution for Chemistry was skewed towards grades A and B, while that for
Geography was more nearly symmetrical. They therefore provide good examples in
comparing model sensitivities to distributiona l shape.

It was also decided to omit extreme small outlying groups of 0.36% of
Chemistry and 0.37% of Geography students who had very low average GCSE
scores well separated from the main distribution (3 or less using scores discussed
below).

In many analyses of aggregate educational performance scores, transformation by
normalizing has been a practical way of overcoming problems in modelling due to
the presence of marked ceilings and �oors in the score range. This also helps with
model assumptions of normal errors (Goldstein, 1995). In this paper, with
single subject grade score responses experimentation with normalizing transforma-
tions did not noticeably improve the error distribution of the data compared to
using the raw point score. With a limited number of discrete values the effect of
grouping is a likely caveat, but this is present even under transformation. A
further point is that effects are more easily interpretable on the raw points score
scale and also make comparisons between models for scores and the grades more
direct.

A mean centred average GCSE score, GA, is derived from all GCSE subjects of
the student with scores A* ˆ 7, Aˆ 6, Bˆ 5, C ˆ 4, Dˆ 3, Eˆ 2. This is used as a
prior attainment covariate in modelling. Also used are available student level
covariates, gender of the student (females ˆ 1; males ˆ 0) and centred age. The
cohort is aged between 18 and 19 years with a mean of 18.5 years. We also
introduce the mean of GA (Sch-GA) and standard deviation of GA (Sch-SD) at the
level of the institution as possible institution-level effects. Institutions were also
formed into 11 categories according to their admission policy and type of funding.
Most are publicly funded at the local level as Local Education Authority (LEA)
Maintained Schools. Of these, schools in LEAs having no selection by ability at
entry (most LEAs) are Comprehensive (M=C). In selective areas schools are usually
Selective (M=S) with the rest designated Modern (M=M). There are also Grant
Maintained Institutions funded directly from central Government with a similar
selection typology according to their local area (GM=C, GM=S, GM=M). Indepen-
dent schools are privately funded and usually fee-paying and are either Selective or
NonSelective (IND=S, IND=NS). Sixth Form Colleges (SFC) and Further Education
Colleges (FE) are institutions catering speci�cally for students beyond the compul-
sory education age of 16 years and are funded directly by central Government
through a funding council. In the main there is a heavier concentration of A-level
work in the SFCs. There is a small miscellaneous range of other types (Other). In
models dummy explanatory variables were formed with M=C as the base category.
The examination boards involved in the study were Associated Examining Board
(AEB), Cambridge (Camb), London, Oxford, Joint Matriculation Board (JMB),
Oxford–Cambridge joint delegacy (OXCAM), and the Welsh board, WJEC. The
latter has only a few entries and did not show obvious difference from AEB in data
exploration. Thus these two boards were combined to form the base of dummies for
other boards. Fuller details of these variables and their educational context in the
UK are given by Yang and Woodhouse (2001).
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3 Statistical models for point scores

As a base for evaluating further developments we can formulate a standard variance
components model for points with institutions at level 2 and students at level 1:

yij ˆ b0 ‡ u0j ‡ eij (3:1)

Here yij denotes the UCAS scored response for the grade of an A-level subject offered by
the ith student from the jth school. The term u0j is the jth institution random effect and
assumed ¹ N(0, s2

u0 ). The within-institution student level disturbance is eij ¹ N(0, s2
e ).

We note an implicit normality assumption for the response which further means it is
assumed continuous. For our grade-scored data this is strictly untenable but may
sometimes be assumed to hold approximately for the arbitrary scale on which the
points are located.

We can now add to the model covariates such as are introduced in the previous
section. We can allow covariates that are polynomial terms in continuous variables,
interactions between main factors, and so on. We write

yij ˆ b0 ‡ Xij b ‡ u0j ‡ eij (3:2)

Here b is a vector of �xed-effect coef�cients associated with such factors and covariates
in the data vector Xij. Goldstein (1995) gives terminology and details of �tting such
types of model.

As other researchers have shown, we need in general to �t random coef�cients models
to adequately describe institution-level variation (O’Donoghue et al., 1996; Goldstein
and Spiegelhalter, 1996; Yang and Woodhouse, 2001). Extending by these means we
have a model of the form

yij ˆ Xijb ‡ Z ijuj ‡ eij

with

Xij ˆ {1, x1ij, . . . }, Z ij ˆ {1, z1ij, . . . } (3:3)

bT is now {b0 , b1 , . . . }, with uT
j ˆ {u0j, u1j, . . . }.

Usually, but not always, most of the Z variables are a subset of the X variables. The
elements of uT

j are random variables at the institution level and are assumed dependent
multivariate normal with expectation zero.

In the following analyses variants of models of types (3.1), (3.2), (3.3) are developed
for A-level Chemistry and Geography point scores separately.

4 Multilevel models for ordered categories

We now exposit parallel formulations modelling ordered grade responses directly
without reference to explicit scoring scales. The six categories of response A–F are
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denoted by integer labels s ˆ 1, 2, 3, 4, 5, 6. Following the single level model methods of
McCullagh and Nelder (1989) we use generalized linear models with cumulative
probabilities associated with responses as dependent. For the ith student from the
jth institution the probability of a grade higher than that represented by s is denoted by
g(s)

ij . We have 0 < g(1)
ij < g(2)

ij < ¢ ¢ ¢ < g(5)
ij < g(6)

ij ˆ 1. We note that although probabilities
for s are cumulated upwards, those of the ordered grades are cumulated downwards.
This proves convenient for interpretation. It is the changing nature of this whole
probability distribution for individuals in response to �xed and random explanatory
effects that we now wish to model. In continuous (normal) response models by contrast
we model conditional expectations given the set of these effects.

However, we usually desire models in which effects operate in a linear and additive
fashion. A monotonic ‘link’ transformation of a set of cumulative probabilities on the
[0, 1] scale to the real line usually facilitates this in generalized linear models. In general
this link transformation can be any inverse distribution function of a continuous
variable. In particular the logit (inverse logistic), complementary log–log (inverse
Weibull) and probit (inverse normal) are frequently used. Conceptually a set of
thresholds or cut-points on this link scale for each individual are determined
by the individual’s probability distribution over the grades and vice versa (Bock,
1975). Thus in our case a link transformation of g(s)

ij (s ˆ 1, 2, . . . , 6) corresponds to
sequential positions on the whole real line (a(1)

ij , a(2)
ij , a(3)

ij , a(4)
ij , a(5)

ij , ‡1) with a(s)
ij

constituting thresholds for the grades. Fixed and random effects operate linearly on
these thresholds and hence indirectly on the probabilities over the ordered grades.
A related conception used in ordinal models by many researchers (for example,
McCullagh, 1980; Hedeker and Gibbons, 1994; Fielding, 1999) is through the
notion of an unmeasured and arbitrarily scaled latent variable. This is assumed to
underlie the ordered grades and varies continuously along the real line. The ordered
categories represent contiguous intervals on this variable with unknown but �xed
thresholds. The latent response is assumed governed by a linear model, and in our case
a multilevel linear model. Different distributional assumptions about the latent variable
may be shown to generate particular generalized linear models for ordered categories of
the type under consideration. There are some advantages in these ideas since inter-
pretation of results can be made directly on the scale of the latent variable. However,
here we shall not be directly concerned with such an interpretation since our principal
aim is to compare the different kinds of inferences arising from the normal points and
ordinal models. However, Fielding and Yang (1999) further discuss this idea. Also,
when we allow more complexity in randomly varying thresholds as we do later in the
paper, it is not clear that latent variable interpretations can be easily adapted.

Goldstein (1995) discusses the formulation of these models in a multilevel context. In
the main we deal with logit models. Comparable to the base variance components
model (3.1) is

logit{g(s)
ij } ˆ log

g(s)
ij

1 ¡ g(s)
ij

Á !
ˆ a(s)

ij ˆ a(s) ‡ u0j (s ˆ 1, 2, 3, 4, 5) (4:1)

A �t to model (4.1) estimates a series of marginal location cut-points conceptually
similar to the intercept of model (3.1). Again for the jth educational establishment there
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is a single random effect u0j, which is assumed to be N(0, s2
u0

) distributed. Individual
responses follow a multinomial distribution determined by their set of grade probabil-
ities, although estimation procedures can allow for extra-multinomial variation
(Goldstein, 1995). Even when multinomial variation may be assumed there may be
advantages in estimator quality by allowing an extra-multinomial parameter to operate
(see Yang, 1997; Fielding and Yang, 1999). We have allowed it in our present analyses
though its estimate usually suggests multinomial variation is appropriate.

Analogously to model (3.2) we extend the basic model by adding to the model
appropriate �xed-effect covariates. We now have

logit(g(s)
ij ) ˆ log

g(s)
ij

1 ¡ g(s)
ij

Á !

ˆ a(s)
ij ˆ a(s) ‡ Xij b ‡ u0j (4:2)

This model possesses the proportional odds property (McCullagh, 1980). For all s the
�xed or random effects operate on cumulative odds by constant multiplicative factors.
More detailed explanation of this and an illustra tion of parameter interpretation is
given by Yang (2001). A referee of this paper has suggested that as written this model
might imply that the sign of a bk is the reverse of the direction of the effect of a variable
on the underlying response. This is usually a consequence of an upward shift in
probabilities cumulated upwards on the ordered scale implying a downward shift in the
response. This often causes confusion in interpreting results. Attempts to remove this by
inserting negative signs before the bk and random effects have often been suggested, but
this may cause further confusion (Fielding, 1999). In our formulation and as de�ned
our cumulation is downward on the grade scale and both these interpretational
dif�culties are removed. The signs of the coef�cients will be the same as the direction
of effects on the underlying response. We feel that this may possibly be adopted in
standard practice to good effect.

Further, by analogy with the random coef�cients model (3.3) we have

logit(g(s)
ij ) ˆ log

g(s)
ij

1 ¡ g(s)
ij

Á !
ˆ a(s)

ij ˆ a(s) ‡ Xij b ‡ Zijuj (4:3)

This has similar normality assumptions about the vector of random components uj:

5 Comparison of results between the Normal point score
and the ordinal models

To �t the normal models we use the iterative generalized least squares (IGLS)
procedures of MLwiN (Rasbash et al., 1999). Ordinal model results all use penalized
quasi-likelihood in the MLwiN macros MULTICAT (Yang et al., 1998), incorporating
the improved second-order procedures (PQL2) of Goldstein and Rasbash (1996). Yang
(1997) discusses the validity and statistical properties of these estimators.
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In this section we compare parameter estimates and individual institution residual
estimates for the normal and ordinal models. Table 2 provides the comparative results
for base models (3.1) and (4.1). Tables 3 and 4 give results for two variants of models
(3.2) and (4.2). First we adjust for a range of background characteristics of student,
institution, and examination board, but exclude the main intake ability characteristic,
student GCSE average. Table 4 then adds variables derived from the latter in various
ways. In particular polynomial terms in GA are introduced (GA^2, GA^3, GA^4),
interactions of these with gender (GA-F, GA^2-F, GA^3-F), and the aggregated institu-
tional level intake score. This is a useful extension since it draws a distinction between
control for extraneous factors affecting raw performance and assessing progress using
initia l intake achievement covariates. This is standard in educational performance
research where it is desired to highlight types of control on institutional effects
(Willms, 1992). We do not attempt model selection here and include many relevant
parameter estimates that on diagnosis are not statistically signi�cant. Our purpose is a
broad comparison of the models within frameworks familiar in educational research.

Because the parameters associated with the same variable relate to different scales
under the model type comparisons we report as precision measures the standardized
t-ratios of parameter estimates to estimated standard errors. The broad pattern of
covariate effects are the same under normal and ordinal model assumptions. Generally,
Ezzett and Whitehead (1991) have commented that major effects will emerge and are
relatively insensitive to model formulation, though we may expect size of estimates to
differ somewhat. In our case precision measures of regression parameter estimates are
very similar between model types. Formal tests on these yield the same inferential
conclusions. Impressions from either model type closely agree. No real difference in
impact on broad substantive interpretation emerges. Precision of the school-level
variance is slightly higher in all cases for ordinal models but the improvement is
barely discernable.

We can comment on the broadly similar patterns of covariate effects for the models
of Table 3, which do not adjust for intake achievement. In general, better performances
come from females and younger students. Compared to the base M=C schools, selective
schools of all types have signi�cantly higher achievement. Modern schools have lower
performance but this is not statistically discernable for M=M in Chemistry. Sixth form
colleges and others (mainly sixth form centres in schools) also perform better but in
neither case are results statistically signi�cant for Geography. FE colleges have much
lower achievement generally. GM=C and IND=NS schools are not signi�cantly different
from their maintained comprehensive (MC) counterparts. The estimates of dummy
parameters for boards relative to AEB=WJEC reveal signi�cantly higher average grade
performances for OXCAM, JMB, and CAMB Chemistry examinations. Oxford has
signi�cantly worse performance in Geography. Other board effects are not signi�cantly
different from the base.

The results in Table 4 have the additional prior achievement covariates at both
institutional and student levels. Effect estimates in this table thus relate to ‘adjusted
performance’ and relate to progress over the course of A-level study. As before,
conclusions from models (3.2b) and (4.2b) are comparable. In both subjects younger
students make more progress in addition to having higher general achievement.
However, boys now make more progress than girls despite girls being higher achievers,
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as also noted by O’Donoghue et al. (1996). M=S and GM=S selective schools now lose
their signi�cant comparative advantage when progress rather than raw performance is
the criterion. However, the effect of IND=S is statistically signi�cant in both subjects.
M=M, GM=C, and IND=NS schools make no signi�cantly different progress from M=C
in either subject. GM=M seem to do worse but the effect is signi�cant only for
Geography. Sixth form colleges achieve higher progress in Chemistry than the base
M=C type but no longer have the advantage in Geography. FE colleges show
signi�cantly lower progress in Geography but this does not carry over for Chemistry.
The pattern of board effects for adjusted performance in Chemistry is similar to those
on raw performance exhibited in Table 3. However, CAMB now joins Oxford in
having signi�cantly worse adjusted performance in Geography. Other board effects are
again not distinguishable. All these general substantive �ndings are similar to those of
Yang and Woodhouse (2001) based on aggregate A=AS points scores for the whole
database.

6 The nature of GCSE effects

Prior achievement as measured by GCSE results have formed an input into the second
group of models. It is this fact that often enables researchers to treat institutional effects
as ‘adjusted’ and form a basis for a ‘value-added’ criterion. The way it operates in
combination with other factors has been likened to the economic concept of an
educational production function. This paper and others (Goldstein and Thomas,
1996; O’Donoghue et al., 1996; Yang and Woodhouse, 2001) show that this produc-
tion function should include many nonlinear terms in the covariates. Thus, in Table 4
polynomial terms of order up to four in prior achievement have been included to allow
a possibly necessary �ne nonlinear graduation of the response to this variable,
particularly at the extremes. Institution context factors such as Sch-GA and Sch-SD

Table 2 Model estimates for variance component model (3.1) and basic ordinal model (4.1)

Model (3.1) Model (4.1)

Chemistry Geography Chemistry Geography

Parameter Estimate Precisiona Estimate Precision Parameter Estimate Precision Estimate Precision

b0 5.349 5.250 a(1) ¡1.881 ¡2.405
a(2) ¡0.668 ¡0.913
a(3) 0.248 0.230
a(4) 1.106 1.274
a(5) 2.089 2.406

s2
u 2.829 24.90 2.017 24.41 s2

u 1.190 25.50 0.995 25.38
s2

e 8.507 7.228 Extra-multi-
nomial
variation

0.945 0.959

aPrecisionˆ estimate=standard error. This measure was not calculated for the intercept in the Normal point
score model nor for the thresholds in the ordinal model, or for level 1 parameters, as they relate to
noncomparable quantities across the two approaches.
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will also often have a discernible in�uence. Sch-D may, for instance, be useful in
examining what, if any, is the impact of homogeneity of school intake on progress. The
gender differentiation of GCSE effects is represented by terms for the interaction with
the female gender dummy variable.

As indicated by the t-ratio precision measures in Table 4 the normal model evidenced
signi�cant polynomial terms in GCSE average up to the fourth order. The ordinal logit
model required only a quadratic function. As a result of polynomial effects, the nature
of the interaction of gender with prior ability cannot be simply expressed as a single
additive element. However, the normal model exhibited interactions for both subjects
but the ordinal model only for Chemistry. This may be due to the skewed nature of its
response distribution over grades or could be related to differential impacts of ceilings
and �oors. In the context of primary school progress, Fielding (1999) notes that ordered
category models seem to be more parsimonious in many circumstances and require
fewer complex �xed-effect terms. It is further noted there that this requirement may
be conditioned by the response distributions. The results here seem to con�rm these
impressions. The normal model seems much more sensitive to the actual values of
GCSE scores than the logit model.

In both types of model the effects of school intake contexts appear relatively small,
but with Sch-GA having a marginally signi�cant effect in Chemistry and within-school
heterogeneity (Sch-SD) having a positive effect in Geography.

7 The use of ordinal models in predicting grade distributions

In A-level work teachers are expected to predict A-level performances for university
entrance purposes. Normal models give score predictions that may be dif�cult to relate
to grades. A more useful approach might be to evaluate the ‘chances’ that a certain
student will achieve certain grade thresholds. Ordinal models have a very useful role in
this area by predicting directly the probability that students with given background
characteristics and initia l ability will achieve certain grades. Normal models can only do
this indirectly from the conditional means and variances and assumptions that grade
boundaries are placed appropriately along the points scale (5.0–7.0, for instance, for
grade C). Using estimates from Model (4.2b) in Table 4, we illustra te in Figure 1 the
‘chances’ of achievement estimated for two female students having the same set of
background covariate values but different GCSE average scores. Student 1, with a high
GCSE score of 7.5, has a very high chance of achieving a Chemistry grade no less than
B, while Student 2, with a GCSE score of 5, is most likely to achieve a grade no higher
than D. Estimates from Model (3.2b) in Table 4 for these two students give A-level
point score predictions of 9.8 and 1.9, respectively. Although they are roughly
equivalent to grades A and E, they represent conditional expectations only. Using
individual level variance estimates a predicted grade distribution could also be
calculated from the assumed normal (for example, probability of grade C would be
found from the area between 5 and 7). However, assumed normality on the underlying
arbitrary raw points scale is crucial when applied in this context. Model estimates may
be reasonably robust to departures from the normality assumption. Interval predictions

138 A Fielding et al.

 © 2003 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at University of Bristol Information Services on January 29, 2007 http://smj.sagepub.comDownloaded from 

http://smj.sagepub.com


may not be quite so robust. Even relatively small departures from normality in the true
distribution over the raw points scale might yield quite different predictions. This is a
further aspect of sensitivity to the arbitrary score scale and normal assumptions over it.
No such �xing of a scale or constraining distributiona l assumptions are required for
ordinal models.

8 Value added estimates using school residuals

We have also incorporated random coef�cients in the models as in (3.3) and (4.3).
Detailed results are not illustra ted here. However, signi�cant random coef�cients at the
institutional level for both model types and subjects were the female gender and the �rst
order GA term. Thus we now have three random effects for each institution, which
could be estimated by MLwiN residual procedures. Models (3.3) and (4.3) in our
discussion and diagram below relate to �ts of models with these two extra random
effects added to the models of Table 4. However, we focus on the intercept residual
estimates only. Since GA was centred these represent institution average adjusted effects
or ‘value added,’ as they are often termed in the educational literature. They relate to
males with an average GCSE score, having allowed in the model for possible differential
institutional effects on students of different gender and prior achievement. This
approach gave us a set of homogenous institution residual estimates that enable us to
investigate mild changes of assessment of institutional ‘added value’ between the model
approaches. We also diagnostically checked certain model assumptions for ensuring the
comparability between models. The distributions of the standardized institution inter-

Figure 1 Predicted distribution of A-level grades for Chemistry for Ordinal model (4.2b) for two students
(Student 1: female, 18.5 years old, from an independent selective school, with examination board Oxford–
Cambridge, and overall GCSE score 7.5. Student 2: same as Student 1, but a lower GCSE average score of 5)
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cept residuals for the two models on both A-level subjects are very close to normality as
seen by the normal plots in Figures 2 and 3. Residuals from the model approaches are
closely related. The correlation coef�cients and rank correlations between the institu-
tion residual estimates from each pair of models are given in Table 5. Note that these
correlations are somewhat in�ated because of ‘shrinkage’ factors. Nevertheless, they
and inspection of the residual scatter plots, not illustrated here, suggest a strong
agreement between model types for institution ‘value added’ estimates. Given the
fairly complex and full modelling of covariates and effects we would usually not
expect otherwise. However, they are not perfect and there is scope for some movement
in the positioning of individual institutions. Correlations can be relatively insensitive to
these. Even mild sensitivity to model formulation is potentially of substantive interest.
In particular, we might investigate any dependency on models of the identi�cation of
institutions at the extremes of the range of effects.

Thus we now examine in detail some selected institutions. We choose four for each
subject. Two of these are in the middle of the distribution of the institution residual
estimates for Chemistry normal models. These are also examined for Geography.
Further, for each subject separately, two extreme institutions are selected. Some details
on the selected institutes are listed in Table 6. Table 7 shows the ranks of the residuals
of the selected institutions in each model, the residual estimates, and their standard
errors. Also shown are 95% overlap intervals (Goldstein and Healy, 1995) converted
into equivalent intervals of ranks.

The results show that extreme schools are detected with either model. In the middle
of the distribution, however, there are often considerable differences in rankings. There

Figure 2 Normal score (y-axis) by standardized residual (x-axis) for the Normal model (3.3) and ordinal model
(4.3) for Chemistry
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is important sensitivity of ‘league table’ position to the chosen adjustment model even
when both include the same covariates. The intervals for institutions 1 and 2 on
Chemistry, whose ranks are only 66 apart (1317 ¡ 1251), overlap considerably for the
normal model. However, even in the ordinal model for this case where rankings are
about 1000 apart (1706 ¡ 702), and much more clearly separated, there is still
considerable overlap of the intervals. For Geography, institutions 1 and 2, being less
concentrated in the middle of the rank range, have separable intervals under both
models, but less clearly so for the ordinal model. However, it requires rankings differing
by 1502 and 1472, respectively, to achieve these separations. Although the extreme
institutions have a much more consistent ranking there are one or two other features
worthy of note. For Geography, institution 5 (highest ranked on the ordinal model) and
institution 2 have relatively short rank differences of 111 and 300 for normal and
ordinal models, respectively. However, at the top end of the range their intervals do not
overlap for the ordinal model and only just for the normal. Rank intervals for extreme
cases are very short. There appears to be a clearer separation between pairs as we
move away from the middle of the distribution. The same phenomenon occurs at
the lower end.

Figure 3 Normal score (y-axis) by standardized residual (x-axis) for the Normal model (3.3) and ordinal model
(4.3) for Geography

Table 5 Correlation coef� cients and rank correlations between
institution residual estimates

Chemistry Geography

Establishment residuals 0.982 0.968
Ranks of establishment residuals 0.983 0.970
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9 Extensions of the ordinal model

So far the ordinal logit models have the proportional odds feature implied by �xed cut-
point thresholds not varying across observations. However, more �exibility can be
introduced by allowing interactions of thresholds with covariates or allowing random
thresholds effects across level 2. For example, as it stands, the �tted ordinal model in
Table 4 suggests that the additive main effect of gender on the cumulative log-odds is
the same across grades. Covariate changes shift only the location of the entire grade
distribution keeping the relative odds proportional. We can relax this by interacting
covariates with cut-points. For instance, interacting with gender means the cut-points
for males and females are no longer separated by a single additive gender effect, and
gender can affect cumulative odds nonproportionally across grades. Indeed, there is
some preliminary evidence that a proportional odds gender effect may not be tenable. In
Table 1 in Geography, for instance, more female students achieved the top two grades
than males and vice versa for the bottom two grades. The distributiona l differences
between genders may be more complex than a constant shift in cumulative log-odds.
The suggested nonproportional extensions can be �tted fairly readily by adaptation of
the quasi-likelihood procedures in the MLwiN MULTICAT macros that we use.

9.1 Model with nonproportional changing odds

Model (9.1) below extends the �xed part of Model (4.2b) in these directions. We focus
on nonproportional gender effects because these have evoked our interest. For ease of
exposition we revert to the model with a single variance at level 2. We have investigated
extensions to Model (4.3) with little difference of substance to the arguments we
present. This type of model has been called a multilevel thresholds of change model
(MTCM) by Hedeker and Mermelstein (1998).

Table 7 School value added estimates for the Normal and ordinal models

Rank of residuals Residual estimate (S.E.)

Ranks corresponding
to 95% overlap
intervals of residuals

School
Normal
model (3.3)

Ordinal
model (4.3)

Normal
model (3.3)

Ordinal
model (4.3)

Normal
model (3.3)

Ordinal
model (4.3)

Chemistry
1 1251 1706 ¡0.02 (0.38) ¡0.35 (0.26) 1209¹ 2020 1209¹ 2068
2 1317 702 ¡0.07 (0.58) 0.37 (0.69) 71 ¹ 1940 50 ¹ 1971
3 2406 2405 ¡2.11 (0.65) ¡2.08 (0.56) 2324¹ 2408 2347¹ 2409
4 1 2 2.75 (0.43) 2.31 (0.46) 1 ¹ 23 1 ¹ 11

Geography
1 1615 1773 ¡0.30 (0.30) ¡0.46 (0.30) 985 ¹ 2045 1226¹ 2133
2 113 301 1.04 (0.50) 0.69 (0.51) 6 ¹ 663 46 ¹ 1198
5 2 1 2.09 (0.27) 2.69 (0.31) 1 ¹ 10 1 ¹ 4
6 2316 2317 ¡2.28 (0.36) ¡2.94 (0.39) 2308¹ 2317 2316¹ 2317
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Letting tij be 1 if the ith person from institute j is female, we write

logit(g(s)
ij ) ˆ a(s)

ij ˆ a(s) ‡ o(s)tij ‡ Xij b ‡ u0j (9:1)

Estimates of the cut-points a(s) determine the cumulative grade distribution of males
conditional on other explanatory variables, and estimates of (a(s) ‡ o(s)) those of
females. Similar terms could be introduced for other explanatory covariates and
higher order interactions are also possible. McCullagh and Nelder (1989, p. 155)
and also Hedeker and Mermelstein (1998) comment that for continuous covariates this
may unfortunately lead to negative �tted values for some values of covariates. In our
case we have checked that this would not occur inside the observed range if we were to
entertain nonproportional odds for covariates in our data such as GA.

The results of �tting model (9.1) are displayed in Table 8. They suggest de�nite
interactions of cut-points with gender and hence a nonproportional effect of gender on
cumulative odds.

The ratios of cumulative odds of males to females at each threshold are displayed in
Figure 4 and contrasted with the constant proportional odds ratios of Model (4.2b). It
is clearly seen that the overall negative effect of females estimated by Model (4.2b) on
Chemistry was mainly because female students achieve relatively few high grades,
having adjusted for their GCSE average score. For Geography there is a different
pattern with relatively more females in middle grades and slightly more failures than a
proportionality assumption would warrant. Differences in skewness of the distributions
of grades in the two subjects may play a role and the importance of these is underlined
by this type of ordinal model.

9.2 Random institution e¡ects on cut-points for the distribution over grades

In the same way that we consider odds changing nonproportionally for different values
of covariates we can allow nonproportionality of the random institution effect. This is
achieved by allowing the cut-points to vary randomly across institutions. Thus we now
generalize model (9.1), which had a single random effect, by incorporating a set of
grade speci�c cut-points (a(s)‡ u(s)

0j , s ˆ 1, 2, 3, 4, 5) for each institution. The model is

logit(g(s)
ij ) ˆ a(s)

ij ˆ a(s) ‡ o(s)tij ‡ Xij b ‡ u(s)
0j (9:2)

Here, u0j ˆ {u(1)
0j , u(2)

0j , . . . , u(5)
0j }0 ¹ MVN(0, Vu0

). The Vu0
is a (5 £ 5) covariance

matrix of the separate random effects. For simplicity we also assume that the
interacting gender coef�cients are �xed, that is, there is no differential institutional
effect by gender.

The estimates for Model (9.2) are also given in Table 8. The institution random effect
parameters are shown separately in the lower part of Table 9. The �xed part results
show main effects similar to those estimated by Model (9.1) for both Chemistry and
Geography but there are some changes to the base (male) and female cut-points. From
the random parameter estimates we see that there is relatively more institutional
variation at grade A and F thresholds in Geography. For Chemistry the F threshold
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parameter exhibits most variation. Such sources of institutional variation at crucial
thresholds may be potentially of more substantive interest then overall average levels of
adjusted performance.

Detailed diagnostic normal plots of all estimated standardized residuals from Model
(9.2), though not illustra ted, showed good agreement with the normality assumption
for both subjects.

For the same institutions previously investigated in Section 8, estimates of the full set
of cut-point residuals in Model (9.2) are illustra ted in Figures 5(a) and (b). These show
a relatively constant pattern of effects over the grades on Chemistry for Institutions 2, 3,
and 4 and are not much different from results observed in Table 7. These institutions
could be interpreted as having relatively uniform effect on students across all levels of
ability. Institution 1 has a below average conditional expectation of achieving at least
either of the top two thresholds, about the same as average for above grade C, and
above average for the proportion not failing or achieving above grade D. It would be
interesting to examine the practice at this institution, which seems to have a better than
expected overall pass rate but a relatively lower than expected achievement at the top
end of the grading. This pattern is further displayed in detail for males in Figure 6(a),
which contrasts the predicted A-level grades in Chemistry for typical males in Institu-
tion 1 with similar males in the base group of students. It will be noted that compared to

Figure 4 Gender effects on grade threshold probabilities: ratios of cumulative odds between females and
males estimated by Models (4.2) and (9.1)
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the similar base group there appear relatively fewer in the bottom three categories but
much higher proportions in Grades B and C.

For Geography the effect of Institutions 1 and 2 are approximately proportional across
grade thresholds. Institutions 5 and 6, occupying the highest and lowest positions in
Table 7, have a pro�le of threshold effects that are parallel and consequently with a similar
relative pattern but at different absolute levels. Given their general levels, the size of their
effects declines relative to all institutions as we move through the grade thresholds. They
are relatively rather better at targeting top grades than they are at getting students above
low thresholds and passing. Institution 6, for instance, is not too far from average in its
effect on top grade chances (and better than Institution 1) but its low overall position is a
result of ‘de�ciencies’ at lower thresholds. Figure 6(b) presents the predicted distributions
of A-level Geography grades for males of mean age with mean GCSE in Institution 5 at the
top of the scale and Institution 6 at the bottom. Although as expected Institution 5 has a
much higher proportion of Grade As, there is little difference between Institution 6 and that
of the base group in this respect. The impact of failures on the overall position of Institution
6 is obvious from this diagram. There is a further important general caveat for predictions
for particular institutions. These use residual estimates which have uncertainty and require
some caution as stressed by Goldstein and Spiegelhalter (1996). Often the residuals are
based on relatively small numbers of students so that the standard errors of estimates can
be quite large. Thus, for example, in the present comparisons in Geography, Institution 1
has a standard error for the grade B cut-point of 0.299. Conditional on the �xed-point
estimates a 95% con�dence interval for the logit can be constructed. Converting to the
cumulative probabilities gives an approximate interval of 28.1 to 56.1% for above grade B.
In principle, for more detailed analysis, intervals can be constructed for overall predictions
of full grade distributions for each institution.

10 Discussion

In this paper we have demonstrated a �exible range of models for educational grades
treated as ordered responses. The operational de�nition of the outcome variable is at no

Table 9 Variance–covariance estimates of the cut-points for Chemistry (� rst line) and Geography
(second line) at school level, SE in parentheses, correlation coef� cients in the upper triangle of the table

A Above B Above C Above D Above E

A 0.806 (0.047) 0.92 0.83 0.78 0.48
1.157 (0.068) 0.88 0.70 0.56 0.61

Above B 0.699 (0.037) 0.714 (0.037) 0.94 0.88 0.63
0.803 (0.043) 0.725 (0.037) 0.92 0.80 0.81

Above C 0.659 (0.036) 0.701 (0.035) 0.785 (0.039) 0.97 0.80
0.658 (0.040) 0.683 (0.033) 0.755 (0.036) 0.95 0.96

Above D 0.658 (0.038) 0.700 (0.035) 0.807 (0.039) 0.883 (0.045) 0.92
0.549 (0.043) 0.630 (0.033) 0.770 (0.036) 0.863 (0.043) 0.99

Above E 0.479 (0.055) 0.594 (0.041) 0.791 (0.043) 0.965 (0.050) 1.236 (0.070)
0.716 (0.045) 0.758 (0.041) 0.908 (0.044) 1.002 (0.050) 1.194 (0.066)
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higher a level of measurement than this. Assumptions of continuous response multilevel
models with scores may thus be inappropriate, particularly since there are few scored
grades. Statistical objections have ranged from those about the scaling implied by
arbitrariness in scoring through to continuous distribution properties applied to discrete
measurements and to bias in estimation due to grouping. A review of some literature on

Figure 5 Plots of residuals of four institutions for (a) A-level Chemistry, logit scale and (b) A-level Geography,
logit scale
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this is given by Fielding (1999) and a recent general contribution by Kampen and
Swyngedouw (2000).

From a practical and substantive view Normal linear models are certainly useful and
have the virtue of familiarity with very accessible methodology and software. Certainly,
this paper shows that the general scale of �xed effects is relatively insensitive to model
formulation. Estimated precision of the �xed-effect estimates are also comparable,
although little is known about how the estimated precision is affected by the discrete
nature of the observed data. However, for institution-speci�c details there are consider-
able differences between the models. In this respect it may be argued that ordinal
models make fewer restrictive assumptions about the response distribution and provide
conclusions that are less open to substantive query. Although the intercept residuals
from models (3.3) and (4.3) are highly correlated, the location of speci�c institutions in
their range can vary greatly. For instance, Institution 2 for Chemistry is at the 29th
percentile of ranked residuals on the ordinal model and at the 55th percentile for the
Normal model (Table 7). It is true that these positions are both subject to uncertainty
but the question arises as to the appropriateness of the modelling if we want to draw
substantive ‘value added’ conclusions.

From a practical point of view in educational research the ordinal models also offer
as much information as do normal models, and it could be argued more. The ‘newness’
of ordinal models and (until recently) lack of suitable software may have acted as a
practical deterrent, but this is being remedied. The ability to convey predictive
information through probability distributions, which cannot easily be done using
standard models, is a particular advantage. Because grades and levels are standard
modes of reporting, it may obviously be useful to relate the interpretations of results to
these. A predicted point score for an individual, even when contextualized in terms of
the conditional mean of a continuous distribution, has less ready an interpretation
when grades and levels are the medium of converse. The implications of the use of
ordinal models in such practical areas as target setting within schools may be clear.

Figure 6 Predicted distributions of (a) A-level Chemistry for males of mean age with mean GCSE score:
overall base group of maintained comprehensive schools with AEB board compared with Institution 1 (a sixth
form college and Cambridge Board) and (b) A-level Geography for males of mean age with mean GCSE score:
overall base group of maintained comprehensive schools with AEB board compared with Institution 5 (a sixth
form college and Cambridge Board) and Institution 6 (a sixth form college with London Board)
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Ordinal models also seem to be capable of extension in substantively useful ways.
Their characterization in terms of grade probability responses permits �exible para-
meterization for a variety of conditions. Our analyses have mainly been concerned to
comment on the practical signi�cance of this. However, these additional complexities
also considerably improve the �t of models. A simultaneous Wald test (available in
MLwiN) on parameters o(s), the interactions between the gender variable and the cut-
points in the �xed part of (9.1) yielded signi�cant w2

5 ˆ 132:8 for Geography and
w2

5 ˆ 580:8 for Chemistry. Secondly, a restriction that all 15 variance and covariance
parameters of the separate random effects at the institution level in (9.2) are equal to a
common parameter value reduces it to the single effect model of (9.1). An approximate
Wald test on this yields very signi�cant w2

14 ˆ 164:9 for Geography and w2
14 ˆ 261:7 for

Chemistry. From a practical view we have seen, for instance, that by allowing cut-
points to interact with gender we can study gender differences in distributions in greater
detail. As discussed these differences go further than simply differences in average
performance. By allowing random cut-points institutional differences can also be
exhibited in more meaningful ways. They can be compared at important thresholds
rather than through simple mean levels of adjusted achievements. Thus, Institution 1 in
Chemistry has lower grade A achievements than expected but it also has lower failures.
Institution 6 in Geography has a considerable failure rate but does quite well in
achieving high grades compared to other typical institutions. Differences between
institutions in such respects might well engage the interest of effectiveness researchers
and policy makers as of much if not more relevance than differences in ‘average’
achievement or progress.

An aspect of the ordinal model that we have not discussed in any detail is the nature
of the link function. We have focused on the familiar logit. However, we have
also carried out some investigations using a probit link, which will be available in
the latest issue of MULTICAT. A probit link is often interpreted in terms of normally
distributed latent variable. Thus it might seem to �t more easily into comparisons with
Normal linear models. There is a conventional wisdom in the generalized linear
modelling literature (for example, McCullagh and Nelder, 1989; Greene, 2000)
that important results are relatively insensitive to this choice of link. This is often
attributed to the similarity of the logistic and normal distributions except at the tails.
Preliminary results show some differences but none are startling. However, methodo-
logical work comparing logit, probit, and other links in the multilevel context is under
way and needs further advancing.

If, as we claim, ordinal models are worthy of more extensive application they
need also to be developed further in a number of important directions. Ordinal
models with cross-classi�ed random effects at higher levels have been considered by
Fielding and Yang (1999). Multivariate response multilevel models for continuous
variables are developed and quite widely used in education (Goldstein and
Sammons, 1997; Yang et al., 2001). In our investigations with Model (9.1) we
compared the two sets of cut-point residuals for institutions that had Geography and
Chemistry in common. A general impression conveyed was that there were two
major groups of institutions. One group was those institutions whose effects for the
two subjects were similar relative to all schools. However, another major group had
relatively high ‘adjusted’ performances in one subject together with a low achieve-
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ment in the other. There are some interesting practical questions here about the
differential ‘effectiveness’ of schools in different A-level subjects and the relationships
between subject grades at both student and institutional level. Multivariate ordinal
response multilevel model developments are required for this. Their characterization
is not so easy as the analogous continuous variable specifying normal correlation
structures. Nor would their estimation be as easily adaptable from standard
available procedures. Promising lines of inquiry, which we have started to investigate
for multilevel structures, are log-linear characterizations of the multivariate distribu-
tions and multivariate logit and probit (Joe, 1997; Lesaffre and Molenberghs, 1991;
Molenberghs and Lesaffre, 1994). Other developments we envisage are multivariate
models for mixed continuous and ordered category responses, and to parallel the
longitudinal binary response models of Yang et al. (2000), variants for ordered
categorizations. The latter situation has received some attention in the generalized
estimating equation (GEE) literature (Lipsitz et al., 1994) but these are population
averaging methods. As such they concentrate mainly on ways of obtaining ef�cient
�xed-effects estimates and cannot at present be used to investigate the detailed
structure of multilevel effects.
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