
A Non-parametric bootstrap for multilevel models 

 

By 
James Carpenter 

London School of Hygiene and Tropical Medicine 
 
 

Harvey Goldstein 
and 

Jon Rasbash 
Institute of Education 

 

1. Introduction 
 

Bootstrapping is now a well established procedure for assessing the bias and standard error  
of parameters in statistical models (Davison and Hinckley, 1997). Given a fitted model and 
parameter estimates, the idea is to generate synthetic (termed bootstrap) data from the fitted 
model, and then refit the model to the synthetic data, thus obtaining a set of synthetic 
(termed bootstrap) parameter estimates. These synthetic parameter estimates stand in 
approximately the same relationship to the model parameter estimates as the model 
parameter estimates stand in relationship to the population parameters. Thus, we can 
estimate quantities of interest relating the population parameters and the estimated 
parameters (such as bias, confidence intervals) by looking at the relationship between the 
estimated parameters and the synthetic, or bootstrap, parameters. 

Broadly speaking the synthetic data can be generated in one of two ways, termed the 
parametric and non-parametric bootstrap. The parametric bootstrap, already implemented in 
MLwiN , generates the bootstrap data from the full parametric model. For example, consider 
the 2-level model fitted to the tutorial data example in the MLwiN  user’s guide, 
 
y x u u xij ij j j ij ij= + + + + eβ β0 1 1 0 1 1  (i=1,2,…, ; j=1,…,J)     (1) jI
 
where the response is the normalised exam score, the explanatory variable is the standardised 
LRT score and there are pupils within school j. Suppose we have fitted the model and 
obtained estimates of all the parameters. Then the parametric bootstrap simulates  
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where the ’s are elements of the variance-covariance matrix of the u ’s estimated from the 
data. 
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The bootstrap data set is then ( ), (i=1,2,…, ; j=1,…,J), where ijij xy 1
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A large number, B, typically 1000, such bootstrap data sets are generated, and the model 
fitted to each one. We thus obtain B bootstrap estimates of each parameter in the model, 
which we can then use to estimate bias, standard error and confidence intervals, as described 
in the MLwiN  user’s guide. We can also obtain bootstrap estimates of other quantities, such 
as the level 2 residuals. 
 
Here we outline a non-parametric alternative to the parametric bootstrap, and show that it 
can yield a substantial reduction in the coverage error of parametric bootstrap confidence 
intervals when the data are not truly normally distributed. 
 
2. A Non parametric bootstrap for multilevel models 
 
Non-parametric bootstrapping can take two forms. In the first kind, case re-sampling, we 
build a bootstrap data set from the original data by sampling with replacement from the 
( ) pairs that make up the data. However, in a multilevel context doing this crudely 
would break the structure of the dataset; if, as an alternative, we resample ‘blocks’ of data, it 
is not at all obvious which ‘level’ the blocks should correspond to. Furthermore, work in the 
standard regression context suggests that while this approach might be useful for deciding 
between models, it does not give  accurate inference for parameters within such models, 
which is our principal goal. 
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We therefore propose to generalise the residual non-parametric bootstrap for regression 
models to the multilevel case. A crude residual bootstrap for model (1) would be the 
following: 
1) Fit the model (1) to the data, and calculate the set of residuals  and 

 

{ } ,.... ; ....eij i I j Jj= =1 1

{( , )} ,....u uj j j0 1 1= J

J

e

2) Sample with replacement from these two sets, obtaining two new sets { }  and 
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3) The bootstrap data set is then ( ), where ijij xy 1
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The drawback of this simple approach is that we will underestimate variances in particular 
because the crude residuals are ‘shrunk’ towards zero. We therefore need to ‘reflate’ the 
residuals before passing them back through the fitted model as in step (3) above. We now 
outline a procedure for doing this. For convenience we shall illustrate the procedure using the 
level 2 residuals, but analogous operations can be carried out at all levels.  Rewrite model (1) 
as  
y X ZU

U U U
ij ij j ij

T
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( ) ( )

{ , ....}

β

0 1

       (2) 

Having fitted the model we calculate the residuals: 
....}ˆ,ˆ{ˆ

10 uuU =  
Write the empirical covariance matrix of the estimated residuals at level 2 in model (2) as 



S U U
J

T

=  

and the corresponding model estimated covariance matrix of the random coefficients at level 
2 as R. The empirical covariance matrix is estimated using the number of level 2 units, J, as 
divisor rather than J-1. We assume that the estimated residuals have been centered, although 
centering will only affect the overall intercept value. 
We now seek a transformation of the residuals of the form 

*U U= A  
where A is an upper triangular matrix of order equal to the number of random coefficients at 
level 2, and such that 
 

/* *U U J A U UA A SA R
T T T T= = =

e

      (3) 
 
The new set of transformed residuals U  now have covariance matrix equal to that estimated 
from the model, and we sample sets of residuals with replacement from U , as 

*

*

described in the residual bootstrap algorithm above.   
 
To complete the residual bootstrap, we repeat this process at every level of the model, with 
sampling being independent across levels. Details of how to form A are given in the appendix 
below. 
 
3. Example 
 
Consider the following 2-level model fitted to the tutorial data example in the MLwiN  User’s 
Guide, using RIGLS estimates. The model is 
y x u u xij ij j j ij ij= + + + +β β0 1 1 0 1 1 .      (4) 
We simulate data from this model using the parameter estimates given in the second column 
of Table 1, with residuals at level 2 simulated from  
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and at level 1 we simulate from a chi-squared distribution with 1 degree of freedom. 
 
Five hundred data sets were generated from this model, containing 4059 level 1 and 65 level 2 
units. For each of these data sets the bootstrap parameter estimates and confidence intervals 
were constructed using 500 parametric and 500 non-parametric bootstrap data sets. 
 
Table 1 gives the parameter estimates and estimated coverage probability for a nominal 95% 
interval computed directly from the ranked bootstrap replications for each bootstrap set, for 
the parametric bootstrap and Table 2 for the nonparametric bootstrap. 
 
Both bootstrap procedures produce unbiased estimates for all the parameters. The coverage 
proportions are satisfactory except for the level 1 variance in the parametric bootstrap where it 
is only 0.55 compared to the nominal value of 0.95. 
 
 



Table 1. Parametric bootstrap estimates 
Parameter Expected value* Bootstrap mean Coverage proportion 
β 0  2.00 2.00 0.95 

β1  0.50 0.500 0.93 

σ u0
2  0.20 0.200 0.94 

σ u01  0.05 0.049 0.96 

σ u1
2  0.20 0.202 0.95 

σ e
2  2.00 2.00 0.55 

*The expected value for a chi squared distribution with 1 degree of freedom (=1) is added to the intercept. 
The variance of a chi squared distribution with 1 degree of freedom is 2. 
 
Table 2. Nonparametric bootstrap estimates 
Parameter Expected value* Bootstrap mean Coverage proportion 
β 0  2.00 2.00 0.95 

β1  0.50 0.500 0.95 

σ u0
2  0.20 0.198 0.93 

σ u01  0.05 0.050 0.95 

σ u1
2  0.20 0.202 0.94 

σ e
2  2.00 1.99 0.93 

*The expected value for a chi squared distribution with 1 degree of freedom (=1) is added to the intercept. 
The variance of a chi squared distribution with 1 degree of freedom is 2. 
 
4. Conclusions 
 
We have briefly described a residuals non-parametric bootstrap for multilevel models. 
This residuals bootstrap provides a robust alternative to a fully parametric bootstrap, and can 
be used, for example where standardised residual plots indicate departures from normality. 
The bootstrap can also be used to estimate other functions. For example we can estimate 
residuals for each bootstrap replicate and use the resulting chains for inference about the 
residual estimates themselves. 
 
This non-parametric bootstrap procedure is implemented in MLwiN  release 1.1 (Autumn 
1999). 
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6. Appendix 
 
To form  A we note the following. 
Write the Cholesky decomposition of S, in terms of a lower triangular matrix as 
 
S L LS S

T=  
and the Cholesky decomposition of R as 
 
R L LR R

T=  
 
We have 
 
L L U U L L J L L S L L L L RR S

T
R S

T
R S S

T
R

T
R R

T− − − −= =1 1 1 1( ) / ( ) ( ) ( ) =  
 
Thus, the required matrix is 
 
A L LR S

T= −( )1 . 
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