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Workshops & Courses 
Workshop in Norwich: A three-day workshop 
to be conducted by Dr Ian Langford and Professor 
Harvey Goldstein will be held at University of 
East Anglia (UEA) from 30th August to 1st 
September 1995.  Using MLn, the general 
introductory workshop will cover topics such as 
basic principles, setting up two and higher level 
models, repeated measures, logistic models, 
multivariate analysis and diagnostics. Course fees 
for academics and non-academics respectively are 
£350 and £600 inclusive. For further information 
please contact Anne-Lise McDonald at Health 
Policy and Practice Unit, UEA, Norwich, NR4 
7TJ. Tel 01603 593631, email a.cox@uea.ac.uk. 
 
Workshop in Glasgow:  A workshop on the use 
of multilevel modelling in Public Health and 
Health Services Research will be held at the 
University of Glasgow in 27-29 September 1995. 
This workshop will give participants the chance to 
analyse personal data sets using MLn as well as 
following worked examples introducing a variety 
of models applied in the health field. Course fees 
for academics and non-academics respectively are 
£350 and £600 inclusive. Further details are 
available from Dr. Alastair Leyland, public 
Health Research Unit, University of Glasgow, 1 
Lilybank Gardens, Glasgow G12 8RZ. Tel: 0141 
339 3118 E-mail: a.leyland@udcf.gla.ac.uk. 
 
Workshop in London:  The Multilevel Models 
Project at the Institute of Education in University 
of London will run another general workshop  
using MLn  in 10-12 October 1995. Two class 
groups will be formed to suit both experienced 
participants and beginers. The workshop fee is 
£300 for academics and £600 for non-academics 
inclusively. For more details or booking please 
contact Min Yang at the project address. 

New World Wide Web site for the Multilevel 
Models Project  has been set up on the Institute 
of Education Web server. It includes the 
following:  
 
• = An introduction to multilevel models and some   

application fields 
• = Some current project activities 
• = Details of workshops, course and ‘clinics’ 
• = Recent issues of the MM Newsletter and 

example data sets in compressed   form for 
downloading  

• = MLn MACRO files for downloading - 
currently those for time series and non-linear 
variance modelling and  enhanced loglinear 
and logistic linear modelling macros 

• = A description of MLn and an order form and 
other news about releases etc. 

• = A regularly updated list of known bugs in MLn 
• = Links to other relevant Web sites 
The site address for public access is  
http://www.ioe.ac.uk/hgoldstn/home.html. 
Please try this out & give us  your comments. 
 
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 
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Bookreviews 
Applied Multilevel Analysis by J.J. Hox, TT-Publikaties, Amsterdam, 1994, pp112, NLG 
25 or $15, ISBN 90 801073 2 8 
 
As multilevel modelling becomes more widely used, there is clearly a need for texts which explain why 
the models are important and how they work, without going into too many technical details. Hox's short 
book sets out to meet this need for social scientists. The introductory chapter is followed by chapters on 
multilevel regression models, working with different multilevel packages, applications of multilevel 
modelling to meta analysis as a way of introducing models for proportions,  and finally a chapter on 
multilevel structural equation modelling. All the exposition is restricted to two level models. 
 
The selection and ordering of the material is a little curious at times. For example, the potentially 
confusing topic of centering is introduced very early in the first chapter, whereas the important notion of 
'shrinkage' of level two residuals is not discussed at all. Also, the chapter on multilevel structural equation 
modelling is perhaps a little difficult for beginners. 
 
On the whole, the methods are presented accurately. However, it is not true to say (p.14) that the level 
two variance necessarily rises with the value of the explanatory variable when slopes are random (it 
depends on the sign and size of the covariance term). And it is generally not advisable (p.17) to judge the 
importance of random effects by comparing their values with their standard errors (examining differences 
between the likelihood statistics are more appropriate ). 
 
Supplied with the book, there is a disk which contains the example data and some utility programs. Social 
science researchers new to multilevel modelling could find this book useful, although, if they became 
regular users, they would need to supplement it with one of the more advanced texts. (Ian Plewis) 
(Order can be made through authors by email: a716hox%hasara11.bitnet@sara.nl or fax: 31 20 5703500) 
 
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞ 
Multilevel Statistical Models by Harvey Goldstein, London:Edward Arnold, New York: 
Halsted, 1995, pp178 , price £29.99,ISBN 0 340 59529 9 

 
Introduction 
This book is formally the second edition of Goldstein's Multilevel Models in Educational and Social 
Research, which appeared in 1987. But since 1987 many things have changed. The title, for one thing. 
The book also looks very  different, because it is now in the prestigious Kendall's Library of Statistics, 
published by Edward Arnold. The first part of the book is still fairly close to the first edition, but the 
remainder is more or less completely new. Thus the contents of the book are also very different. We shall 
treat it, consequently, as a new book, and not as an upgrade of an existing one. The book has a wealth of 
new material. 
 
The multilevel market place has changed since 1987. Goldstein's first edition was the first book on 
multilevel models, but in the meantime Bryk and Raudenbush, Hierarchical Linear Models,  and 
Longford, Random Coefficient Models, have appeared. We shall compare the three works at various 
places in the review, in order to answer the all-important question for which audience this book is 
intended. 
 
Basics 
We shall first review the book in its role as an expository book on multilevel models. Which audience is it 
aimed at ? The preface and the first chapter are not completely clear on this, and actually throughout the 
book there is some ambiguity. Each chapter has appendices with ``technical'' material, but unless I am 
mistaken, the set of people who can read and appreciate the main chapters and who cannot read and 
appreciate the appendices is not large. 
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The introductory chapter is clear, although characteristically short. It discusses, as is usual in books of 
this type, the ubiquity of hierarchical data, the promise of multilevel models, and the wide variety of 
existing statistical techniques that can be  converted to multilevel versions. There is a section on caveats 
at the end of the chapter, but this is (also characteristically) even shorter than the other sections. 
 
Chapter 2, which is the core of the expository part of the book, discusses the linear  multilevel model. One 
interpretation of it, is that it tries to condense to 20-30 pages what Bryk and Raudenbush discuss in 200 
pages and what Longford discusses in about 150 pages. It fails at this impossible enterprise. A more 
plausible interpretation is that the chapter defines the notation and terminology, plus some of the basic 
ideas and problems having to do with algorithms, assumptions, testing, and diagnostics. 
 
A corollary of this analysis of Chapter 2 is that the book is not useful as a textbook on multilevel analysis, 
even at the graduate or postdoc level. If you want to learn about linear multilevel models, this is not the 
book for you. Statisticians familiar with variance components analysis, and educational and behavioural 
statisticians who are already familiar with the multilevel literature, can get quite a bit of mileage out of 
the chapter, because in a compact form it gives them the necessary background to tackle the remaining 
chapters. 
 
By the way, the word ``compact'' describes much of the book. The amount of  information crammed in 
these pages is astounding. Obviously, a more or less complete treatment of all these topics would require 
a book of, say, 1000 pages. This is why I think the book is perhaps largely  programmatic, it gives entries 
into many additional publications where details are worked out, and it promises a lot of additional 
research on these topics. Chapter 2, for instance, has a one-page appendix on the EM-algorithm and a one-
page appendix on Gibbs sampling. This is just enough to provide one of two references, and a very global 
idea what these terms refer to, but anybody interested in these matters still has a lot of work to do before 
they even understand the basics. 
 
Extensions 
It is clear that Goldstein thinks of the multilevel idea as a very general one, as indeed it is. If hierarchies 
are everywhere, then existing statistical models should be adapted to hierarchical data. It must be 
emphasized that, on the model level, this is a fairly  straightforward process. Implementing such a 
technique is not trivial, however, and making it work in a truly satisfactory way may be quite difficult. 
The problem with all these extensions and generalizations is that the basic linear multilevel model already 
has some serious and largely unsolved problems. Most parametrizations tend to be badly conditioned, 
likelihood functions are flat, and consequently estimation can be problematic. Vendors of software can 
afford to ignore these problems, but statisticians cannot. If a person is both a vendor of software and a 
statistician, then this person has a problem. It is not enough to get carried away by all the analyses we can 
now do with our new software, indeed this is not the statisticians job at all. We have to analyze critically 
what the properties of the new techniques are, and if they are presented in batches, in a staccato tempo, it 
becomes very difficult for a  statistician to do her job properly. 
 
A first batch of extensions 
In the 20 pages of Chapter 3, we encounter complex variance structures, sampling weights, parameter 
constraints, resampling standard errors, meta analysis, and aggregate level analysis.  
 
Only the first topic gets more than cursory attention. It is based on the observation that first-level residual 
variances can be modelled in much more detail than is usually done. Indeed, this is a major research topic 
in regression analysis and generalized linear models. In the spirit of multilevel analysis, we can 
incorporate first level predictors directly into the first level disturbances. This is easy to do with the MLn 
software, and the examples are quite interesting, but the full implications of extending the multilevel 
models in this way are not well understood. 
 
Multivariate Models 
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In this very short chapter it is pointed out that the multilevel linear model can be extended, in much the 
same way as the ordinary linear model, to deal with multivariate responses. 
 
Nonlinear Models 
Some nonlinear examples of the growth curve type are discussed, by using linearization. The chapter is 
sketchy, but it appears that experts can indeed handle such nonlinearities in the existing framework.  
 
Repeated Measures Data 
The books of Bryk and Raudenbush and of Longford give a lot of attention to repeated measures data, 
because  this is an obvious area in which to apply the linear multilevel model. Goldstein incorporates the 
possibility of autocorrelated errors, with a quite general autocorrelation function. This gives rise to an 
enormous number of possible models, of which only a tiny number are illustrated in the example on 
adolescent growth. It also gives rise to quite a few additional model-choice problems, and these are 
(characteristically) left not discussed. 
 
Discrete Response Data 
We know, from GLM, how to extend linear models so that they can deal with discrete response data. It is 
most easily done through using a link function. This chapter is a fairly extensive discussion of the various 
link functions, with applications to counts and multiple responses. Again the treatment is rather sketchy, 
but less so than in other chapters. 
 
Multilevel Cross Classification 
If the data are not purely nested, but the second level is a cross-classification of, say, school and 
neighbourhood, then of course the multilevel model has to take this cross-classification into account. 
There is a nice discussion in the book about such designs, and how they translate into variance 
components. Then cross-classified design are combined with complicated variance structures, and with 
multivariate data. This is an example of a recurring theme: if you introduce an extension, it can be 
combined with all previously introduced extensions. This goes without saying, but nevertheless Goldstein 
says it in various places. This produces a heavy emphasis on the generality, the enormous amount of 
possible models. It does not emphasize the flip-side of the coin, which is the very serious model choice 
problems and the possible lack of stability.  
 
Event History Models 
Event history models are, or used to be, quite popular in sociology and economics, and they seem to be 
gaining popularity in education. They are introduced in a  couple of pages, and then hierarchies are used 
to introduce variance components in here as well. This chapter is quite interesting, although it has the 
usual problem of not telling the reader why particular choices were made, and how a particular analysis 
was actually done. At least not precisely. Many of Goldstein's examples in the book are not, to use a 
currently popular term, reproducible research. We don't have enough information. 
 
Measurement Errors 
Measurement errors can create havoc in ordinary linear model situations, and of course they can do this 
even more so in multilevel situations. This chapter gives a number of formulas and corrections to deal 
with  measurement error in the covariates at both levels. It is difficult to get the feeling for a general 
approach to these problems from the chapter, but it seems that there is quite a bit of ongoing research that 
will clarify the details. 
 
Software and some loose ends 
In the last chapter there is a nice unbiased summary of the available multilevel software, although for 
some  largely mysterious reason Goldstein feels that it is necessary to slip in a few more extensions even 
in this chapter. In general, I want to emphasize that Goldstein's treatment of the multilevel market place is 
eminently fair. There has been a tendency, especially in the US (of course),  to sketch the development of 
the field as a Darwinian battle between competing software products. Goldstein systematically refuses to 
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enter the fray, and gives major credit to Aitkin, Longford, and others. He barely mentions his computer 
program, in fact not enough for my taste, because it would be interesting to know how some of the 
extensions were actually done. 
 
Summary 
It is important to emphasize that Goldstein's book does not stand on its own. It is one of the products of 
the Multilevel Models Project, which also produces the computer programs ML3 and MLn, the manuals 
corresponding to these computer programs, and a stream of both theoretical and applied papers on 
multilevel analysis. This must be emphasized, because to some extent Goldstein's book reflects the 
current state and the further research program of the Multilevel Models Project. Thus it can be read both 
as a progress report, and as a programmatic document. In both these roles it is useful and well-executed. 
Taken as a whole, of course, the Multilevel Models Project is an impressive effort indeed, and it can serve 
very well as a model how quantitative educational and behavioural research should be organized. 
 
But, as is perhaps obvious from this review, I have my doubts about the unrelenting expansive approach 
to multilevel analysis,  which looks for generalizations and extensions everywhere. There are quite a few 
examples in the applied statistical literature of elaborate buildings that have crumbled because the 
foundations were not solid enough. To use a well-known statistical metaphor, we cannot go on reducing 
bias by defining more and more elaborate models without seriously jeopardizing the stability of our 
analyses. It is not clear, from the few examples presented in the book, how useful and how stable these 
generalizations will be. It is clear, however, that the Multilevel Models Project will provide us with a 
great deal of additional information  about these issues in the future. (Jan de Leeuw) 
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Theory & Applications 
Detecting Outliers in Multilevel 

Models: an overview 
Ian H. Langford and Toby Lewis,  

University of East Anglia, UK 
 
Data exploration techniques, including the 
detection of outlying observations, are a 
relatively unexplored area of multilevel 
modelling. For ordinary regression, there is an 
extensive literature on the detection and 
treatment of single outliers, and an increasing 
literature on multiple outliers (Barnett and Lewis 
1994). There are a bewildering number of 
techniques available, the majority of which may 
be applicable and of use in a particular situation. 
However, as we have undertaken our research on 
outliers in multilevel models, we have 
encountered further complexities which require 
a somewhat different approach to those used 
traditionally. 
 
A data exploration approach 
The first issue is where to start data exploration 
in a multilevel model. Rather than looking at 
individual data points, we have found it most 
useful to begin at the level of highest 
aggregation, which may be simply the highest 
level in the model, or the least complex of a set 
of cross-classifications. The reasons for this are 
two-fold. Researchers are often most interested 
in the highest level of aggregation, and will 
naturally concentrate their initial efforts here. 
However, it is also true that if discrepancies can 
be found in higher level structures, these are 
more likely to be more indicative of serious 
problems than a few outlying points in lower 
level units. After analysing the highest level, 
then lower levels should be examined in turn, 
with analysis and initial treatment of outliers at 
the lowest level of the model. The highest level 
should then be re-examined after the model has 
been refitted to the data. The objective is to 
identify whether an outlying unit at a higher 
level is consistently outlying, or outlying due to 
the effects of one or two aberrant lower level 
units they contain. Similarly, examination of 
lower level units may uncover the fact that one 
or two lower level units are aberrant within a 
particular higher level unit which does not 
appear unusual, and that the higher level unit 
would be aberrant without these lower level 
units. Hence, caution must be taken with the 

analysis not simply to focus on interesting 
higher level units, but to fully explore lower 
level units as well. 
 
Detecting structure 
The second issue in outlier detection in 
multilevel modelling concerns emphasis. In 
ordinary regression, the aim is to detect outliers, 
usually sequentially as single outliers (though 
sometimes en bloc) and treat them in some 
fashion, whether by deletion, identification for 
separate accommodation, model reformulation 
or whatever. Some recent work has focused on 
influential subsets of outliers (Peña and Yohai 
1995; Lawrance 1995). Sometimes, useful 
analysis may be undertaken using deletion of 
single units; but often, at any level, we may be 
inherently looking for more structure due to the 
separate estimation of fixed and random effects 
in a multilevel model. In MLn, a single fixed 
coefficient for an explanatory variable is easily 
produced, with an estimate of the mean 
deviation of units around this fixed coefficient at 
any particular level. In this situation, it may be 
of primary interest to see how the random 
effects are determined, whether exclusion of one 
or more units from the random part of the model 
removes the necessity for random parameters, or 
more generally, whether there is any structure to 
the random effects which is distinct enough to 
warrant modelling as a fixed effect. This type of 
analysis is part of the further extension of 
modelling from fixed effects, to fixed plus 
random effects, to a general examination of 
structure. Bernoulli (1777, in Beckman and 
Cook 1983) first criticised the assumption of 
identically distributed errors, stating that “every 
observation should be admitted whatever its 
quality, as long as the observer is conscious that 
he has taken care.” The present research on 
outliers generally follows this principle. 
 
Basic methods for detection 
However, it is still true that the basic aims of 
outlier detection found in ordinary regression 
apply, and there are three basic situations we can 
search for, albeit at different levels of a 
hierarchical model (Rousseeuw and van 
Zomeren 1990). These are (see Figure 1):  
 
a) vertical outliers, which have low leverage; 
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b) leverage points which are consistent with the 
relationships found in the rest of the data 
(and are not outliers in our sense), and; 

c) leverage point outliers, which significantly 
alter the relationships found in the data by 
their inclusion, as well as having high 
leverage. 

 
The difference is that the points displayed in 
Figure 1 may be individual data points within a 
level 1 unit, or be the distribution of random 
coefficients at a higher level unit. In this second 
case, each point is really a cloud of points whose 
“centre” has been shrunken towards the fixed 
parameter estimates in the model. 
 
Figure 1. 

 
 
Research in progress 
Reports on specific examinations of outliers in 
multilevel modelling applications are beyond the 
scope of this paper, but will be reported in a 
later issue. For example, an extensive re-analysis 
has been undertaken of Aitken and Longford’s 
(1986) data on school effectiveness, modelling 
exam scores as a function of an intake measure 
of Verbal Reasoning Quotient in 19 schools, two 
of which are grammar schools and potential 
outliers. Data exploration at school level has 
focused on reductions in deviance from 
exclusion of each school in turn from the 
random part of the model, and the effects of this 
on random parameter significance. This was a 
computationally expensive operation which took 
over 1300 iterations, and the authors are 
researching “one-step” alternatives in the 
fashion of Williams (1987). After unusual 
schools were identified, attention focused on 
residuals, leverage and influence measures at 
pupil level, before re-analysis of school level 
effects, as suggested above. An examination of a 
simulated data set, including detection of 
clustering, is underway, as well as analyses of 
other educational, social survey and 
geographical data sets. 
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Implementing the Bootstrap for 
Multilevel Models 

Erik Meijer, Rien van der Leeden and 
 Frank M. T. A. Busing* 

Leiden University, The Netherlands 
(*Supported in part by SVO project No. 93713) 

 
Introduction 
Multilevel models are usually estimated by 
maximum likelihood methods, be it full 
information maximum likelihood (FIML) or 
restricted maximum likelihood (REML). The 
maximum likelihood theory is based on several 
assumptions, some of which are (a) The random 
errors at all levels are normally distributed, and 
(b) The sample size is large.  More specifically, 
the properties of the maximum likelihood 
estimators  are derived under the assumption that 
the sample size goes to infinity. 
 
In practice, these assumptions will at best only 
be met approximately.  The most important 
effects the violation of these assumptions may 
have are bias of the estimators and incorrect 
standard errors.  
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In many models and situations maximum 
likelihood estimators are biased in finite 
samples.  For a general class of regression 
models including multilevel models, however, 
Magnus (1978) proved that the maximum 
likelihood estimators of the fixed regression 
coefficients are unbiased.  On the other hand, 
Busing (1993) showed in a Monte Carlo 
simulation study that the FIML estimators of the 
variance components in multilevel models are 
biased. 
 
 The standard errors of the maximum likelihood 
estimators that are reported by the various 
multilevel packages are derived from asymptotic 
theory.  This means that they are based on the 
idea that as the sample size goes to infinity, the 
distribution of the estimators will converge to a 
(multivariate) normal distribution with a certain 
covariance matrix.  The reported standard errors 
are the square roots of the diagonal elements of  
this matrix.  In finite samples, this 
approximation may not be very good.  The true 
standard errors may be quite different from the 
reported ones  based on asymptotic theory, and 
the distributions of the estimators may not be 
normal.  In fact, Busing (1993) showed that the 
distributions of the variance component 
estimators can be severely skewed.  The focus of 
this paper is, however, on bias and standard 
errors, and not on  the specific distribution. 
 
A fairly general way to obtain estimates of the 
bias and correct standard errors is the bootstrap 
(e.g., Efron, 1982). The bootstrap can, however, 
not  straightforwardly be implemented in 
multilevel models, because the observations are 
not identically and independently distributed 
(IID). In this paper, the implementation of three 
bootstrap methods for multilevel models will be 
discussed.  
 
The model and its estimation 
We will discuss the implementation of the 
bootstrap procedures for a two-level model.  The 
ideas generalise, however, straightforwardly to 
models with more levels.   
 
The model is given by 
 
             εβ jjjj Zy +=                                 

(1) 
and       j j jW uβ γ= +                              (2) 

where j denotes the level-2 unit number, 
j j N jy y y

j
= ( ,..., )'1  is the vector with score on 

the dependent variable of level-2 unit j,  jZ  and 

jW  are matrices with explanatory variables, jβ  

and  γ  are vectors with random and fixed 
regression coefficients, respectively, and 

j j N jjε ε ε= ( ,..., )'1  and ju  are vectors of level-
1 and level-2 random errors, respectively. 
 
Generally, it is assumed that j NN

jIε σ~ ( , )0 2  

and  ju ~N(0,Θ), where 2σ , the variance of 
the level-1 error term, is an unknown (scalar) 
parameter, and Θ, the covariance matrix of the 
level-2 error terms, is a (symmetric) matrix of 
unknown parameters. This model can be 
elaborated, e.g. by making the level-1 variance a 
function of other variables, but we shall not 
consider this here (Goldstein, 1995). From these 
assumptions and (1) and (2), the likelihood 
function can be formulated and maximised to 
obtain maximum likelihood estimators. 
 
The parameters that have to be estimated are the 
elements of  γ  (the fixed parameters) and 2σ  
and the elements of Θ (the variance 
components). In order to implement one of the 
bootstrap methods we need estimators of the 
level-2 random coefficients jβ  and of the 

random error terms ju  and jε  (see the next 
section). Within the multilevel framework, these 
estimates  are usually obtained by shrinkage 
estimation. This yields posterior means and 
shrunken residuals. An alternative method is 
using the within-unit OLS estimators and 
corresponding residuals (we call them raw 
residuals). 
 
Bootstrapping multilevel models 
Bootstrap methods are concerned with drawing 
samples from the empirical distribution function.  
Common bootstrap methods can not be 
straightforwardly applied to multilevel models, 
because bootstrap theory requires the 
observations to be independently distributed.  
This is not the case with multilevel data, where 
the observations are subject to intraclass 
dependency.  Therefore, special resampling 
schemes have to be devised, which take the 
hierarchical data structure into account.  We 
discuss three methods: (1) the parametric 
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bootstrap, which uses the normality assumption, 
and therefore only gives information about 
sample size effects;  (2) the (nonparametric) 
error bootstrap, which assumes that the  
explanatory variables are fixed; and (3) the 
(nonparametric) cases bootstrap, which assumes 
that the explanatory variables are random with 
unknown distribution.  For the first two of these 
methods it is also assumed that the model is true 
in the population. 
 
The parametric bootstrap uses the parametrically 
estimated distribution function of the data to 
generate new samples and compute relevant 
statistics based on these new (bootstrap) 
samples. In the two-level model discussed here, 
it is assumed that the level-1 errors ijε , i=1, ..., 

jN , j=1,...,J, are identically and independently 

distributed N(0, 2σ ), and that the level-2 error 
vectors ju , j=1,...,J, are identically and 
independently distributed  N(0, Θ). Hence, the 
parametrically estimated distribution functions 
of ijε  and  ju  are the N(0, 2

�σ ) and N(0, �Θ) 

distribution functions, respectively. 
 
The parametric bootstrap now draws 
independent pseudo-random samples from these 
normal distributions to obtain bootstrap samples 

ij
b*( )

ε  and j
b

u*( )
, i=1,...,Nj, j=1,...,J, b=1,...,B. 

Then, for each b=1,...,B, a bootstrap sample of 
the response variable is obtained from   
 
                j jW u j

*
� *β γ= +                               (3) 

and          j j j jy Z* * *= +β ε                               (4) 
 
where j j N jj

* * *( ,..., )'ε ε ε= 1   and the superscript 
(b) is omitted for simplicity. The parametric 
bootstrap can also be obtained using the 
SIMUlation option of MLn (Rasbash & 
Woodhouse, 1995). 
 
For the nonparametric bootstrap, several 
variations can be  studied.  If the explanatory 
variables can be considered fixed design 
variables, then, analogously to regression 
analysis, the  errors have to be estimated and 
subsequently resampled  (see, e.g., Efron, 1982, 
pp. 35-36).  As mentioned in the previous 

section, either the shrunken residuals or the raw 
residuals can be used as estimators of the errors. 
 
Unlike in regression analysis, the estimated 
residuals in multilevel  analysis do not 
necessarily have a zero mean.  Therefore, the 
residuals  must be centered first over the whole 
data set.  Otherwise, the possibly nonzero mean 
of the errors would necessarily lead to biased 
estimators of the intercept  parameters. 
 
From the centered estimates  { ju� } and  { ij�ε } 

the (nonparametric) empirical distribution  
functions of the errors can be obtained.  Then, 
nonparametric bootstrap  samples  ju* , j=1,...J 

and ij
*ε , j=1,...,J, i=1,...,Nj, are obtained by 

drawing samples from these empirical  
distribution functions.  This is equivalent to 
drawing samples with replacement from the 
centered residuals.  Then, nonparametric 
bootstrap samples of  y are obtained from (3) 
and (4).   We call this the error bootstrap. 
 
If the Z and W variables are considered random, 
nonparametric  bootstrap samples can be drawn 
by resampling complete cases.  The bootstrap 
samples can be drawn in the following way.  
First, a sample of  size J is drawn with 
replacement from the level-2 units.  This gives a 

sample kj
* , k=1,...,J of  level-2 unit numbers 

and  accompanying level-2 variables jkW* . Then 
for each k, a  nonparametric bootstrap sample of 

complete cases from the (original) unit  kj j*= is 

drawn, giving ( iky* , ikZ* ), k=1,...,J, 
i=1,..., jkN * . We call this the cases bootstrap 

for  both levels. 
 
It is also possible to draw cases bootstrap 
samples from the level-2 units only or from the 
level-1 units within each level-2 unit only. This 
can be useful when the  level-2 units, or the 
level-1 units within the level-2 units can not be 
considered random, for example when  countries 
are compared (fixed level-2 units),  or with 
repeated measures data (fixed level-1 units 
 within each level-2 unit). 
 
Once bootstrap samples are drawn, bias-
corrected bootstrap estimators and standard 
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errors are obtained as follows. Consider a typical 
parameter θ . Its  estimator �θ  is computed from 
the original sample. For each bootstrap sample 
b=1,...,B (obtained in one of the ways described 

above), a bootstrap estimator *( )b
θ  is obtained 

in the same way the estimator  �θ  was obtained 
from the original sample. The mean of these 

estimates *( )b
θ  is called (.)

*θ , and its variance 

is called V*. The bias of �θ   is now estimated as 

Bias( �) �
(.)
*θ θ θ= −  and a bias-corrected 

estimator is  
B

Bias� � ( � ) �
(.)
*θ θθ θ θ= − = −2 . The 

standard error of  �θ   is estimated by *V , 
which is also used as a standard error of B�θ . 
See, for example, Efron (1982) for a  
comprehensive theoretical discussion of 
bootstrap estimators and  standard errors. 
 
Preliminary results and discussion 
In order to study the statistical properties of the 
proposed bootstrap methods, the program MLA 
has been developed. MLA provides FIML 
estimation of the two-level model presented in 
the second section of this paper, as well as the 
various bootstrap methods discussed in the 
previous section. Two experimental jackknife 
methods are implemented too. Other features 
include simple non-iterative estimators, which, 
under certain conditions, may be considered 
useful alternatives to FIML estimators  (Van der 
Leeden & Busing, 1994; De Leeuw & Kreft, 
1994). Shrinkage and within-unit OLS 
estimators of the random regression coefficients 

jβ  and errors ju  and  ijε  can be obtained as 

well. 
 
The MLA program is intended as a vehicle for 
our own research interests.  Therefore, it is not a 
completely functional program, in the  sense that 
many options of the major programs MLn, 
VARCL, and  HLM are not implemented.  For 
example, the number of levels is  restricted to 2.  
Interested researchers, however, may obtain a 
copy of the  program and the manual (Busing, 
Meijer, & Van der Leeden, 1994) from us.  In 
the manual the estimation and resampling 
procedures are discussed in more detail. 
Using the MLA program, we are currently 
performing Monte Carlo simulation studies to 

give insight in the properties of the bootstrap  
estimators under various conditions.  It appears 
that γ  and  2σ  are usually estimated rather well 
with FIML.  Therefore, only bootstrap 
estimators of Θ, the Level-2 variance 
components, are  considered here. In the 
simulation, a simple two-level model with one 
explanatory variable at each level is used. All 
four elements of γ  are set to 1, 2σ  is set to 1, 
the variance of the Level-1 random intercept and 
slope terms are set to 0.5 and their covariance is 
set to 0.25. The explanatory variables are drawn 
from standard normal distributions. The 
following settings are varied in the simulation 
design: number of Level-2 units (10, 25, 65), 
size of Level-2 units (unbalanced with on 
average 10, 25, 65 Level-1 units) and 
distribution of the errors (all normal vs. all 
skewed). Each generated sample gives FIML 
estimates and standard errors, and raw and 
shrunken error bootstrap estimates and standard 
errors. Thus, every parameter is associated with 
three estimates and three standard errors. The 
number of B of bootstrap replications is set to 
100 and the number of Monto Carlo replications 
is 500. For each parameter (θ , say) and each 
estimation method, the relative bias is computed 
as ( ) /θ θ θ− 0 0 ,  where θ  is the average of the 
500 estimates of θ  with given settings and 
estimation method, and θ0  is the true value of 
θ . Additionally, for each parameter, the relative 
bias of the standard error is estimated in the 
same way, where the ‘true’ value of the standard 
error is estimated by the standard deviation of 
the parameter estimates in the sample of 500 
replications. We are currently analyzing the data 
obtained from this simulation, and performing 
simulation with the cases bootstrap and 
parametric bootstrap. 
 
Table 1 gives some preliminary (and condensed) 
results for the error bootstrap methods. It 
indicates that bias correction works fine for the 
error bootstrap with shrunken residuals, but not 
for the error bootstrap with raw residuals. As 
expected, the results also indicate that 
bootstrapping is only relevant with relatively 
small samples. Results are, however, 
preliminary, and more research needs to be 
done. 
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Table 1. Relative bias for intercept variance 
estimator: FIML and raw and shrunken residual 

bootstrap results 
Sample 
size 

Distribu
tion 

FIML Raw Shrunken 

Small Normal -0.18 -0.21  0.05 
 Skewed -0.17 -0.20  0.06 
Large Normal -0.04 -0.05 -0.01 
 Skewed -0.05 -0.06 -0.02 
 
In this paper, we discussed the original bootstrap 
method, adapted for hierarchical data.  Many 
refinements, extensions, and alternatives to the  
original bootstrap method have, however, been 
proposed, especially for regression models (Wu, 
1986).  It may be relevant to implement these  
ideas in bootstrap methods for multilevel models 
as well to improve performance.  
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Sample Size Requirements for 2-
level Designs in Educational 

Research 
Magdalena Mok 

University of Macquarie, Australia 
 
Introduction 
This study is concerned with the effect of 
sample size on the efficiency of  estimates for 2-
level survey research designs.  One component 
of sample  design is the numbers of level-2 units 
and  level-1 units to be  included in the sample 
to produce accurate information.  For example, 
in the study of school culture, the researcher 
needs to decide how many schools,  and how 
many students from each school have to be 
included in the study.  Naturally, costs are an 
important consideration. Costs for a 2 level 
design  would be: (a) those at the school level, 
comprising, costs of compiling  the lists of 
schools, transportation between center and sites, 
liaison with  gatekeepers, and mailing costs, and 
(b) the costs at the student level, comprising 
costs of compiling the lists of students, data 
collection and analysis.  As long as the total 
number of students remains  constant, costs at 
the student level would be the same, irrespective 
of the number of schools involved. On the other 
hand, the design can have serious financial 
implications for the costs at the school level; the 
more schools are involved, the more costly it 
would be.  However, cost was not the point of 
consideration for this paper.  Instead, we 
consider the following problem: suppose 2000 
students in total is required for the study, then, 
in terms of efficiency,  should the 2000 students 
come from 20 schools with 100 students from 
each  school, or should the sampling scheme 
consist of 100 schools each with 20 students, or 
some other school- and student-size 
combinations?   
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At least for variance component models, the 
sample design question relates to  a 2-level 
modelling situation, where level-1 units (for 
example, students)  are nested within level-2 
units (for example, schools), is analogous to that 
addressed by Kish (1965:259) in computing the 
effective sample size in  two-stage cluster 
sampling.  Effective sample size of a 2-stage 
cluster sampling design,  effn , is computed by: 
 
   effn  = n / [1 + ( clusn  - 1) ρ]                   (1) 
 
where n  is the total number of students in the 
study, that is, the actual  sample size, clusn  is the 
number of students per school, and  ρ is the 
intra-class correlation. 
 
However, the analogy is not straightforward for 
random slope models, because the intra-class 
correlation for these models is a function of the 
independent variable (Goldstein, 1995). For 
example, for the case of one continuous 
dependent variable regressing on one continuous 
explanatory variable, both measured at level-1, 
 

ij ij ij j j ijy x v v x= + + + +( ) ( )0 1 0 1α α ε        (2) 
 
where ij eNε σ~ ( , )0 2 , and 0 0

20jv N~ ( , )σ  

1 1
20jv N~ ( , )σ , cov( , )0 1 01j jv v = σ , The 

function of intra-class correlation ρ  is given by 
the ratio of level-2 variance to total variance. For 
the model in equation (2),  
 

0
2

01 1
2 22 2var( )level x xij ij− = + +σ σ σ  

elevel 21var( )− =σ  

ρ = −
− + −

var( )
var( ) var( )

level
level level

2
2 1

    (3) 

 
It is therefore necessary to re-address the 
question of sample size requirements for 2 level 
models when random slope models are involved. 
The research questions for this study are: (a) 
What are the effects of level-2 and level-1 
sample sizes on sampling accuracy in terms of 
unbaisedness, efficiency, and consistency of 
parameter estimates? (b) Does equation (1) give 
a reasonable estimate of effective sample size 
for multilevel models when random slope 
models are involved? 
 

Method 
Simulation methods were utilised to answer the 
research questions. First, a large population was 
generated from an existing empirical data set, 
such that the true values of parameters to be 
estimated were known, and the population had 
the desired multilevel structure. Next, according 
to a sample design grid, samples with specific 
level-1 and level-2 units were drawn randomly 
from the population.  The 11 x 11 sampling 
design grid was made up of 11 rows of level-1 
sizes per level-2 unit: 5, 10, 20, 30, 40, 50, 60, 
70, 80, 100, 150, and 11 columns of level-2 
sizes: 5, 10, 20, 30, 40, 50, 60, 70, 80, 100, 150 
(see Table 1).  All designs were balanced.  In 
this way, the total sample size for cell (i,j) in the 
grid was the same as the total sample size for 
cell (j,i).  Cells below, on, and above the 
diagonal were labelled Type A, B, C designs 
respectively.  The cells for Type A, 
(respectively, Type B, Type C) designs had 
smaller (respectively, equal, larger) numerical 
values of level-1 units than those of level-2 
units.  So for each actual total sample size, there 
were at least 2 points of comparison made 
possible: i>j, and i<j.  
 
A random sample, satisfying the design sample 
size specifications, was selected from the 
population.  Each sample point consisted of a 
pair of observations, one on the independent 
variable, and the other on the dependent 
variable.  Based on each selected sample, 100 
simulations were generated using the MLn 
package (Rasbash and Woodhouse, 1995).  For 
each set of simulated data, a random slope 
model was fitted and the parameter estimates 
using the RIGLS method of estimation 
(Goldstein, 1995), were recorded.   The 6 
parameters to be estimated comprised the fixed 
components of the intercept 0α , and of the slope 

1α , the level-2 variance of the intercept 0
2σ , and 

of the slope 1
2σ , the level-2 covariance 01σ  

between the intercept and the slope, and the 
variance at level-1 e

2σ .  From the parameter 
estimates over 100 simulations of the conditions 
of the design, the (signed) bias, the empirical 
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Table 1. Sampling design grid 

 Number of Level-2 units  
Number of level-1 

units per level-2 unit 
5 10 20 30 40 50 60 70 80 100 150

5 25 50 100 150 200 250 300 350 400 500 750
10 50 100 200 300 400 500 600 700 800 1000 1500
20 100 200 400 600 800 1000 1200 1400 1600 2000 3000
30 150 300 600 900 1200 1500 1800 2100 2400 3000 4500
40 200 400 800 1200 1600 2000 2400 2800 3200 4000 6000
50 250 500 1000 1500 2000 2500 3000 3500 4000 5000 7500
60 300 600 1200 1800 2400 3000 3600 4200 4800 6000 9000
70 350 700 1400 2100 2800 3500 4200 4900 5600 7000 10500
80 400 800 1600 2400 3200 4000 4800 5600 6400 8000 12000
100 500 1000 2000 3000 4000 5000 6000 7000 8000 10000 15000
150 750 1500 3000 4500 6000 7500 9000 10500 12000 15000 22500

Notes:  
1. Cell entries denote the total number of level-1 units, that is, the Actual Sample Size. 
2. Design A: Cells below the diagonal; Design B: Cells on the diagonal; Design C: Cells above the diagonal. 
 
sampling variance, and the empirical Mean 
Square Error (MSE) were computed.  If β  is the 
true parameter, and jb  is the jth replication of 
100, then (signed) bias is given by 
( / )jb −100 β , and the (empirical) sampling 
variance is { [ ( / )] / ( )}j jb b− −100 100 12 .  
The empirical Mean Squared Error (MSE) is the 
sum of squared bias and the sampling variance. 
 
The population for this study was simulated 
from a real data set, which consisted of 4,949 
students from 50 New South Wales Catholic 
schools.  The data set was collected by Flynn 
(1993).  The dependent variable was 
standardised performance at the HSC (Higher 
School Certificate) examination, and only one 
explanatory variable, namely the standardised 
attitude toward achievement, was selected for 
this study.  The population was simulated from a 
random slope model, as specified in (2) above, 
fitted to the real data, and consisted of 247,450 
simulated students from 440 simulated schools. 
Students comprised the level-1 units, and 
schools comprised the level-2 units.  
 
The population parameter values were: 
 
Intercept 0α  =-.07790 SE=.01359 
Slope 1α  =.2457 SE=.01195 
Lev-2 intercept var. 

0
2σ  =.07229 SE=.005227 

Lev-2 slope var. 
1
2σ  =.05536 SE=.004039 

Lev-2 covariance 01σ  =.01161 SE=.003302 

Lev-1 random 
component e

2σ  =.4229 SE=.001731 

Intra-class corr. ρ  =.14598  
 
Results 
1. Estimates of the fixed components of the 
intercept and the slope  
The MLn estimates, 0a  of the intercept 0α , and 

1a  of the slope 1α , were obtained for 100 
simulations of conditions of the design. The 
summary statistics of the (signed) bias, sampling 
variance, and MSE  of these estimates are given 
in Table 2.  Results on the intercept and the 
slope are similar.  Four observations were made. 
First, all designs are consistent: As sample size 
increases, bias tends to approach zero.  Indeed, if 
the total sample size is more than 800 students, 
then all estimates of the fixed component of the 
model lie within 1 standard error of the true 
value, irrespective of the Type (A, B, or C) of 
design (Table 2).   
 
Second, for designs with total sample size less 
than or equal to 800, it appeared that Type A 
designs show more bias than either Type B or 
Type C designs: 7 of the 8 designs which had 
bias more than 1 standard error from the true 
intercept were of design Type A, and the 
remainder of design Type C; of the 8 designs 
with biases more than 1 standard deviation from 
the true slope, 6 were of design Type A, 1 was 
of design Type B, and the remaining one was of 
Type C.  
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Third, both the intercept sampling variance and 
the slope sampling variance decrease rapidly as 
sample size increases from 25 to about 2500, but 
the curves level off around sample size 2500. 
This indicated that, for the fixed part of the 
model, the gain in efficiency by increasing the 
total sample size beyond 2500 was relatively 
small.  The graphs of the sampling variances and 
of the MSE of the fixed components are very 
similar in shape, therefore only the graph of 
MSE of the slope plotted against sample size is 
presented here (Figure 1). 
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Four, given a fixed sample size, even when the 
sample size is considerably large (say, larger 
than 3000 students), design Type A has 
relatively larger sampling variance, as well as 
larger MSE, than either types C or B designs 
(Figure 1).  Based on these observations, for a 
given total sample size, designs involving more 
schools and fewer students per school, tend to be 
less biased and more efficient than designs 
involving fewer schools and more students per 
school. 
 
2. Estimates of the level-2 variance of the 
model: 0

2σ  and 1
2σ  

The results of the level-2 variance estimates, 0
2s  

and 1
2s  are very similar, and three observations 

are made on them: (a) There is notably more 
bias, and larger MSEs, in Type A, than in either 
B or C designs; (b) The majority of Type A 
designs are biased downwards; (c) Although all 

designs give consistent estimates, it appears that 
on increasing sample size, the bias of C designs 
approaches zero more rapidly than A designs 
(Table 2). 
 
3. Estimates of the level-2 covariance, 01σ  
It is not immediately obvious that Type C 
designs are less biased than A designs in 
estimating level 2 covariance between slope and 
intercept, although for Type C designs, it would 
require a total 400 students in the sample, and 
for Type A designs. at least 1500 students, for 

01s  to lie within 1 standard error of the true 
value; all designs are consistent. On the other 
hand, for a given sample size Type A designs 
have both smaller sampling variance and smaller 
MSE than Type A designs. 
 
4. Estimates of the level-1 variance, e

2σ  
All MLn estimates of variance at level-1, 
averaged over the 100 simulations for each 
sample design lie within 1 standard error of the 
true level-1 variance if the total sample size is 
more than 4000. There is no strong indication of 
which type of design (A, B, or C) is superior to 
the other, as far as bias is concerned.  All 
designs are consistent. The sampling variance of 
level-1 variance decreases rapidly as sample size 
increases from 25 to about 600, beyond which 
the curve of sampling variance levels off.  Type 
A designs have both larger sampling variance 
and larger MSE than Type C designs for a given 
sample size. 
 
5. Adjustment using design effect and effective 
sample size 
It is possible to compute the design effect and 
the corresponding effective sample size (Kish, 
1969) for a 2-level random slope model at 
selected values of the independent variable, 
using equations (1) and (3) above.  It was 
decided to compute the design effect and 
effective sample size at the x-intercept (x=0) in 
equation (3).  Two designs with the same 
effective sample size are conjectured to have the 
same bias and the same efficiency.  
 
The results show that, after controlling for 
effective sample size, Type C designs are more 
biassed than Type A designs in estimating the 
intercept (fixed component), level-2 slope-
intercept covariance, level-2 slope variance and 
level-1 variance for a given effective sample 
size. On the other hand, Type C designs are less 
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bias than Type A designs in estimating level-2 
intercept variance. There is no obvious pattern 
as to which type of design is more or less bias in 
estimating the slope (fixed component), 
nevertheless. 
 
In terms of efficiency, if two designs have the 
same effective sample size, then both their 
estimates on the fixed components have the 
same efficiency, irrespective of whether the 
designs are of Type A, B, or C. However after 
controlling for effective sample size, Type A 
designs appear to be more efficient than Type C 
in estimating the random components at both 
levels 1 and 2. These findings suggest that 
perhaps the adjustment using equation (1) 
computed at the x-intercept over-penalised 
designs involving more schools with smaller 
within-school sample size (i.e. Type C) 
compared to the penalty on those designs 
involving fewer schools with larger within-
school sample size (i.e. Type D). 
 
Conclusions 
The object of the study was to investigate 
sample size requirements for 2-level, random 
slope, balanced designs using simulation. It was 
found that, consistent with advice given in the 
classical literature of cluster sampling designs, if 
resources are available for a sample size n, 
comprising J schools with I students from each 
school, then less bias and more efficiency would 
be expected from sample designs involving more 
schools (large J), and fewer students per school 
(small I) than sample designs involving fewer 
schools (small J), and more students per school 
(large I).  Converting actual sample size into 
effective sample size according to equation (3) 
computed at the x-intercept removed the 
clustering effect in estimating the fixed 
components of the slope and intercept, but such 
conversion failed to remove clustering effects in 
estimating the random components at either 
level-2 or level-1.  This result is not entirely 
surprising:  By computing intra-class correlation 
at the x-intercept, one essentially computes the 
intra-class correlation for a variance component 
model; given that intra-class correlation varies 
with the value of the square of the independent 
variable for random slope models, it might be 
over-simplistic to expect a single effective 
sample size to exist for each condition of the 
designs for such models.  Perhaps, in the same 
spirit as one would center at respective school 

means for random slope models, and as a second 
stage of the research, one might compute, for 
each school within each sample, the intra-class 
correlation and the associated effective sample 
size, at the respective school means, and then the 
effective sample size of the sample would be 
computed as the sum total of the effective 
sample sizes of all schools in the sample.   To 
the extent that these data are representative, one 
might offer as a rule of thumb, in the 2-level 
random slope balanced case with intra-class 
correlation of below, say, 0.15, at the x-
intercept, that an actual sample size of 3500, and 
an effective sample size at the x-intercept of 
400, to ensure reasonable efficiency and lack of 
bias. 
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Introduction 
Meta-analysis is the statistical synthesis of 
results from a number of similar studies (Hedges 
& Olken, 1985). though originally developed for 
use in education and social research, over the 
last ten years it has become an accepted part of 
medical research (Jones, 1995). 
 
At the simplest level, meta-analysis assumes a 
fixed effects model in which each study is 
assumed to estimate an unknown overall 
population effect (Fleiss, 1993). However, there 
is sometimes a considerable amount of 
heterogeneity between the individual studies 
with respect to their effect sizes, and in such 
circumstances a random effects model has been 
advocated (DerSimion & Laird, 1986). In these 
models each study is assumed to be estimating 
its own unknown study effect, which are 
themselves assumed to be distributed about an 
unknown population effect. More recently mixed 
effects models have been advocated as a means 
of analysing meta-analysis in which fixed 
covariates are used to explain as much of the 
heterogeneity between studies as possible, and 
the remaining is modelled using a random 
component (Breslow & Clayton,1993, 
Thompson, 1994). 
 
A characteristic of meta-analyses is that usually 
information is only available at the study level, 
for example in terms of an odds ratio, together 
with its standard error. We consider the analysis 
of such data, using odds ratios adjusted for 
potential confounding variables, using multilevel 
models (Goldstein, 1995). 
 
Background - Cholesterol and Mortality 
An example of a meta-analysis is Davey-Smith, 
Song and Sheldon  1993) in which the effects of 
lowering blood serum  cholesterol levels on 
mortality (Both all-cause and cardiac) were 
assessed in 35 different randomised  controlled 
trials. Various study-level covariates were 
collected, amongst the most important were 
though to be baseline-risk, i.e. the cardiac 
mortality rate in the control group. Study-level 
data was available as odds ratios and standard 
errors. The data used in this example has slightly 

changed to that published by Davey-Smith, Song 
and Sheldon (1993), since it has been revised in 
the light of new information. 
 
Methods 
We consider two models, model 1 - a simple 
random effects model, and model 2 - a random 
effects model incorporating study specific 
baseline risk. 
 
Model 1 
A simple random effects model (not allowing for 
study level covariates). Let iy  be the observed 
odds ratio in the thi  study and iσ  its observed 
standard error. We can specify the model as 
 

i i iy s e= + +0β  
 
where 0β  is the estimate of the pooled log odds 
ratio, is  is the effect of the thi  study and is 
distributed i ss N~ ( , )0 2σ , ie  is the error 
associated with the thi  study where E ie( ) = 0 
and var( )i ie = 2σ . 
 
In order to fit this model in ML3/MLn (Rasbash 
& Woodhouse, 1995), we need the following 
columns 
  
ID            - The study number (1-34) 
CONS      - A constant term 
LOR        - The log odds ratios 
LOR_SE  - The standard errors of the log odds 
ratios. 
 
ID is the identifying variable at level 2 with 
CONS the identifying variable at level 1. LOR is 
declared as the response variable and CONS as a 
fixed effect. CONS is also a random effect at 
level 2. LOR_SE is a random effect at level 1, 
but the parameter estimate is constrained to 
equal 1, so that the level 1 variance of the thi  
study is 1 × LOR SEi i_ 2 2= σ  as required. 
 
Model based estimates for the log odds ratio in 
the thi  study are given by  
 
             ( ) / ( )� � � � � �s i i s iy2 2

0

2 2σ σ β σ σ+ +  

with standard error 
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It should be noted that this takes account of the 
imprecision of 

0
�β  but not s

2
�σ . Accommodating 

uncertainty with regard to s
2
�σ .  can be performed 

in a fully Bayesian framework using Monte 
Carlo simulation methods (Carlin, 1992) or via 
bootstrapping (Goldstein, 1995). 
 
Model 2 
This is similar to Model 1, but where the effect 
of baseline risk is included as a fixed parameter 
measured at  level 2. Baseline risk was divided 
into 3 categories depending on the number of 
deaths from coronary heart disease per 1000 
person years on control subjects. 
 
High Risk  (>50 deaths)            - HR 
Medium Risk (10-50 deaths)     - MR 
Low Risk (<10 deaths)              - LR 
 
Thus the model is now 
 

i i i i i iy HR MR LR s e= + + + +1 2 3β β β  
 
where is  and ie  are defined as for the model 1. 
 
Results 
Table 1 shows the results from fitting Model 1 
using ML3. The estimate of the odds ratio is 
therefore −0 118.e  (95% CI, 0.79 - 1.00). The 
between study variance is estimated to be 
0.0434. 
 
The analysis was repeated using the method of 
DerSimion and Laird (1986), in which the 
between study variance was estimated using a 
non-iterative method of moments. Similar results 
were obtained for the overall estimate of the 
odds ratio, 0.89 (95% CI, 0.78 - 1.02) while the 
between study variance was estimated to be 
0.0679. 
 

Table 1 Results from ML3 (Model 1) 
 

 Parameter Estimate S.E. 
Fixed 

0β  -0.118 0.0609 
Level 2 s

2σ  0.0434 0.0245 
Level 1 var( )ie  1 0 
 

The baseline risk was a priori thought to be 
important so Model 2 is potentially more 
appropriate. The Results of  this analysis can be 
seen in Table 2. There appears to be some 
benefit in lowering cholesterol in the high risk 
group, but not in the medium or low risk groups. 

Table 2 Odds Ratios for Effect of Cholesterol 
Lowering Stratified by Baseline Risk 

 Number 
of Trials 

Number of 
Subjects 

Odds ratio 
 (95% CI) 

HR 10 5116 0.75 (0.62-0.91) 
MR 15 24090 0.88 (0.76-1.02) 
LR 9 27870 1.18 (0.93-1.49) 
 

Figure 1 shows the observed and model based 
estimates for the odds ratios and 95% 
confidence intervals for each study together with 
the pooled estimate. Note that all the model 
based estimates are shrunk towards their 
corresponding overall risk group estimate. As 
already mentioned the model based confidence 
intervals may be too narrow as no account has 
been taken of the uncertainty regarding s

2
�σ . 

Discussion 
We have seen that the results of ML3 compare 
approximately with those using standard random 
effects models for meta-analysis. However, the 
great advantage of ML3 is that mixed effect 
models, such as model 2, can be easily 
accommodated and more complicated scenarios 
modelled. For example in the meta-analysis 
reported here some of the trials used drug 
therapy while others used diet regimens to lower 
cholesterol, and differences between the types of 
trials could also be assessed by using multilevel 
models. 

Though not advisable, in some situations there 
are relatively few studies available for inclusion 
into a meta-analysis, and therefore estimation of 
parameters can prove difficult. In such situations 
methods based on simulation can provide an 
alternative means of modelling (Gilks, Thomas 
& Spiegelhalter, 1994). 
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