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Summary. There is on-going concern about the relationship between class size and achieve-
ment for children in their first years of schooling. The Institute of Education’s class size project
was set up to address this issue and began recruiting in the autumn of 1996. However, because
of the non-normality of achievement measures, especially in mathematics, the results have
hitherto been presented by using transformed achievement measures.This makes the interpre-
tation difficult for non-statisticians. Ideally, the data would be modelled on the original scale and
a bootstrap procedure used to ensure that inferences are robust to non-normality. However, the
data are multilevel. In the paper we therefore propose a nonparametric residual bootstrap pro-
cedure that is suitable for multilevel models, show that it is consistent and present a simulation
study which demonstrates its potential to yield substantial reductions in the difference between
nominal and actual confidence interval coverage, compared with a parametric bootstrap, when
the underlying distribution of the data is non-normal. We then apply our approach to estimate
the relationship between class size and achievement for children in their reception year, after
adjusting for other possible determinants.
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1. Introduction

There is on-going concern about the relationship between class size and achievement for chil-
dren in their first years of schooling. In the UK, debate has focused on the negative effects of
large classes, whereas in the USA it has centred on the efficacy and cost-effectiveness of class
size reductions (Blatchford et al., 2002). The Institute of Education’s class size project was set
up to address this issue and began recruiting in the autumn of 1996. Students were assessed
in mathematics and literacy before entering the reception class and at the end of each year. In
addition, as described in more detail in Section 2, information was collected on a variety of
plausible determinants of achievement.
An analysis of the 1996 cohort is given by Blatchford et al. (2002). However, because of

the non-normality of the measures of achievement, especially those relating to mathemat-
ics, a normalizing transformation was applied before the analyses were carried out. The re-
sults are therefore not readily interpretable by educationalists; although key predictors are
identified, their effect on measures of achievement that are familiar to educationalists is not
transparent.
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If we wish to carry out an analysis using the original achievement scale, we should be wary
of the assumption of normally distributed residuals. The bootstrap provides a natural way to
address this in regression (Davison and Hinkley (1997), chapter 6). However, the class size pro-
ject is a multilevel data set, with children nested within classes within schools within educational
authorities. There is no well-established nonparametric bootstrap procedure for such data sets.
To address this problem, we propose a residual bootstrap for multilevel models. We show

that, under certain regularity conditions, this is consistent, and we present a simulation study
which confirms that the method gives a substantial reduction in confidence interval coverage
error compared with a parametric bootstrap, even when the residuals follow a χ21-distribution
at all levels.
Having established the properties of our method, we then use it to estimate confidence inter-

vals for the relationship between class size and achievement for children in the reception class,
after adjusting for plausible determinants.
The plan for the remainder of this paper is as follows. Section 2 gives more detail about the

class size project. Section 3 outlines the nonparametric bootstrap, relates it to other suggestions
and shows its consistency. A substantial simulation study is presented in Section 4. Section 5
describes the analysis of the data that are described in Section 2, and some conclusions are
drawn in Section 6.

2. The data

As discussed in Section 1, the Institute of Education’s class size project arose out of concern over
the effect of class size differences on pupils’ educational achievements. The project recruited its
first cohort in 1996, and a second cohort in 1997. The present analysis uses only the 1996 cohort.
Datawere collected before children started in the reception class, and then throughout thewhole
of key stage 1 (i.e. the reception year, year 1 and year 2, corresponding to ages 4–7 years). The
data are multilevel: for our analysis we used complete data, which are available on 4621 pupils
in 254 classes in 157 schools.
Here we look at the effect of class size on achievement in mathematics in reception clas-

ses. On entering their reception class, the Avon reception entry assessment (Avon Education
Department and Institute of Education, 1996) was used to measure each child’s literacy and
mathematics ability. This was measured again at the end of the reception year. Literacy was
assessed by using the literacy base-line component of the reading progress test (ReadingProgress
Test, 2000), whereas mathematics ability was assessed by a teacher-administered test that was
devised and piloted by Blatchford et al. (2002). Both tests aimed to cover the curriculum that
is experienced by the children in their reception year.
In addition, pupils’ background details including age, sex, entitlement to free school meals,

fluency in the English language, previous nursery education, term of starting school, attendance
and special educational needs were collected.
Blatchford et al. (2002) presented separate models relating achievement in literacy and math-

ematics at the end of the reception year to class size, after adjusting for other determinants.
Because of the non-normality of the end of reception year mathematics results (Fig. 1), the
scores were normalized at the start of their analysis. They found a

‘clear effect of class size difference on children’s attainment in reception year, both before and after
adjusting for possible confounding factors’.

However, the results are only available on an unfamiliar normalized scale, limiting their acces-
sibility by educationalists.
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Fig. 1. Histogram of results of the mathematics evaluation at the end of the reception year: the maximum
possible score is 48

Motivated by this issue, this paper describes a nonparametric residual bootstrap, suitable
for this data set, and uses it to derive a confidence interval for the relationship between end of
reception year mathematics score and class size, after adjusting for other determinants.

3. Bootstrap methods for multilevel models

In this section we review the parametric bootstrap for multilevel models (Section 3.1) and pro-
pose a nonparametric alternative in Section 3.2. Firstly though we briefly review bootstrap
methods in regression.
Bootstrapping is now a well-established procedure for estimating uncertainty of parameter

estimators in statisticalmodels, and the nonparametric bootstrap is particularly useful (Davison
and Hinkley, 1997; DiCiccio and Efron, 1996; Young, 1994; Efron and Tibshirani, 1993). In
the context of ordinary least squares regression of an n× 1 vector Y on an n× .1+ p/ matrix
X (where the first column contains 1s), three kinds of bootstrap can be employed (Davison and
Hinkley (1997), pages 262–266).
The first is a parametric residual bootstrap. Y is regressed on X , giving estimates of the

.1 + p/× 1 column vector of regressors, β̂, and the residual variance σ̂2. Then bootstrap resi-
duals, say rÅi (i= 1, . . . ,n), are sampled from a normal distribution, with variance σ̂2. The ith
bootstrap response is then yÅi = xiβ̂ + rÅi . The second, a nonparametric residual bootstrap, is
similar, but the rÅi s are now drawn with replacement from the suitably rescaled and centred set
of empirical residuals êi.
Conversely, using the third approach, case resampling, bootstrap data sets can be generated

before any modelling is done. This approach constructs the bootstrap data matrix by sampling
with replacement rows from the n× .2+ p/ matrix .Y ,X/.
Clearly, these approaches work quite differently and can be expected to yield different results.

Whereas the residual resampling methods assume both that the model is correctly specified and
variance homogeneity (so that the residuals are exchangeable), case resampling assumes neither
of these; moreover it does not assume that the conditional mean of Y |X = x is a linear function
of x. Case resampling is thus more robust to heteroscedasticity and model misspecification but
inefficient otherwise (Davison and Hinkley (1997), page 264). Further, with case resampling,
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the simulated samples have different design matrices, as the xs are randomly sampled. This is
undesirable, since in principle inference should be conditional on the xs. Lastly, whereas the
means and variances of the set of β̂Ås obtained by using residual resampling will be very close
to those obtained by using ordinary least squares (Davison and Hinkley (1997), page 262), this
is not generally true for the set of β̂Ås obtained by case resampling, although the difference is
often negligible in large data sets.
Now consider multilevel class size data, consisting of observations on pupils in classes in

schools in education authorities. If we sample with replacement from pupils to create a boot-
strap data set, we destroy the natural hierarchy of the data. To avoid doing this, wemust resample
at the highest level. However, often in educational data there will be few units at this level, so
we cannot apply the case resampling bootstrap with confidence (see also Davison and Hinkley
(1997), pages 100–102).
All this motivates us to develop a residual bootstrap approach. First we discuss a parametric

version and then introduce a nonparametric version.

3.1. Parametric bootstrap for random-effects models
Tofixour ideas,wediscuss data froma two-level hierarchy,whichwould represent pupils (level 1)
within classes (level 2). However, our approach is directly applicable to any level of hierarchy (so
it extends to include schools (level 3)), although the notation becomes increasingly cumbersome.
Let j= 1, . . . ,J index the J classes and i= 1, . . . , Ij index the Ij pupils in the jth class, with
data Yij. Denote by xijk and zijk .k = 0, . . . ,K/ the kth element of the K + 1 covariates for the
fixed and random part of the model for observation Yij, where xij0= zij0= 1. It is not necessary
in general for the dimension of the fixed and random parts of the model to be equal; we adopt
this for notational simplicity. Then the normal errors model is

yij =
K∑
k=0

βkxijk +
K∑
k=0

ujkzijk + eij, .1/

where the βs are fixed effects, the us are random class effects from a .K+1/-dimensional normal
distributionwithmean 0 and covariancematrixΣ and eij are independent identically distributed
errors (at the pupil level) from an N.0,σ2e / distribution and are independent of the us.
Weassume that the parameters .β,Σ,σ2e /have been estimatedbymaximum, or restrictedmax-

imum, likelihood (Goldstein, 1986, 1989). Then the parametric residual bootstrap proceeds as
follows.

Step 1: simulate eÅij ∼ N.0, σ̂2e / .i = 1, 2, . . . , Ij; j = 1, . . . ,J/. Further, simulate the 1×.K+1/
row vector uÅj = .uÅj0,u

Å
j1, . . . ,u

Å
jK/ from the .K+1/-dimensional normal distributionN.0, Σ̂/

for j = 1, . . . ,J .
Step 2: calculate the bootstrap data .yÅij , xij/ by setting

yÅij =
K∑
k=0

β̂kxijk +
K∑
k=0

uÅjkzijk + eÅij :

Step 3: refit the model to the bootstrap data to obtain the first set of bootstrap estimates
.{β̂Åk }k=0,:::,K, Σ̂Å, σ̂2Åe /:

Step 4: repeat steps 1–3B times to obtainB sets of bootstrapparameter estimates for inference.

Although the parametric bootstrap can be useful for bias correction, particularly when the data
are discrete (Rasbash et al., 2000), it does not free inference from the assumption that the resi-
duals have a normal distribution. Thus the bootstrap confidence intervals will not adequately
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reflect any non-normality in the data, such as will be present if we are modelling educational
test scores.

3.2. A nonparametric residual bootstrap for random-effects models
In the light of the foregoing discussion, what is needed is a generalization of the residual non-
parametric bootstrap to the multilevel case. A crude residual bootstrap for model (1) would be
as follows.

Step 1: obtain parameter estimates for model (1) from the data (either by maximum or
restricted maximum likelihood (Goldstein, 1986, 1989)), and calculate the residuals at level
1, {êij}i=1,:::,Ij ;j=1,:::,J , and level 2, {ûj}j=1,:::,J (note that the ûj are 1× .K+1/ row vectors).
Step 2: sample independently with replacement from these two sets, obtaining two new sets
{eÅij}i=1,:::,Ij ;j=1,:::,J and {uÅj }j=1,:::,J :
Step 3: the bootstrap data set is then .yÅij , xij, zij/ .i= 1, 2, . . . , Ij; j= 1, . . . ,J/, where

yÅij =
K∑
k=0

β̂kxijk +
K∑
k=0

uÅjkzijk + eÅij .i= 1, . . . , Ij; j= 1, . . . ,J/:

Step 4: refit themodel to the bootstrap data to obtain one set of bootstrap parameter estimates
.{β̂Åk }k=0,:::,K, Σ̂Å, σ̂2Åe /:

Step 5: repeat steps 2–4 to obtain B bootstrap parameter estimates for each of the parameters
in the model.

Note that, in step 2, we sample the 1 × .K + 1/ row vectors {ûj}j=1,:::,J with replacement, not
the individual elements of these vectors.
Sampling from the {êij} and {ûj} independently breaks the correlation between the estimates

of the us and es, so that the sets {eÅij} and {uÅj } are uncorrelated, in line with the model assump-
tions. The drawback is that this will yield underdispersed bootstrap distributions of parameter
estimates and downwardly biased variance parameter estimates. This is because the crude resid-
uals’ variance–covariancematrix is different from themaximum (restricted) likelihood estimate,
as the crude residuals are ‘best linear unbiased predictors’ which are ‘shrunk’ towards 0 (Rob-
inson, 1991). We therefore need to ‘reflate’ the residuals, so that their covariance matrix is equal
to the maximum (restricted) likelihood estimate of the covariance matrix obtained from the
model, before passing them back through the fitted model in step 3 above.
We now describe a procedure for doing this. For convenience we outline the procedure by

using the level 2 (class) residuals, but analogous operations can be carried out at all levels. First
we fit the model and calculate the ‘class’ residuals. This gives an estimate of the class effects
ûj = .ûj0, . . . , ûjK/ for j= 1, . . . ,J:Let these form the rows of a J × .K+1/matrix Û. Then write
the empirical covariance matrix of the estimated residuals at level 2 in model (2) as

S = ÛTÛ=J

and the corresponding maximum (restricted) likelihood estimate of the covariance matrix of
the random class residuals at level 2 as R. The empirical covariance matrix is estimated using
the number of classes (i.e. level 2 units), J , as divisor rather than J − 1. We assume that the
estimated residuals have been centred. We seek a transformation of the residuals of the form

ÛÅ = ÛA .2/

where A is a matrix of order equal to the number of random coefficients at level 2 such that

ÛÅTÛÅ=J = ATÛTÛA=J = ATSA = R: .3/
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To formA we note the following. Write the Cholesky decomposition of S, in terms of a lower
triangular matrix, as

S = LSL
T
S .4/

and the Cholesky decomposition of R as

R = LRL
T
R: .5/

We have

LRL
−1
S ÛTÛ.LRL

−1
S /T=J = LRL

−1
S S.L−1

S /TLTR = LRL
T
R = R: .6/

Thus, we can choose the lower triangular matrix

A = .LRL
−1
S /T:

In Appendix A, we apply the work of Shao et al. (2000) (who proposed a case resampling boot-
strap) to show that this method will give asymptotically correct coverage of bootstrap percentile
confidence intervals (for a description of percentile intervals, see Carpenter and Bithell (2000)).
We note, however, that A is not unique since

(a) we can choose either upper or lower Cholesky decompositions of S and R and
(b) expressions (3)–(6) are unaltered when we substitute LSWS for LS and LRWR for LR

where WS and WR are orthogonal matrices. In this case we have the more general form
A= .LRWRW

−1
S L−1

S /T.

Although these choices will not affect asymptotic consistency, which depends on second-order
properties, some choices may provide better confidence interval coverage in finite samples. Spe-
cifically, as in the case of residual bootstrapping in ordinary least squares, we are aiming to
estimate the true cumulative distribution function with the empirical distribution function of
the residuals (Davison and Hinkley (1997), page 261). Removing the skewness of the residuals
will not aid this; rather, leaving the residuals’ skewness as little changed as possible while correct-
ing their variance should minimize the difference between the cumulative distribution function
and the empirical distribution function, and thus minimize the difference between actual and
nominal coverage error. Thus the transformation that achieves this in the multilevel setting is
preferable.
The new set of transformed class level residuals ÛÅ, given by model (2), now have covariance

matrix equal to that estimated from the model, and we sample vectors of residuals (correspond-
ing to rows of ÛÅ) with replacement, as described in the nonparametric residual bootstrap
algorithm above. To complete the residual bootstrap, we repeat this process at every level of the
model, with sampling being independent across levels.

3.3. Some remarks
In a single-level (i.e. ordinary least squares) model our rescaling approach is extremely close
to the nonparametric residual bootstrap for linear regression that was proposed by Davison
and Hinkley (1997), pages 257–262. To see this, note that, if n is the number of observations,
in this case the sample variance of the residuals, Σ ê2j =n, will be a downwardly biased estimate
of the true residual variance; an unbiased estimate is Σ ê2j =.n − p/ (where p is the number of
parameters in themodel).Ourprocedure formsnewresiduals r̂j = êj

√{n=.n−p/},whose sample
variance is the unbiased estimate of residual variability; the variance of the resampling residuals



Relationship between Class Size and Achievement 437

that was proposed by Davison and Hinkley (1997), page 262, algorithm 6.1, only approximates
this.
Davison and Hinkley (1997), pages 100–101, also discussed a simple residual bootstrap and

gave a shrinkage correction, with the same aim as ours, for a simple variance componentsmodel.
To conclude this section, note that the procedure can be applied when subsets of the random

effects have different variances, e.g. if the pupil level variances (level 1) differ between the sexes.
All that is required is exchangeability within the groups.

4. Simulation study

Here we report the results of a simulation study to compare the parametric and new nonpara-
metric residual bootstrap. Let j= 1, . . . ,J index level 2 units (e.g. classes) and i= 1, . . . , Ij index
level 1 units (e.g. pupils). Here there are the same number of level 1 units for each level 2 unit
(i.e. pupils within each class), so all Ij = I. We use the model

yij = α + ujα + .β + ujβ/xij + eij, .7/

where α = 3, β = 5, the xij are simulated from a normal distribution with mean 0 and variance
500 and we simulate non-normal random effects as follows.
For each j= 1, . . . ,J we draw a sample .zj1, zj2/ from the bivariate normal distribution

N

{(
0
0

)
,
(
1 0:5
0:5 1

)}
,

so that the covariance of .zj1, zj2/, denoted σz1,z2 , is 0.5.We then set ujα = z2j1−1 and ujβ = z2j2−
1. This means that both ujα and ujβ have marginal .χ21 − 1/-distributions whose mean is 0 and
variance is 2. It is routine to show that cov.ujα,ujβ/= 2σ2z1,z2 , which is 2×0:52= 0:5 in this case.
Lastly, we draw eij ∼ χ21 − 1 independently of the us, so that the random terms at level 2 are

independent of those at level 1.
Initially, we had J = 20 level 2 units each with I = 10 level 1 units. At each replication, a ‘data

set’ was simulated from the model, and then, using both a parametric and a nonparametric
residual approach, bootstrap percentile intervals (Carpenter and Bithell (2000) and Davison
and Hinkley (1997), page 202) were constructed.
We implemented the parametric bootstrap as described in Section 3.1. Specifically, at each

replication, we obtained restricted maximum likelihood estimates of the variance of eij, denoted
σ̂2e , and the 2× 2 covariance matrix of the us, denoted Σ̂, by fitting model (7) to the simulated
data set. The parametric bootstrap then drew eÅij ∼ N.0, σ̂2e /, and

uÅj =
(
uÅj, α
uÅj, β

)
∼ N

{(
0
0

)
, Σ̂

}
,

as in step 1 of the algorithm in Section 3.1.
Likewise, we implemented the nonparametric bootstrap as described in Section 3.2, after the

residuals had been ‘reflated’ by using our proposal. Note, in particular, after having rescaled the
set of 1× 2 level 2 residual vectors {ûj}j=1,:::,J , we sample individual vectors with replacement
from this set, as described in step 2 of the algorithm in Section 3.2.
For each 90% bootstrap confidence interval we used 999 simulations, in line with Davison

and Hinkley (1997), page 202. A total of 500 replicates were used as this was sufficient for a
clear picture to emerge.
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Table 1. Coverage of nominal 90% bootstrap confidence intervals for parameters in model (7), for various
sample sizes

Parameter Coverages (%) for the following sample sizes and methods:

20 level 2, 10 level 1 40 level 2, 20 level 1 80 level 2, 40 level 1

Parametric Nonparametric Parametric Nonparametric Parametric Nonparametric

α 84 85 86 86 93 92
β 83 84 86 85 89 90
σ2uα 53 66 48 69 49 80
σ2uβ 46 64 52 74 48 79
cov.uα, uβ/ 61 67 65 73 69 79
σ2e 53 78 50 87 50 87

Subsequently the experiment was repeated with two larger sample sizes:

(a) J = 40 level 2 units, each with I = 20 level 1 units, and
(b) J = 80 level 2 units, each with I = 40 level 1 units.

These larger sample sizes correspond more closely to our data set.
Table 1 shows the results. The coverage is always better for the nonparametric bootstrap,

with the most dramatic improvements being for the random parameters. Moreover, the cov-
erage error decreases as the sample size increases, in line with theory. Perhaps because of the
skewness of the χ21-distribution, the coverage error does not disappear for the largest sample
sizes that are considered here.
We also examined, for each of the three sample sizes, the average of the parameter estimates

from the 500 simulateddata sets, and the average of the parametric andnonparametric bootstrap
parameter estimates.
After allowing for multiple testing (to ensure an overall type I error of 5% or less), the average

of the parameter estimates from the simulated data sets was within sampling variation of the
true parameter values.
The means of the 500 × 999 bootstrap parameter estimates, from the parametric and non-

parametric bootstrap, were also within sampling variation of each other. However, for several
parameters in the largest sample size, and the covariance in the middle sample size, there was
a detectable difference between the average of the parameter estimates from the 500 simulated
data sets and the average of the 500 × 999 bootstrap parameter estimates, with the bootstrap
parameter estimates less than 1.5% higher. Moreover, the percentage of data sets for which the
estimation, which does not allow negative variance components, fails increases from around
0.5% to 1.5% as the sample size increases. This indicates that this difference arises because we
do not allow negative variance estimates, an observation that is reinforced by other simulations
that we have done.
Finally, note that there is little difference between the parametric and nonparametric boot-

strap in terms of computational load.
The simulations suggest that the nonparametric approach is always preferable to the para-

metric and confirm that for large data sets, such as the class size project data that are analysed
here, the coverage error of bootstrap confidence intervals is likely to be small, even when the
residuals at all levels are highly non-normal.
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5. Analysis of class size data

Asmentioned earlier, Blatchford et al. (2002) derived amodel for the effect of class size onmath-
ematics achievement, after adjusting for a range of other possible determinants. Their response
variable is a transformed measure of achievement, but here we use the actual mathematics test
score at the end of the reception year.
As there is no reason to believe that the relationship between class size and achievement

should be linear, yet more complex polynomials tend to impose too rigid constraints, especially
at the extreme class sizes, Blatchford et al. (2002) explored various regression spline approaches,
which modify the basic polynomial with the addition of smoothly joining local polynomials at
selected ‘knots’.
In this reanalysis, we followed this approach. We began with a variance components model

and a quadratic relationship between achievement and class size. To avoid an upturn at high
class sizes, we explored up to two knots at a variety of class sizes. The simplest relationship
which captured the main features had a single knot at 25 years,

β0 + β1 class size+ β2 class size
2 + β3.class size− 25/2+,

where .z/+ = z if z � 0 and .z/+ = 0 otherwise.
We then adjusted for the determinants of class size that were identified by Blatchford et al.

(2002), retaining parameters with estimates that were significant at the 5% level (with the excep-
tion of sex, whose effect is of particular interest). As we are working on a different scale, it turns
out that a slightly simpler model results.
The estimated coefficients, with class size centred at 30, are given inTables 2 and 3.We see that,

after adjusting for preschool attainment in mathematics and literacy, term of entry, eligibility
for free school meals, sex and age at entry, there is still a strong effect of class size, particularly
for those with below average attainment in mathematics at the start of the year. Fig. 2 shows
the estimated effect of class size on mathematics score, for a girl with average pre-reception
mathematics ability and literacy, at a school with average pre-receptionmathematics ability and
literacy, who started school in the autumn at the average age, and who was ineligible for free
school meals.
We calculated confidence intervals as follows. First, we calculated equitailed 95% normal

theory intervals by using the asymptotic covariance matrix of the parameter estimates. This
is shown by the broken curve in Fig. 2. We then used the nonparametric bootstrap to obtain
999 sets of bootstrap parameter estimates. Using these bootstrap estimates, we calculated the
bootstrap sample estimate of the covariance matrix of the parameter estimates and used this
instead of the asymptotic covariance matrix. As an alternative, we used the bootstrap param-
eter estimates to calculate a 95% bootstrap percentile interval at a number of class sizes. Both
methods for constructing the bootstrap confidence intervals give similar results, although the
percentile bootstrap intervals are not always symmetric about the mean. In Fig. 1, we therefore
plot the curve given by joining together the 95% bootstrap percentile intervals calculated at a
number of class sizes.
The nonparametric bootstrap confidence interval is close to the normal theory interval, but

slightly narrower, particularly at smaller class sizes. We conclude that there is no evidence of an
improved achievement in mathematics until the class size drops below 25, but then the improve-
ment is quite marked. This is more remarkable when it is considered that, in relation to home
influences and other within-child factors, the influence of school experience and, within that,
class size, might be expected to be relatively small.
We can also use the nonparametric bootstrap to calculate a confidence interval for the
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Table 2. Fixed effects estimates for the model for the end of reception
year attainment in mathematics†

Variable Coefficient (standard error)

Intercept 32.8 (1.601)
Class size − 30 0.590 (0.4615)
(Class size − 30)2 6:48× 10−2 .2:894× 10−2/
Pre-reception mathematics score‡ 0.268 (0.1670)
(Pre-reception mathematics score‡/2 1:34× 10−2 .1:133× 10−2/
Pre-reception literacy score‡ 0.222 (9:994× 10−3/
(Pre-reception literacy score‡/2 −2:15× 10−3 .4:204× 10−4/
Entry in spring or summer term§ −5.53 (0.4338)
Eligible for free school meals§ −0.856 (0.2941)
Boy§ 2:24× 10−3 .0:1932/
Age at start of reception‡ 1.53 (0.4203)
Lowest quartile of pre-reception −0.243 (0.5287)
mathematics score§

Highest quartile of pre-reception −9:90× 10−2 .0:5208/
mathematics score§

Pre-reception mathematics score 0.617 (0.1597)
− school average

(Pre-reception mathematics score −2:84× 10−2 .8:667× 10−3/
− school average)2

Interactions
Class size − 30 and lowest quartile of −0:166 .7:216× 10−2/
pre-reception mathematics score§

Class size − 30 and highest quartile of 6:66× 10−2 .7:464× 10−2/
pre-reception mathematics score§

Spline term
If class size > 25, (class size − 25)2 −6:35× 10−2 .5:650× 10−2/

†The response is the mathematics score, which lies between 0 and 48.
‡Variable is centred on its sample average.
§Dummy variable, taking on the value 1 for the given category.

Table 3. Estimated covariance matrix for the model for the end of reception year attain-
ment in mathematics

Component of variance Estimated covariance term (standard error)

School level
Intercept 10.5 (2.821)
Pre-reception mathematics score −0:128 4:54× 10−2

(0.1468) .1:625× 10−2/
(Pre-reception mathematics score)2 −0:100 2:40× 10−3 1:19× 10−3

.3:249× 10−2/ .2:309× 10−3/ .6:641× 10−4/
Class level
Between-class variance 12.4 (2.107)

Pupil level
Between-pupil variance 39.7 (0.8696)



Relationship between Class Size and Achievement 441

Class size

E
nd

 o
f y

ea
r 

m
at

hs
 s

co
re

15 20 25 30

25
30

35
40

45

Fig. 2. Effect of class size on mathematics score, with 95% nonparametric bootstrap percentile confidence
interval ( . . . . . . .) and 95% normal theory confidence interval (- - - - - - -): the maximum possible score is 48; for
details, see the text

intraclass correlation, σ2class=.σ
2
class + σ2pupil/. This reflects the breakdown between pupil and

class variability, and is important for planning the size of future studies. The approximate
normal theory 95% interval, derived by using the delta method (Pawitan (2001), page 89), is
(0.17,0.3), which is similar to the nonparametric bootstrap percentile interval, (0.18,0.29) in
this case.

6. Conclusions

The relationship between class size and achievement has important policy implications.
Although the possibility remains that further confounding factors exist, which could mod-
ify the conclusions, and that the results may not generalize to other parts of the UK where
education policy and practice may vary, our view is that the class size project provides the most
extensive prima facie evidence for a causal effect of class size on achievement.
Further, using our proposal for a nonparametric residual bootstrap for multilevel models, we

have been able to construct an accurate confidence interval for the relationship between class
size and achievement, without having to work on a transformed scale. This is important, as
it makes the results far more accessible to educationalists and thus enables a more informed
discussion of the issues.
The simulation study that is reported in Section 4 gives us confidence in the results: it shows

that even when the distribution of the residuals is χ21 at all levels, provided that the sample size
is large, as it is in the class size study (4621 pupils from 254 classes in 157 schools) the bootstrap
will give accurate confidence intervals.
Thus the residual bootstrap provides a robust alternative to a parametric bootstrap which

should be used in preference to the parametric bootstrap, even when departures from normality
appear slight. It is implemented in MLwiN, version 1.10.0007 (http://www.multilevel.
ioe.ac.uk).
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Appendix A

We consider maximum likelihood estimates to which restricted maximum likelihood estimates are asymp-
totically equivalent. Shao et al. (2000) proposed a case resampling bootstrap for hierarchical data, a
stratified version of strategy 1 of Davison and Hinkley (1997), page 100. Under certain regularity condi-
tions, Shao et al. (2000) showed that, using this resampling plan, bootstrap percentile confidence intervals
are asymptotically consistent. Their arguments also hold in our situation provided that the expectation,
over the bootstrap distribution, of the score equations is 0.
To see that this is true, suppose that we construct the bootstrap data YÅij for the ith response on the jth

person by adding to the mean xTij β̂ the sum of

(a) a sample from the overall, bottom level residuals and
(b) a sample from the person-specific residuals,

where both have beenmean centred and rescaled so thatEÅYÅij = xTij β̂ and, collecting together the bootstrap
data on an individual, cov.YÅj /= V̂ . Now consider the score equations for fitting the model by maximum
likelihood. The log-likelihood is

log.L/ = −.Y −Xβ/TV−1.Y −Xβ/− log|V |,
or equivalently, if S = .Y −Xβ/.Y −Xβ/T,

log.L/ = −tr.V−1S/− log|V |:
Considering the first formulation, the score equations for β are

−2XTV−1.Y −Xβ/:

So, if we replace Y by residual bootstrap data YÅ and set β = β̂, then YÅ − Xβ̂ is a vector and the
expectation over the bootstrap distribution of the score is 0 at β = β̂. This gives consistency of β̂Å for β̂.
For the variance terms, first note that the residuals were rescaled before resampling so that EÅSÅ = V̂ .

Then, using the second formulation of the log-likelihood above we have that the score for a typical variance
parameter, say γk, is

−tr
{

@

@γk
.V−1S/

}
+ tr

(
V
@V−1

@γk

)
:

If S = SÅ then this is equal to 0 if

EÅ tr
{

@

@γk
.V−1SÅ/

}
= tr

(
V
@V−1

@γk

)
,

when V = V̂ , so γk = γ̂k. However, this is true because V is symmetric, so

EÅ tr
{

@

@γk
.V−1SÅ/

}
= EÅ tr

(
SÅT

@V−1

@γk

)

= tr
(
EÅS

ÅT @V
−1

@γk

)

= tr
(
V̂
@V−1

@γk

)
:

The result follows.
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