
Ordered multinomial response models



Ordered categorical data

Where there is an underlying ordering to the categories a
convenient parameterisation is to work with cumulative
probabilities, i.e. the probabilities that an individual crosses each
threshold. For example, with exam grades

Grade Probability Threshold Cumulative probability

D π1i 6 D (D) γ1i= π1i

C π2i 6 C (C, D) γ2i= π1i + π2i

B π3i 6 B (B, C, D) γ3i= π1i + π2i + π3i

A π4i 6 A (A, B, C, D) γ4i= π1i + π2i + π3i + π4i = 1

With an ordered multinomial we work with the set of cumulative
probabilities γki . As before, with t categories, we put t − 1
categories in the model. The remaining cumulative probability,
which is the sum of the probabilities for all the categories, must
have the value 1 by definition



A model with no explanatory variables

log(γ1i/(1− γ1i ))= β0 log odds of 6 D
log(γ2i/(1− γ2i ))= β1 log odds of 6 C
log(γ3i/(1− γ3i ))= β2 log odds of 6 B

The threshold probabilities γki are given by antilogit(βk)

Because γ1i 6 γ2i 6 γ3i it follows that β0 6 β1 6 β2



Adding covariates to the model

log(γ1i/(1− γ1i ))= β0 + hi log odds of 6 D
log(γ2i/(1− γ2i ))= β1 + hi log odds of 6 C
log(γ3i/(1− γ3i ))= β2 + hi log odds of 6 B

hi= β3x1i + . . .

Note that the covariates and their coefficients, which comprise the
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term hi , are the same for each
of the response threshold
categories

This means that the log odds
ratios and odds ratios for
threshold category membership
are independent of the
predictor variables. That is. . .



Proportional odds
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β2 + β3x1i log odds of 6 B

β1 + β3x1i log odds of 6 C

β0 + β3x1i log odds of 6 D

The log odds ratio

(β2 + β3x1i )− (β1 + β3x1i ) = log

(
odds of 6 B

odds of 6 C

)
is constant for all x1i . Similarly, the log odds ratios

log

(
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odds of 6 D

)
and log

(
odds of 6 C

odds of 6 D

)
are also constant with respect to x1i



Testing the assumption of proportional odds

We can test the assumption that the odds ratios for each pair of
response categories are constant across all values of the predictor
variables by fitting the model

log(γ1i/(1− γ1i ))= β0 + β3x1i log odds of 6 D
log(γ2i/(1− γ2i ))= β1 + β3x1i log odds of 6 C
log(γ3i/(1− γ3i ))= β2 + β3x1i log odds of 6 B

which allows each response category to have a different slope.

Now if our assumptions are correct, β3, β4 and β5 will be very
similar. We can formally test the hypothesis that β3 = β4 = β5

using a Wald test (in the Intervals and tests window of MLwiN)

If the proportional odds assumption is valid we have a more
parsimonious analysis because we fit a single common coefficient
instead of t-1 coefficients.



Understanding the model

Our model has two features which distinguish it from our model
for unordered categorical data:

we have used cumulative probabilities (the γki ) instead of the
probability for each category (the πki )
we have constrained the coefficients of the explanatory
variables to be the same across response categories (our
proportional odds assumption)

We have incorporated into the model the information that our
categorical variable is ordered by using these two features together.

It is easiest to understand this by considering the latent variable
representation. Our model with a separate intercept for each
response category and a common slope across response categories
corresponds to a single latent variable with t − 1 thresholds or cut
points.



Latent variable representation
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y∗i = β∗3 x1i + e∗i

e∗i ∼ logistic with variance 3.29

yi =


A y∗i > τA
B y∗i > τB
C y∗i > τC
D y∗i < τC

Diagram adapted from notes by

Anders Skrondal



Multilevel ordered multinomial models

log(γ1i/(1− γ1i ))= β0 + hi log odds of 6 D
log(γ2i/(1− γ2i ))= β1 + hi log odds of 6 C
log(γ3i/(1− γ3i ))= β2 + hi log odds of 6 B

hi= β3x1i + u0j
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u0j is a random effect for
school j , which shifts all the log
odds lines equally for all
students in school j .

Odds ratios for category
membership are unaffected by
the value of u0j

u0j = 0 a positive u0j

a negative u0j



Higher level variances

u0j ∼ N(0, σ2
u0)

The greater σ2
u0 the greater the variability in the school level

departures for the response threshold probabilities



An example: psychiatric data

The data from this example is taken from Don Hedeker’s web site

http://tigger.uic.edu/∼hedeker/ml.html

Data is from a psychiatric clinical trial.
Data on 437 schizophrenia patients (108 in placebo group, 329 in
drug treatment group)
Longitudinal design, with measurements at weeks 0, 1, 3 and 6

Response is severity of illness scored as
1 normal or borderline mentally ill
2 mildly or moderately mentally ill
3 markedly ill
4 severely or among the most extremely ill

For more details of the study see Hedeker & Gibbons (1997)

http://tigger.uic.edu/~hedeker/ml.html


Single level model

Model

logit(γ1i )= β0 + hi log odds of 6 normal or borderline
logit(γ2i )= β1 + hi log odds of 6 mild or moderate
logit(γ3i )= β2 + hi log odds of 6 marked

hi= β3weeki change in log odds per week

Results

β0= −3.296 (0.114) log odds of 6 normal or borderline (week 0)
β1= −1.327 (0.077) log odds of 6 mild or moderate (week 0)
β2= −0.076 (0.069) log odds of 6 marked (week 0)

β3= 0.423 (0.023) change in log odds per week

To interpret the results it helps to look at graphs



Graphs of results

β0= −3.296 (0.114) log odds of 6 normal or borderline (week 0)
β1= −1.327 (0.077) log odds of 6 mild or moderate (week 0)
β2= −0.076 (0.069) log odds of 6 marked (week 0)

β3= 0.423 (0.023) change in log odds per week

At week 0, log odds of 6 marked are -0.076, odds of 0.92, P(6
marked) = 0.48, P(extreme) = 1− 0.48 = 0.52

At week 6, log odds of 6 marked are −0.076 + 0.423× 6 = 2.495,
odds of 12, P(6 marked) = 0.92, P(extreme) = 1− 0.92 = 0.08

No matter which threshold we
choose (normal, mild or marked),
as the trial progresses fewer
people are falling on the higher
(more ill) side of the threshold.
Later we will assess whether this
improvement is stronger in the
treatment than placebo group.



Testing the proportional odds assumption

Proportional odds

logit(γ1i )= β0 + hi

logit(γ2i )= β1 + hi

logit(γ3i )= β2 + hi

hi= β3weeki

β0= −3.296 (0.114)
β1= −1.327 (0.077)
β2= −0.076 (0.069)

β3= 0.423 (0.023)

Non-proportional odds

logit(γ1i )= β0 + β3weeki

logit(γ2i )= β1 + β4weeki

logit(γ3i )= β2 + β5weeki

β0= −3.296 (0.114) β3= −0.481 (0.038)
β1= −1.327 (0.077) β4= 0.418 (0.026)
β2= −0.076 (0.069) β5= 0.384 (0.031)

The proportional odds assumption that
β3 = β4 = β5 is reasonable



Multilevel random intercept vs. single level

Single level

logit(γ1i )= β
(SL)
0 + hi β

(SL)
0 = −3.296 (0.114)

logit(γ2i )= β
(SL)
1 + hi β

(SL)
1 = −1.327 (0.077)

logit(γ3i )= β
(SL)
2 + hi β

(SL)
2 = −0.076 (0.069)

hi = β
(SL)
3 weeki β

(SL)
3 = 0.423 (0.023)

Multilevel

logit(γ1ij )= β
(RI)
0 + hij β

(RI)
0 = −5.004 (0.185)

logit(γ2ij )= β
(RI)
1 + hij β

(RI)
1 = −2.067 (0.133)

logit(γ3ij )= β
(RI)
2 + hij β

(RI)
2 = −0.021 (0.123)

hij = β
(RI)
3 weekij + uj β

(RI)
3 = 0.623 (0.028)

uj∼ N(0, σ2
u) σ2

u= 3.625 (0.325)

We have substantial between individual variation: σ2
u = 3.625; this

corresponds to an ICC of

3.625

3.29 + 3.625
= 52%



Comparing the coefficients

Recall that

β(RI)

β(SL)
≈

√
3.29 + σ2

u

σ2
u

which in this case is √
3.29 + 3.625

3.625
= 1.450

In our example we have

β
(RI)
0 /β

(SL)
0 = 1.56

β
(RI)
1 /β

(SL)
1 = 1.51

β
(RI)
2 /β

(SL)
2 = 0.27

β
(RI)
3 /β

(SL)
3 = 1.48

Thus with the exception of β
(RI)
2 /β

(SL)
2

the pattern is as expected. We note
that compared to their standard errors

β
(RI)
2 and β

(SL)
2 are small and are thus

indistinguishable from 0.

As in the binomial case the RI
coefficients are cluster specific estimates
and the SL coefficients are population
average estimates.



Deriving population average predictions

Although a single level model returns population average (PA)
estimates, it still retains disadvantages of a single level model in
that it ignores clustering and so gives misestimated precisions (SEs
are too small). We can derive PA predictions from a cluster
specific model by averaging over simulated values of uj . This is
method 3 described in the binary response handouts.

We compare predictions for our three thresholds at week = 0, for
single level (SL), cluster specific (CS), and PA derived from the
multilevel model (PA):

β0 β1 β2

CS -5.00 (0.19) -2.07 (0.13) -0.02 (0.12)
PA -3.59 (0.16) -1.35 (0.09) -0.03 (0.08)
SL -3.26 (0.11) -1.33 (0.08) -0.07 (0.07)

We see the SEs for SL are all lower than PA. In this case the
differences are not great but in other cases they may be.



Graphs of PA and CS predictions

β
(CS)
3 is the effect of a 1 unit change in x (here week) on the log

odds of being in each cumulative category holding constant
all cluster (person) specific unobservables. The contrast is
between two occasions in the same individual

β
(PA)
3 is the effect of a 1 unit change in x (week) on the log odds

of being in each cumulative category in the study
population, i.e. averaging over all cluster (person) specific
unobservables



Drug vs. placebo effects

Model
logit(γ1ij )= β

(RI)
0 + hij

logit(γ2ij )= β
(RI)
1 + hij

logit(γ3ij )= β
(RI)
2 + hij

hij = β
(RI)
3 weekij + β

(RI)
4 drugij + β

(RI)
5 drug.weekij + uj

uj∼ N(0, σ2
u)

β4 allows intercepts to be different for drug and placebo

β5 allows week slopes to be different for drug and placebo

Results
β

(RI)
0 = −5.541 (0.288)

β
(RI)
1 = −2.477 (0.256)

β
(RI)
2 = −0.375 (0.248)

β
(RI)
3 = 0.296 (0.051)

β
(RI)
4 = 0.517 (0.282)

β
(RI)
5 = 0.435 (0.059)
σ2

u= 3.522 (0.319)

So difference between placebo and drug as a function of time is

log

 odds(6 normal(drug))

odds(6 normal(placebo))

 = log

 odds(6 mild(drug))

odds(6 mild(placebo))

 = log

 odds(6 marked(drug))

odds(6 marked(placebo))


= β4drugij + β5week.drugij

Since β4 and β5 are both positive, a positive drug effect is present
at week 0 and becomes stronger over the trial period.

This means that for any threshold fewer people are falling on the
higher (more ill) side in the drug than the placebo group.



Graph of drug vs. placebo log odds ratio

log

 odds(6 normal(drug))

odds(6 normal(placebo))

 = log

 odds(6 mild(drug))

odds(6 mild(placebo))

 = log

 odds(6 marked(drug))

odds(6 marked(placebo))


= β4drugij + β5week.drugij

Graph plots the difference
between the drug and the
placebo groups (the log odds
ratio) against week

Improvement is present at week 0
and increases with time



Graph of placebo vs. drug effects


