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Workshops on Three-level Modelling: The free course of using the ML3 package, lectures,
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hands-on lecture will cover two level models, three level models, complex variance models, models
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now from the Multilevel Models Project. They will handle multilevel binary response logistic
models, multilevel time series models and multilevel multinomial response logistic models. With
one or two worked examples in each booklet, they are designed to lead you through data
manipulation, model specification and result interpretion. Please ask Min Yang for them.

Successful Grant Application: The Economic & Social Research Council (U.K.) has awarded a
project grant to the Institute of Education to develop and apply multilevel modelling techniques to
the handling of large and complex data. Further details will be given in the next newsletter.
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Book Review: Hierarchical Linear Models by
Anthony S. Bryk and Stephen W. Raudenbush.
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clinical treatments over time.
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Book Reviews

COMBINING INFORMATION - Statistical
Issues and Opportunities for Research.
Washington DC: National Academy Press,
Pp217. 1992. ISBM 0-309-04730-7

If a camel is a horse designed by a committee,
this book is a dromedary - it is the product of the
Panel on Statistical Issues and Opportunities for
Research in the Combination of Information, of the
Committee on Applied and Theoretical Statistics, of
the Board on Mathematical Sciences, of the Com-
mission on Physical Sciences, Mathematics and
Applications, of the National Research Council,
USA! Its topic field is extremely broad. As the report
points out, forming a simple average is a form of
combination of information (CI) - but the main
theme is the expected one of forming a combined
estimate of a single quantity from separate estimates
obtained under different conditions.

A brief Chapter 1 gives three examples of topics
which the report as a whole will deal with. The first
is a simple meta-analysis of six clinical trials testing
the effect of aspirin in preventing death following a
heart attack. The second refers to the provision of
agreed values of physical constants based upon
numbers of experiments, and the third is the military
problem of combining information from different
detectors on potentially hostile targets. Methods
suggested for further discussion include the use of
fixed and random models and the combination of
P-values using Fisher’ s method.

Chapter 2 is titled 'What, why and when to
combine’. The most interesting question is the third
of these, and the report repeatedly stresses the role
of judgment in deciding upon the comparability of
different studies, whether or not this is expressed in
formal Bayesian fashion. The uncertainty inherent
in this type of judgment is seldom quantified and
properly incorporated into the final conclusions of

the combining study. Complementary to this is the
emphasis laid upon the use of sensitivity analyses
and validation exercises.

Chapter 3 provides examples of CI from no fewer
than eleven different fields. These include the
examples from Chapter 1 (treated in more detail)
and others including education (a simple
meta-analysis of studies on the effect of coaching
on Standardised Attainment Scores), astronomy, oil
exploration and image processing. Chapter 4 is
devoted to statistical methodology. Topics dis-
cussed include homogeneity judgments, selection
bias, robustness and record linkage as well as fixed
and hierarchical modelling. Multiple comparison
methods are treated at some length as tools for
investigating homogeneity. Forecasting is also
included though the link with Cl is tenuous; the main
issue is that of tackling uncertainty due to model
choice. The combination of P-values is also dis-
cussed and its use as a CI technique is discouraged.

Chapter 5 is an overview and summary.

The book contains much interesting material but
its standard is uneven, with much space given to
secondary topics and more important matters treated
superficially. The 20-page bibliography is pre-
dominantly American and includes an infuriating
number of unpublished reports and theses.
Considering the importance of hierarchical models
in CI, it is astounding to find that the term multilevel
does not appear in the report, and that names such
as Goldstein, Bock, Raudenbush, Bryk and Long-
ford are absent from the bibliography. Linear
modelling, let alone multilevel modelling, is barely
discussed at all. One of the panel's conclusions is
that 'a general purpose statistical computing pack-
age allowing investigators to routinely perform
interactive Bayesian analyses in hierarchical models
would gain immediate and widespread acceptance'.
The existence of ML3, HLM and VARCL seems to
have gone unnoticed.

M J R Healy
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Hierarchical Linear Models: Applications and
Data Analysis Methods, by A.S.Bryk and
S.W.Raudenbush. Newbury Park: Sage, pp xvi
+ 265. ISBN 0-8039-4627-9

The pioneering work of Bryk and Raudenbush is
well-known to anyone who uses multi-level models.
Their new book is a clear introduction to the subject,
or at least to its theory and principles, and I would
be happy to recommend it to statisticians who want
a thorough mathematical account of what multi-
level modelling is about. Its failings are partly a
product of this strength - it being far more useful for
the mathematics than for applications - and partly
an inevitable consequence of the rapid develop-
ments in the theory since their manuscript was
completed.

What it does do well, it does excellently. It
provides a carefully argued exposition of the
mathematics, starting with the familiar heuristic
explanation of multi-level models as formalisations
of "slopes as outcomes" regressions, and proceeding
to the full generality of the relevant matrix algebra.
The general algebra is always keptclose to particular
instances, so that we can develop an intuitive feel
for what the symbols mean. That is a rare accom-
plishment in a textbook of mathematical statistics.

Bryk and Raudenbush employ an explicitly
Bayesian framework for inference, which is prob-
ably more cogent for explanation than the alterna-
tives. It allows us to think clearly about the crucial
assumptions - for example, that a school is an
instance (or a case) of a population of schools, from
which we can "borrow strength" to make the infer-
ences about that particular school more reliable. On
the whole, the algebra in this Bayesian framework
is identical to that which would be used in a
frequentist approach, although a reader who is
familiar with, say, Goldstein's work should note
some different conventions in the terminology - for
example, the slightly different meanings of the terms
"fixed" and "random".

There are, unavoidably, gaps in the mathematics,
because the subject has been changing rapidly. For
example, it is now possible to do multi-level log-
linear modelling, but this would, at best, have been

only a theoretical possibility when the manuscript
was completed. However, points like this are not
serious indictments: a textbook in a changing subject
is bound to seem out of date when it is published,
but that does not detract from its main purpose,
which is exposition of general principles. Exactly
the same point can be made about Goldstein’s 1987
book (Multilevel Models): it too has been super-
seded, butremains valuable. Ishould add, moreover,
that Bryk and Raudenbush are generally more
comprehensive in their treatment of the mathematics
than Goldstein was.

Thus, as a mathematical text, the book is unri-
valled (although afflicted by the unaccountable
absence of an index). Its main limitations have to do
with the practice. It does present some thoroughly
developed examples, drawn from research in edu-
cation. And the authors are skilled at linking the
arithmetical details to the mathematical theory. So,
for teaching on a fairly theoretical course, the book
would be useful. But it does fall into a familiar
problem with statistical textbooks - of tending to
treat data analysis as an "application" of theory. The
rather more chaotic informal rules of actual educa-
tional (or psychological or geographical or medical)
science are then ignored.

This is probably not a view I would have taken
a few years ago. But one of the effects of moving
from even a very applied statistics department to a
social-science department is to find that the ways in
which statistical methods are used are not those
which we, as mathematical theorists, would pre-
scribe. Sometimes, of course, these uses are down-
right wrong, and books of this type are invaluable
for correcting that. For example, in what is their most
innovative chapter, Bryk and Raudenbush discuss
various ways of judging whether a multi-level model
adequately fits the data, and what to do if we
conclude that it does not. This kind of theory is the
point where the elegance of the general models
begins to engage with reality.

But the problems have more to do with the
conventions which grow up within disciplines as to
what counts as an explanation. Take, for example,
the crucial assumption mentioned above - that
individual schools are "cases" of a general popula-
tion. That this is controversial is becoming acutely
obvious in the current debate about performance
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indicators, which Bryk and Raudenbush suggest can
be estimated by empirical-Bayes residuals at the
school level. The problem is to know whether a
particular outlying residual is a consequence of
miss-specification of the model, or of a genuinely
highly effective (or ineffective) school. Even if the
residuals perfectly fit a Normal distribution, the 5%
of "outliers" mightbe, not outliers atall, butschoools
with unique impacts on their pupils. There is, quite
simply, no mathematical way of resolving this
dilemma: the only way of doing that is by including
detailed data on the school’s practices, but in routine
monitoring that might not be available. To collect
that data in a sensible way requires explicit educa-
tional theories about how schools have their effects,
and so the statistical consideratons have to be
embedded in educational ones.

This is where Goldstein”’s book was, and
remains, the best available. But neither it nor the one
by Bryk and Raudenbush can keep up with new
developments in the use of multi-level models.
Significant examples are now available from
geography (especially on labour markets), medi-
cine, and political science, although some of these
are not yet in the public domain. In a few years’ time,
therefore, it will be possible to write a quite different
book contrasting and comparing the emerging
conventions surrounding the use of multi-level
models in different disciplines. An analogy can be
drawn with log-linear modelling. There are now
several books that do take applications as their main
focus - for example, Nigel Gilbert's Modelling
Society. Such books do not supersede the key
mathematical texts by, for example, McCullagh and
Nelder or Bishop, Fienberg and Holland. But they
do base their exposition on social science, not
mathematical theory.

So this book by Bryk and Raudenbush will
remain valuable, especially for statisticians wanting
a clear exposition of the mathematical theory. For
synoptic accounts of the practice we must, inevita-
bly, wait a little longer.

Lindsay Paterson
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APPLICATIONS

Multilevel methods

for estimation in surveys with complex sampling design

N.T.Longford
Educational Testing Service, Princeton, NJ

Many large scale surveys employ stratified clustered
designs with unequal sampling weights. Stratifica-
tion is an important device for improved estimation
of population characteristics, effective especially in
well-researched populations. Clustering promotes
cost efficiency and organizational manageability.
Human subjects and educational (and other)
institutions cannot be coerced to respond inasurvey.
The resulting non-response is likely to be informa-
tive; certain kinds of institutions and/or individuals
are more (less) likely to abstain from responding.
The bias due to such informative missingness can
be reduced by adjustment of weights. In such a
procedure the original sampling weights (propor-
tional to the reciprocal of the probability of inclusion
in the sample assuming no non-response), set by the
design, are adjusted, usually by a set of multiplica-
tive factors, so that the resulting weights are closer
to being proportional to the reciprocals of the 'true’
probabilities of inclusion (that take non-response
into account).

Assessment of the quality of weight adjustment is
often difficult. The weight adjustment depends on
the sample drawn, and therefore the adjusted
weights are random variables, Standard methods
forestimation of population means in surveys ignore
the stochastic nature of the sampling weights, and
Us€ a more or less arbitrary normalization of the
weights. For instance, the weights are scaled so that
their total is equal to the sample size.

Longford (1992) applied multilevel models in the
context of the National Assessment of Educational
Progress (NAEP), an on-going programme of sur-
veys of the U.S. primary and secondary education.
The main outcome of the analysis of each survey,
as mandated by the contractor, the U.S. Department
of Education, are tables of estimated population and
subpopulation means of proficiencies in a number
of academic subjects, and the associated estimated
standard errors. For example, the subpopulations of
interest are defined by ethnicity, regjon, gender,
school-type, responses to attitudinal and experien-
tial questionnaire items, and the like. Mathematics,
English, History, and Geography are some of the
academic subjects. I abstain from discussion of

utility of such tables but consider the situation in
which the means of a variable are estimated for a
large number of subpopulations.

In brief, an effective analysis of the survey has to
accomodate the following
features:

stratification

clustering

unequal sampling weights

« 'estimated’

sampling  weights (weight
adjustment).

The principal outcome variable, the proficiency
score, is itself estimated from the responses to
cognitive items. The proficiency score is repre-
sented by five draws (called feasible values) from
the posterior distribution of the proficiency. Thus
each estimate is averaged over the five feasible
values, and the estimated standard errors are
adjusted similarly.

This article, based on my report (Longford, 1993),
describes three generic approaches to estimation in
surveys with stratification, clustering, and unequal
sampling weights, and presents a framework for
assessing importance of the stochastic nature of the
weight adjustment.

LetY, i =1,2,...,N, be the values of the variable of
interest for the target population. The population
mean is defined as ¥ = 3, Y;/N. The values of the
variable for the subjects included in the survey are
denoted by y,,, for student ; = 1,...,n; in school j =
1,..., m in the stratum k = 1,...,K (stratification is

applied to schools). The corresponding original and
adjusted weights are denoted by wy, ;x and W, i+ The

ratio estimator

= ;Wa,ijkyijk/;wa,ijk (1)
ik ik

is commonly used for estimating the population

mean. Three methods for estimating the sampling

variance of this estimator are discussed: the jack-

knife, a variance component (VC) method, and an
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ANOVA-like method. A stratified single-stage
clustered sampling design with unequal weights is
assumed throughout.

Jackknife

A typical survey involves a large number of strata,
e.g., K = 56, with up to three schools (clusters) in
each stratum. For each stratum k a pseudo-sample
is defined by copying the values of y and w in all
strata except k, and:

if stratum %k contains not more than one

school, the values for the stratum are copied
also

if the stratum contains two schools, the sec-
ond school is replaced by the first

if the stratum contains three schools, the third

school is replaced by the first two, with halved
weights.

Each pseudo-sample is again subjected to weight
adjustment.

Let u* be the estimator of Y, as in (1), based on the
pseudo-sample k. The jackknife estimator is defined

as the mean of the pseudo-estimators p®,

0 = 3, u®/K, and its sampling variance is estimated
by

~ A A2

o) = %(u"‘) -,

See Wolter (1985) and Johnson and Rust (1992) for
details.

Variance components

We assume the model
(2)

where 6]]‘ ~ N(O, O%) and eijk ~ N(O, O%V,jk))
and all these random variables are mutually inde-
pendent. Submodels, e.g.,assuming some or all the
variances szk to be equal, can be considered. The

i =Wy + ajk +€;

stratum means p, are unknown constants.

If the sampling weights were equal the variance
component model in (2) (with the standard
assumptions of normality) could be fitted by EM,
IGLS, or Fisher-scoring methods. In straightfor-

o ward adaptations of these methods the various

crossproducts are replaced by their weighted
versions; this is proposed in Longford (1992). The

model in (2) involves a large number of parameters.
The simplifying assumption that the stratum means
w, be regarded for a random sample is not appro-
priate, as demonstrated by Longford (1992). Also,
once the estimated means i, are obtained, it is not
immediately clear how to combine them to form the
estimate of the population mean p.

Longford (1992) compared the jackknife and the VC
estimators of the population and subpopulation
means, concluding that there is little to choose
between them, but the VC estimator of the sampling
variance is much more efficient than its jackknife
counterpart. The VC method is iterative -- this may
be perceived as a distinct disadvantage when a large
number of subpopulations is considered.

An ANOVA-like method

We adopt the estimator (1), and evaluate its
sampling variance assuming

the model (2). Elementary algebra leads to the
identity

i b jkO%V, jkziwf, ik

+
np X jk(ziwa,ijk)z

var () = @)
n

O

2

B

where np = (Zw, 1) Ea(Ew, ;) An estimate of

this sampling variance is obtained by substituting

estimates of the variances oj and o ;, in (3). These

variances can be obtained by moment matching.

Iw .

Let wA,ijk = ﬁl’k‘wa,ijk and nA’jk = ZiwA,ijk N Notﬁ that
Wa,ijk

also Z;w} ;i = ny . Potthoff, Woodbury, and Man-

ton (1992), whose approach is adopted here, refer
10 w, ;; as the normalized weights and to n,

as the effective sample size.

The within-school variances oj, j can be estimated
as the corrected weighted within-school sums of
squares

1

— 2
E,WA,ijk(yijk - yjk) ’
nA,j,‘ i

Vajk =

where y, is the weighted (sample) mean of y in
school jk. It is an unbiased estimator of o, jxand its
distribution is approximately x> with n, ;-1
degrees of freedom. This is the rationale for defi-

nition of w, ;; and n, ;.

Estimation of the between-school variance is based
on the statistic
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4)

- -\
Vp =jzk:ujk(yjk =¥

where u;, are suitable constants (e.g., functions of
the weights w, ;;, such as Uy =Z;w;). Moment
matching yields the estimator

2 V= ZppUpOw ulny
OB = 3 U ’ (5)
ikl jr
where
2
Ujk _ 2 Eiwa,ijk + zj(ziwijk)

ZWa ik (zijwa,ijk)z.
Properties of the three types of estimators described
above were explored by a simulation study con-
sidering a variety of nesting designs. In general, the
jackknife is much less efficient than the VC
methods, and it does not deliver on the promise of
unbiasedness. Some care is required in choosing the

constants u, in (4). The REML estimator, using the
normalized weights has the least bias, but is less
efficient than the ANOVA-like method with

Up = ziwa,ijk'

Weight adjustment

Several exploratory analyses document that the
weights ‘matter’; analyses using equal weights lead
to conclusions substantially different from those
using adjusted weights. Since the weights are
important every effort should be made to adjust the
weights as appropriately as possible. We consider
the following model for the weight adjustment:

(6)

where w;, are the 'true’ weights (exactly propor-

log(wa,ijk) = log(wijk) + 6w,jk + ew,ijk,

tional to the reciprocal probabilities of inclusion),
and 9§, ; and €,,;x are two mutually independent

random samples, with zero means and variances o}
and of.

because the weights w, i are realized only once.

These weight-variances are not known

However, an idea of their size can be gained by
considering the log-adjustment, log(w, ;w/w, 1) as
having two components: adjustment from the
original design weights to the true sampling weights,
and the noise (‘error’ in adjustment). Presumably the
error variance is smaller than the variance of the logs
of the adjustment factors, otherwise the adjustment
is very ineffective. This consideration can be
applied separately to the school- and student-level

A

variances, o and o?. These variances can be used in

a Monte Carlo study (perturbing the adjusted
weights) to assess the impact of uncertainty about
the weight adjustment. The most likely outcome is
that the stochastic nature of weight adjustment can
be ignored, but the weight adjustment itself is not
negligible.

Extensions

The ANOVA approach for two stages of clustering
is described in Longford (1993). The approach
readily extends to estimation of regression and
variance parameters. First, the population quantity,
such as a regression parameter, is defined. It is a
function of a small number of population sum-
maries, e.g., totals of crossproducts. Then these
crossproducts are estimated by their sample
estimators. Standard errors can be derived by the
delta method which can also be used for bias
correction. An important advantage of this approach
is that distinction is made between the uncertainty
due to representation of the population by the
sample, and the imperfect fit of an underlying model
in the population.
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APPLICATIONS

A comparison between fixed effects and mixed effects

logistic models in multicentre studies

H.Poirel', S Richardson', M .Chavance®, T .Moreau®, M Busson®

1.I.LN.S.E.R.M. U170 16, avenue Paul Vaillant-Couturier 94807 Villejuif cedex, France.
2.I.N.S.E.RM. U169 16, avenue Paul Vaillant-Couturier 94807 Villejuif cedex, France.
3.1.N.S.E.RM. U93 16, Hspital Saint-Louis-Centre Hayem 2, Place du docteur Fournier 75010 Paris, France.

Multicentre studies are being increasingly used in
clinical medicine and epidemiology in order to gain
more power. It is then necessary to include a centre
effectin the analysis, either to measure it or to avoid
a possible bias when estimating the other effects.
Two types of models may be considered. In fixed
effects models, the centres are viewed as a popula-
tion of centres, and so, the number of parameters
increases with the number of centres. In large
cooperative studies, this inflates substantially the
number of parameters to be estimated. In mixed
effects models, the studied centres are viewed as a
sample of all interesting (or potential) centres, as
suggested by Gilks (1987). The random effects
which characterize each centre are assumed to be
i.id., generally N(0, o°). Thus only one parameter
needs to be specified, the variance o

Population

One-year graft survival was registered for 3,530
patients who received a kidney transplant between
1/1/1985 and 3/1/1990 in 17 of the 46 french
transplantation centres. Numbers of patients by
centre ranged from 46 to 591. Eight prognosis
factors, listed in table 1, were available for each
patient.

Models

Let Y;; be the binary outcome observed for patient i
in centre j, and X}, the p-dimensional vector of the

fixed effects prognosis factors for this patient. We
assume Y; to be Bernoulli (Binomial) (;), with

logit(m;) a linear function of these factors.

1) Fixed effects logistic model:

centre effects are considered as fixed, and we set
logit(1;) = Bo + B'X;; +¥;

where § and {y;} are vectors of unknown coeffi-

cients. We choose the largest centre as a reference

with corresponding y; equal to 0. The maximum

likelihood estimates were obtained using the LR*®
program from the BMDP statistical software.

2) Mixed effects logistic model:

Centre effects are considered as random and we set
logit(m;) = By + B'X;; +u;

with the u; i.id. N(0,0%). The parameters B, B, 0>

are estimated by the Iterative generalized Least
Square (IGLS) method, as proposed by Goldstein
(1988, 1991), using the statistical software ML3
(Prosser, Rasbash and Goldstein 1991). After a
linearisation of the fixed part of the model, this
algorithm estimates alternatively: a) the fixed
effects parameters conditionally on the last estimate
of o (taken as O for the first step), and b) the random
effect variance conditionally on the last estimate of
the fixed effects. Once all the parameters of the
model are known, posterior estimates of the random
effects u; can be obtained from the observed resid-

uals and the covariance structure of the data postu-
lated by the model. The random effect for centre j
can be interpreted as the averaged residuals for
centre u;, weighted appropriately.

Results

As can be seen in Table 1, estimates of the odds-
ratios corresponding to the prognosis factors and
their confidence intervals were similar for both
models.

According to the mixed effects model, the inter-
centre variance was 0.032 with standard-deviation
of 0.027. The posterior estimates of the random
centre effects ranged from 0.79 to 1.17 while the
estimates of the fixed centre effects range from 0.22
to 1.77. This illustrates the usual feature of
'shrinkage’ for such moderate estimates. In the
Figure these estimates are represented according to
the number of patients in each centre. In the fixed
effects model, estimates for small centres are more
widely spread than large ones. In the mixed effects
model, estimates for small centres are attracted
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Table 1. Comparison of estimated relative risks between fixed effects and mixed effects model

Variables Fixed effects model Mixed effects model
ef 95%CI e 95%CI

Fixed effects for covariates
constant 0.07 (0.04,0.13) *x* 0.08 (0.04,0.,16) **x*
male recipient with female donor 2.07 (1.31,3.25) ** 2.05 (1.30,3.25) **x*
antibodies>25% panel cells 1.50 (1.15,1.96) ** 1.52  (1.17,1.97) **%*
donor age z 55(years) 1.75  (1.13,2.72) ** 1.73  (1.12,2.69) **
donor age <15 (years) 1.09 (0.72,1.65) 1.09 (0.72,1.67)
year of graft linear effect 1.32  (1.21,1.44) **=* 1.31 (1.21,1.42) ***
Year of graft quadratic effect 1.13 (1.08,1.19) *x=* 1.13 (1.08,1,17) **=
number of HLA identities 0.91 (0.83,1.01) 0.92 (0.83,1.00)
cold ischemia =24h 1.20 (0.94,1.54) 1.08° (0.85,1.38)
dialysis s5 years 1.28 (0.92,1.80) 1.28 (0.92,1.80)
pregnancies 23 1.19 (0.82,1.71) 1.17 (0.82,1.68)
Random effect
inter-centre variance: o 0.032 (0.027)

* p<0,05 ** p<0,01 *** p<0,0001
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towards 0, while for large centres, estimates for both
models are similar.

We also considered random coefficient models
where the effect of a prognosis factor could fluctuate
randomly from one centre to another. Estimates
were imprecise, even when such an interaction was
introduced for only one factor, probably because of
the relatively small number of centres.

Discussion

In this paper, we have compared two different ways
of taking into account the centre effects in multi-
centre studies, considering them either as fixed
effects or as a random effect. We have been able to
use both methods only because number of centres
was moderate. When the number of fixed para-
meters become too large, the fixed effects model is
impractical. Nevertheless, with only 17 centres, the
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estimate of the variance of random effects cannot be
very precise. Further, we note that there are other
variables which would be necessary to study before
attempting to interpret the centre effect in these data.
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An application of multilevel models to compare the effects of
clinical treatments over time

Xu Yong-yong

It is very common in clinical practice to record
symptoms or other examination results longitudi-
nally in order to assess a therapeutic effect over
time. This generates repeated measurement data
with time or occasion being nested within each
individual patient. In particular, patients are often
divided into groups, each group receiving a different
treatment. It is important to compare treatment
effects among groups by taking the time trend into
account. Multilevel models for repeated measures
reflect the data structure most adequately. In this
article, both the fixed occasion and basic multilevel
models are used to compare the treatment effects
among three patient groups of drug addicts in a
special hospital in north China.

Data

The data consist of 179 drug addicts allocated
randomly into three groups given different medi-
cines, artificial hibernation (AH), Diazepam plus
Clonidine (DPC) and Diazepam only (DON). The
AH serves as a control. A score reflecting the relief
of symptoms was recorded at the day before treat-
mentand atdays 1, 2and 3 after treatment. The score
ranges from O to 10, the larger it is, the less relief of
symptoms. Table 1 gives the means and SDs of
scores for each group by measurement occasion.

Table 1 The mean scores (SD)

GRP N  Beforetr. ldayaft. 2daysaft. 3daysaft.
AH 59 99(05) 91(1L5) 75(1.6) 6.0(L8)
DPC 60 10.0(00) 78(11) 52(12) 23(1.2)
DON 60 1000.0) 76(1.3) 53(15 4.5(1.6)

It can be seen from the table that there are few
differences between groups before treatment, and
that scores consistently decrease over time after
treatment for all groups. The questions to be ans-
wered on the treatment effects are: 1) whether the
three treatments have same effect in general, and 2)
whether their effects significantly differ at each
measurement occasion, and 3) which treatment
relieves symptoms more quickly in the first three
days.

Models

First, the two-level fixed occasion model is con-
sidered,

Yij = Bit; (1)

Department of Health Statistics, The Fourth Military Medical University, Xi’an, P.R.China

where i =0, 1,2, 3 indicates time occasion atlevel 1,
J=1,2,...,179 indicates patients at level 2, ¢; is a
dummy variable at occasion ; for patient j. §; are
occasion effects, and can be expressed as an average
effect of occasion plus some level 2 covariates
together with random variation as follows:

Boj = Bo+ Uy;

Byj = By +dyxy; +diy; +uy;

Boj = By + duyyxy; + dopxy; +

st =P, + d31x1j + d32x2j +Us;

where xy;,x,; are dummy variables for DPC and

DON respectively. They are level 2 covariates. £,
is the grand mean that is the effect before treatment,
B1s Bo, B3 are mean effects of occasions 1, 2 and 3

after treatment for group AH. The d;, are effects of
DPC and d;, are those of DON at the ith occasion

compared to the AH group. The u; are random

residuals across patients at occasions. As level 1
occasion affects are estimated in the fixed part, there
are no level 1 random terms in the model.

In the second model, we treat ¢;; in (1) as continuous,
and the following model is used to fit the data,

Vi =Bo+Byt; +e; (2
Blj =B, +Y Xy F X Uy
where B, is a before treatment mean, B, is the mean

slope on time, y,, y, covariate differences of slopes
between groups DPC and AH, DON and AH
respectively. The u,; are residuals of slopes across

patients and the e; are level 1 residuals.

Thus 4 parameters in the fixed part will be estimated.
Two random parameters o2, o, are estimated. All

the slopes are assumed to pass through the origin f,.

Results and discussion

Table 2 gives estimates of the fixed part of model
(1). The answer to question (1) is obtained straight
away by comparing estimates of d; to their own SEs.

They are all significant, which indicates that the
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effects of the three treatments are not the same, both
treatments DPC and DON have better effects than
treatment AH at days 1, 2 and 3.

Table 2 Estimates in fixed part of model (1)

Parameter Estimate S.E.

Bo 9.978 0.022
B, 9.132 0.165
B, 7.520 0.188
Bs 6.034 0.199
dy -1.338 0.232
dy, -1.571 0.232
d, -2.351 0.264
dy, -2.217 0.264
dy, -3.701 0.280
d;, -1.568 0.280

To find whether DPC and DON have the same effect,
hypotheses d,; = d,, d,, = dy andd, = dj, are tested.
This gives us three s with 1 d.f. each as 1.02, 0.26
and 58.72 respectively, indicating that DPC and
DON have the same effect during the first two days
after treatment, but DPC relieves symptoms by 1.5
score points more than DON after the third day’s
treatment.

Table 3 Random parameter estimates:
covariance (correlation) matrix

Uy Hyj Uy U3
uy  -089(1.0)
uy; .025(.07) 1.61(1.0)
Uy -011(-.02)  .442(24) 2.08(1.0)
uy; .001(.00) -191(-10)  .677(.31) 2.32(1.0)

From the random parameter estimates at the patient
level in Table 3, correlation coefficients of score
between days 1 and 2, 2 and 3 were calculated as
0.24 and 0.31 respectively.

Fitting model (2), with estimates in Table 4, it is seen
that three treatments reduce the symptom scores by
1.3 a day in average, and treatment DPC relieves
symptoms quicker than both AH and DON by 1.2
and 0.48 score units per day respectively. Treatment
DON does better than AH by 0.76 units. This
answers question (3).

Table 4 Fixed and random parameter
estimates of model (2)

Parameters Estimates S.E.
Fixed Bo 9.992 0.081
B: -1.271 0.056
Y -1.225 0.066
Ya -0.741 0.066
Random o 0.137 0.059
o 1.490 0.091

Analyses based on both models showed that treat-
ments DPC and DON have better effects in relieving
the symptoms than AH at each time occasion, and
DPC does better than DON in terms of the change
over time.

To fit model (1), our interest was in the main effect
estimates at each time occasion and two covariates
were introduced at level 2 to study group differences
at each time occasion. The correlations between
occasions are provided by the random parameter
estimates at level 2. This model served our aims
satisfactorily because the data have only 4 time
occasions. It would be difficult to use when the
number of time occasions is large, say 13, since the
full number to be estimated at level 2 would be 78.
In this case, model (2) would be a better choice. With
this model more explanatory variables, such as age
of patient and sex, can be easily introduced into the
fixed part.

With fewer parameters to be estimated, model (2) is
easier to explain in practice and describes the rela-
tionship between the treatment effects and time
more clearly. In particular, when scores before
treatment are different among three groups of
treatment, covariates can be introduced in the model
to make the adjustment. If the decrease of scores
over time is not linear, a polynomial or other growth
curve can be used. Again we can use other covariates
such as age and sex in the model to make more
precise comparisons between treatment groups.
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