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NEW MULTILEVEL TEXT AVAILABLE SOON

Anthony Bryk and Steven Raudenbush have just submitted a manuscript to Sage for a book entitled Hier-
archical Linear Models for Social and Behavioral Research: Applications and Data Analysis Methods. The
monograph will be the first in Sage’s new methodology series (edited by Jan de Leeuw of UCLA) and is
expected to become available by early 1991. The contents of the nine chapters are outlined here.

The introductory chapter discusses the multilevel character of data in much social science research
and illustrates three general objectives of multilevel modelling: improved estimation of effects within indi-
vidual units, formulation and testing of hypotheses about cross-level effects, and the partitioning of variance
and covariance components among levels. Basic notation for two-level modelling is introduced.

The logic of hierarchical linear models (HLMs) is the topic of chapter 2, and the focus is on formula-
tion of simple two-level models and interpreting the parameter estimates and other statistics obtained in an
analysis. Data from the High School and Beyond survey (National Center for Educational Statistics, 1981)
form the basis for question-driven analyses involving models of increasing complexity, from a one way random
effects ANOVA model through to a cross-level interaction model. The chapter concludes with a discussion of
the task of fitting a regression for a single school, and compares OLS and two types of shrinkage estimators.

Chapter 3 deals with two topics: (a) the basics of estimation theory concerning fixed parameters,
random effects, and dispersion components, and (b) hypothesis testing. The concept of a precision-weighted
average is introduced in the context of estimating a grand mean, and the discussion leads up to examination
of generalized least squares estimation of a set of fixed parameters. Shrinkage estimators for random effects
are described, and a comparison is given of full maximum likelihood (MLF), restricted maximum likelihood
(MLR), and Bayes estimation of covariance components. Individual and composite hypothesis tests are
described, and likelihood ratio testing is compared with standard testing of the general linear hypothesis.

Chapters 4 and 5 are the core application sections of the book. The former deals with individual
growth and the latter discusses organizational effects on individual-level processes. The first part of chapter 4
explains the formulation of within-person polynomial growth models and associated between-person models.
Analyses based on Head Start program data and a study of effects of maternal speech on children’s vocabulary
are used to illustrate the interpretation of growth parameters, and the examination of individual variation
around a mean growth trajectory, reliability of parameter estimates, correlation of change with initial status,
and effects of person characteristics on growth. The final section of the chapter deals with several complexities
including piecewise linear models, alternate age metrics, time-varying covariates, and prediction of future
status.

Two classes of organizational situations are examined from a two-level modelling perspective in
chapter 5: those in which an organization’s features-structure or climate, say—“exert a common influence
on each individual within it,” and those in which these features “modify both the mean level of outcomes
and how effects are distributed among individuals.” In one illustration, outcomes of a multilevel analysis
are compared with two OLS analyses-one at the class level and the other at the student level. Sorting
out contextual and “frog-pond” effects is discussed as is the problem of estimating performance / effects of
individual organizations.

Three-level analysis is the topic of chapter 6, and basic models are introduced in the context of
organizational research: students are nested within classes which are in turn nested within schools. The

cont'd on p. 2
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emphasis in the first part is on interpretation of
models’ components and the presentation of mod-
elling possibilities. Hypothesis testing is discussed.
The chapter’s major illustration is an analysis of
schools’ impacts on individual growth in mathemat-
ics achievement, based on the Sustaining Effects
Study (Carter, 1984).

In some studies, the variance of the level 1
random terms may be assumed to be known. Ap-
plications of such knowledge in multilevel modelling
are discussed in chapter 7. The characteristics of
V known situations are stated and three examples
are provided-two concerned with meta-analysis and
one with dispersion as an outcome.

The purpose of chapter 8 is to provide data an-
alysts with information about the following: (a) the
assumptions required in using HLMs (b) “the sen-
sitivity of conclusions to possible violations of these
assumptions, (c) techniques available to investigate
the tenability of the assumptions, and (d) amelio-
rative strategies available when likely violations are
discovered.” These topics are discussed for the fixed
and random parts of the within-unit model and the
between-unit model in turn. The final section ex-
amines the question of validity of inferences when
samples are small.

Estimation is presented conceptually in the
initial chapters. Chapter 9-a technical appendix-
details the estimation theory for hierarchial linear
models and is developed from a Bayes linear model
perspective. Estimation of covariance components
via the EM algorithm is also described.

The book is intended to serve as a text and
reference; and it should be of interest to researchers
and graduate students in education and the social
sciences. A good grounding in applied multiple re-
gression is assumed.
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MULTILEVEL CONFERENCE PAPERS
TO BE PUBLISHED

Until recently, most published applications of mul-
tilevel statistical methods have appeared as illustra-
tive examples in methodological articles. However,
during the past three or four years, an increasing
number of researchers in various countries have be-
gun to use multilevel methods for substantive re-
search in education. A new book entitled Schools,
Classrooms, and Pupils: International Studies of
Schooling from a Multilevel Perspective edited by
Steven Raudenbush and Douglas Willms presents
some of the best of the “first wave” of these sub-
stantive applications in educational research.

The volume, to be published this autumn by
Academic Press, is based on papers read at last
summer’s International Conference on Application
of Multilevel Methods in FEducalional Research at
the Centre for Educational Sociology in Edinburgh.
The chapters shed light on a variety of problems:
curriculum coverage and curricular reform (chapters
by Adam Gamoran; by Ian Plewis; and by Ruth Zu-
zovsky & Murray Aitkin); the stability and validity
of educational indicators (Roel Bosker & H. Gulde-
mond; Carol Fitz-Gibbon; Nicholas Longford); the
organizational context of teaching (Anthony Bryk
& Ken Frank; Valerie Lee & Julia Smith; Brian
Rowan, Stephen Raudenbush & Sang Jin Kang); the
evaluation of innovative programs (Suzanne Jacob-
son; David Raffe); the changing social distribution
of achievement in Scotland (Lindsay Paterson); and
school effects in a developing nation (Marlaine Lock-
heed & Nicholas Longford).

The chapters illustrate application of the three
most commonly used multilevel computer programs:
HLM, ML2, and VARCL. They provide interesting
insights into the educational systems of countries as
diverse as Canada, England, Israel, the Netherlands,
Scotland, the United States, and Thailand. The
chapters are accessible to many researchers, requir-
ing a minimum of technical background. Lindsay
Paterson’s introductory chapter presents a primer
on multilevel statistical methods for the newcomer.

A future issue of the Newslelter will carry a
review of this book.
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FIVE MULTILEVEL PROJECTS AT UCLA
Jan de Leeuw, Ita Kreft, & Kyung-Sung Kim

As version 3.0 of the report comparing GENMOD,
HLM, ML2, and VARCL nears completion, the Mul-
tilevel Group at UCLA is starting five new projects.
(There are some loose ends to tie up on the software
testing such as comparison of actual likelihood val-
ues at convergence, but most of the work is done.)

For the Netherlands Institute for Educational
Research, the team is developing MULTIPATH, a
program which performs multilevel path analysis.
The software uses a general formulation of path anal-
ysis in which the joint distribution of the observed
and latent variables is decomposed using conditional
independence and the notion of various levels. This
makes it possible to construct nested path models
in which the path coefficients of the first level model
are variables on the second level. These and other
level 2 variables are connected in a second order
path model on the second level.

In cooperation with Peter Bentler of UCLA’s
Psychology Department, the team is working on a
preprocessor for the EQS program that takes cor-
relations among clustered observations into account
and handles multiple dependent measures. Assum-
ing a simple dependence structure between individ-
uals makes it possible to apply existing theory on
the matrix normal distribution. For this distribu-
tion, the covariance between individual ¢ on vari-
able j and individual k on variable { is given by
Cov (Y;;,Yy) = w;0;;. The matrix Q of order n has
an intraclass correlation structure, and the matrix
¥ of order m satisfies a factor analysis or path anal-
ysis model. This work provides a second and much
simpler approach for the development of multilevel
path analysis. GAUSS versions of the factor anal-
ysis implementation are available. A FORTRAN
module to be used with EQS is in preparation.

Nick Longford and Bengt Muthen, are work-
ing on a multilevel version of factor analysis that is
more general than the one based on the matrix nor-
mal. A FORTRAN program to perform this anal-
ysis and a report describing the method are almost
complete.

Together with Rien van der Leeden of the Uni-
versity of Leiden, the team is writing a report com-
paring random coefficient software for growth curve

and repeated measurement models. This is similar
to the report comparing cross-sectional multilevel
programs but concentrates on special purpose soft-
ware such as BMDP5V and GGCAMOV.

In the multilevel literature one often finds the
claim that random coefficient models are better than
fixed coefficient models, that restricted maximum
likelihood estimation is superior to unrestricted, and
that weighted least squares outperforms unweighted.
These claims are usually substantiated by references
to general theoretical or statistical considerations
rather than empirical evidence—an unsatisfactory sit-
uation. One project in the planning stage is a com-
parison of random coefficient and fixed coefficient
models by means of leave-one-out cross-validation.
Diagnostics similar to influence measures and resid-
ual plots would be developed in the process. Collab-
orators, programming assistance, support and com-
puter time remain to be found, but such a study is

long overdue.

LONDON WORKSHOP IN OCTOBER

The Multilevel Models Project team will conduct a

workshop on three-level analysis in London on Oc-

tober 10-12. This training session will be of interest

to researchers in education and the social sciences,

and will provide participants with an opportunity

to gain some hands-on experience conducting mul-.
tilevel analyses with their own data. Basic models

for organizational and longitudinal data will be cov-

ered as will treatment of multivariate and categori-

cal multilevel data.

Participants will receive a complimentary copy
of ML3, and there will be no charge for tuition.
(This workshop is being conducted as part of the
Project’s mandate to disseminate information about
multilevel modelling.) To obtain further informa-
tion and to register, please contact Bob Prosser at
the address on the cover page.

The Project team has begun to conduct custom
workshops for organizations such as local educa-
tion authorities interested in doing specialized mul-
tilevel analyses. For further details about this ser-
vice, please contact Professor Goldstein at the ad-
dress on the cover page.
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MULTILEVEL MODELS WITH KNOWN
LEVEL 1 VARIANCE STRUCTURES

Stephen W. Raudenbush & Anthony S. Bryk

A fundamental goal in two-level analyses is to esti-
mate variation and covariation at each level. Usu-
ally the first stage variance structure is assumed to
be quite simple, and data are pooled across level 2
units to estimate the variances at each level. For
example, in a school effects study, one pools the
data from each school to estimate variability among
students within schools; and one estimates the vari-
ation and covariation of the coefficients which vary
randomly across schools.

However, there are a number of interesting
hierarchical data problems in which the structure
of variation-covariation at the first level is arbitrar-
ily complex but can be assumed known. These V-
known cases include meta-analysis and other stud-
ies in which a goal is to compare proportions, vari-
ances, correlations, log-linear effects or other inter-
esting parameters estimated for each of many inde-
pendent samples. This note describes a set of pro-
cedures for V-known applications using the HLM
program (Bryk, Raudenbush, Seltzer, & Congdon,
1989). The defining characteristics of a V-known

problem are the following:

(1) For each level 1 unit, there must be available
a statistical estimator (typically a maximum
likelihood estimator) of an interesting param-
eter (or parameter vector) and an estimate of
the sampling dispersion of that estimator.

(2) The parameters estimated for each group are
assumed to vary randomly across groups. We
shall refer to these as micro-parameters. It
must be reasonable to assume that these micro-
parameters are normally distributed.

(3) The level 1 units must all be large enough to
justify the assumption that the estimators of
the micro-parameters are approximately nor-
mally distributed with a variance which is ap-

proximately equal to its sample estimate.

These assumptions are not as restrictive as
they may seem. In many instances where samples
seem too small to justify the normality or known
variance assumptions, the use of a suitable trans-
formation of the sample estimator will render these
assumptions quite reasonable.

When the assumptions above are reasonable,
the class of problems accessible to the investigator
by means of hierarchical models will be broadened
in the following ways:

(1) Two level HLMs can be used in cases where
the within-unit data are unavailable. An ex-
ample is meta-analysis in which one typically
has access only to summary statistics from each
study but not to the original data.

(2) The V-known approach is applicable in some
cases where the outcome variable is clearly non-
normally distributed. An example is the two-
level log-linear model described by Goldstein in
Fitling Loglinear ML Models (Multilevel Mod-
elling Newsletter, January 1990, page 3, Equa-
tion 2). Note that in that example it would
be possible to estimate the log-linear effects
within each school; and the varince-covariance
matrix of those effects could be assumed known
if enough data per school were available.

(3) A wider variety of micro-parameters (e.g., cor-
relations, variances, standardized mean differ-
ences) become accessible to investigation. Note
that in most multilevel applications the micro-
parameters have been regression coefficients.

(4) A wide variety of level 1 variance structures
can be studied. For example, in meta-analysis,
the outcome variable is typically measured on a
different scale for each study. In a multinomial
application, the variance-covariance structure
of the outcomes is non-diagonal with a special
form.

(5) The V-known computer program can efficiently
summarize very large amounts of data. Again,
meta-analysis is an example where a set of stud-
ies may be based on many thousands of data
points. There are, however, other examples,
including international studies of educational
achievement where large samples are collected
in scores of countries and the goal is to compare
results across countries.
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Below we consider a univariate example based
on a meta-analysis of the effect of teacher expectancy
on pupil 1Q. We then consider generalizations to
other univariate and multivariate examples.

Example: The Effect of Teacher Expectancy
on Pupil IQ

Raudenbush and Bryk (1985) summarize the re-
sults of 19 experiments that attempted to assess the
effects of teacher expectations on pupil IQ. From
each study it was possible to estimate a standard-
ized mean differ_ence 6j_= (hgj — Bcj)/o; with the
statistic d; = (Y g; — Y¢;)/S; where pp; and Bej
are the population mean IQ scores for the exper-
imental and control groups, respectively, in study
Li=1,..., 19;)7Ej and ?Cj are the corresponding
sample means; and o; and Sj are, respectively, the
population and sample standard deviations, pooled
within groups. Hedges (1981) proved that, for a
fixed value of 6;, the statistic d; is approximately
unbiased and normally distributed with V; = (ng i+

nei)/(ngine;) + 5]‘2/[2(71}3,' +ng;)l

Within-study model. For each study j, the micro-
parameter is the effect size, 6;, which has been es-
timated by the statistic dj, and we assume that d;,
given é;, is normally distributed with a known vari-
ance V] Then the simple linear model

di=6; +e;, e ~N(0,V)

applies, where d;, 6;, and V; are defined above.
Between-study model. A simple model for the
micro-parameters assumes that they vary around

the grand mean with a variance to be estimated:

6j:70+u].’ UjNN(O,T)

where v, is the grand mean effect size and 7 is the
variance of the true effect size 6; about that mean.

Results.
effect size estimate is small, eg, 4, = 0.08, which

In the present example, the grand mean

represents just eight percent of a standard devia-
tion advantage for the experimental group over the
control group in mean IQ. However, the grand mean
alone could be misleading if the size of the treatment
effect varied substantially from study to study. The

maximum likelihood estimate of 7 is 0.019, corre-
sponding to a standard deviation of 0.14, meaning
that a study with an effect one standard deviation
above the average would be expected to have an ef-
fect size of about 0.22, a non-trivial effect.

In this case it is important to test the sig-
nificance of the variability of the effect sizes. If
the true variance were null, all studies would have
the grand mean effect size and it would be reason-
able then to infer that in every study, the effect of
teacher expectancy is small. Here the null hypoth-
esis is Hy : 7 = 0, and the test statistic suggested
by Hedges (1982) is H = ZV].‘I(dj ~ %), where
%o = »_(V;'d;)/ > V;7t, which has a x? distri-
bution with 18 degrees of freedom when the null
hypothesis is true. In this case H takes on a value
of 35.85, p < 0.01 implying that effect sizes do vary
significantly from study to study. Hence, the mean
effect size reported above, by itself, is misleading.

A subsequent analysis, reported in Rauden-
bush and Bryk (1985), used a single predictor (the
extent of teacher-pupil contact prior to the experi-
ment) in the between study model

6]‘ =70+71VVj tu;, oy NN(OvT)
where W; is the weeks of prior contact in study j.
This model accounted for nearly all of the variability
among the true effect sizes.

Other Univariate Applications

Other examples of §; might be a mean for each
group, a correlation, a regression coefficient, a pro-
portion, or a variance. In some of these cases, the
normality and V-known assumptions will be ques-
tionable unless sample sizes are very large in ev-
ery group. For example, the distribution of the
sample variance converges to normality by virtue
of the Central Limit Theorem; but convergence is
very slow, and the distribution may be very non-
normal unless sample sizes are very large. Also the
sampling variance of the statistic 6’]2 1s proportional
to the square of the true variance, 0';-2, which is the
quantity being estimated! However, a simple log
transformation (see Table 1) significantly improves
the normality approximation and also stabilizes the

variance. Thus, the V-known methodology could
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be profitably applied to study variances even when
samples are as small as 10 per group (see Bartlett
& Kendall, 1946; Raudenbush & Bryk, 1987).
Table 1 (p. 7) presents some examples of pa-
rameters which are likely to be of interest along
with their estimators, sampling variances, and use-
ful variance stabilizing or normalizing transforma-

tions.
Multivariate V-known Model

The multivariate V-known model is a straightfor-
ward extension of the univariate case. A vector
of parameters is estimated separately for each of
many groups; and the sampling dispersion of the
vector of estimates is assumed unbiased and multi-
variate normally distributed with known variance.
Some useful examples are discussed in Bryk and
Raudenbush (forthcoming). Again, transformations
are sometimes useful to increase the tenability of the
assumption of multivariate normality and of known

variances and covariances.

Example. Becker (1988) utilized the multivariate
V-known method to compare experimental and con-
trol group pre-post change scores across five exper-
iments. Because the five experiments utilized out-
come variables measured on different scales, it was
necessary to standardize the change scores. Within
each study, j, she computed the standardized mean
change scores dg; = (?E]- - YEJ»)/SJ- and dg; =
(Y;—Xc;)/S; where Y g; and Y ; are the posttest
means, X g; and X ; are the pretest means and Sj
is a measure of the scale of the outcome.

Becker derived the sampling variance of each

mean change d;;, for i = E or i = C:

j)
Vi; = 201 = pi)/ng; + 65 /[2(ny; = 1],

where p;; is the pre-post correlation in sample ¢ of
study j. In each study the samples are independent,
so the sampling covariance between dp; and d; Is
zero. Thus, the within-study model is

dij = 6ij + e

ij)

€i; ™~ N(Oavij)

and Cov(eg;,ec;) = 0. However, looking across
studies, it might be that the true effect sizes are
correlated because of study-to-study differences in

treatment implementation, outcome measures, and

N

subject populations. Hence, Becker formulated a

between-study model

bij = Vi T Wijy Uiy N(0, ;)

and Cov(ug;,uc;) = Tpc- Becker found that, in-
deed, the correlation between E and C group changes
was high (0.91). A major advantage of the multi-
level formulation concerned the test of the key null
hypothesis of no difference in average change be-
tween E and C, H, : 75 = 7¢- Using the multilevel
formulation via the V-known model, this test takes
into account interstudy differences in mean change
not attributable to the treatment. Becker found no
significant E-C difference. This contradicts the re-
sult which would have occurred had the study-to-
study variation been ignored.
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Table 1: Some Univariate V-known Cases

Micro-parameter, ¢; Sample Estimator, d, Approximate Variance, V;

j j j
Regression Slope,” f3 b=rS,/S, o> (X - X)?

Standardized Mean

Difference,’ (np — uc)/o Yp-Yc)/S (ng +ng)/(ngne) + d*/[2(ng + no)]
Correlation

0.5log [(1+ p)/(1 — p)] 0.5log [(1+r)/(1 —7)] 1/(n-3)

Proportion,® = P p(1—p)/n

Logit, log [r/(1— )] log [p/(1 - p)] '+ (1 -p)7')/n

Transformed $.D.,%¢ log(¢)  log(S) — 1/(2f) 1/(2f)

Here 7 is the sample correlation between T and ¥ and Sz‘ and Sy are the sample standard deviations.

b Typically 0 is the pooled, within-treatment standard deviation, fip and [io are the experimental and control population means,

respectively, and YE and YC are the corresponding sample estimates.

¢ We denote T as the proportion of subjects in the population with a given characteristic; P is the sample proportion.

d We denote 0 as as. d., S as the sample estimate, and f as the degrees of freedom associated with S. Thus f =n—1wheno

isas d.,but f =N — ¢ when O is the residual 5. d. estimated in a regression model with ¢ parameters.

Figures for Tymms & Fitz-Gibbon, (p. 8)
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A GRAPH IS WORTH A THOUSAND
NUMBERS

P. Tymms & C. Fitz-Gibbon

The raw output from a multilevel analysis cannot
be understood by the average layperson, yet if the
results are to improve education, they must be com-
municated in an understandable manner to advi-
sors, inspectors, headteachers, and teachers. Find-
ings must, therefore, be presented graphically since
the eye can take in those complexities which are
inaccessible through tables of figures. From our ex-
perience, two types of presentation are needed: one
to show departmental and school data and the other
to show general patterns found in the analysis.

Consider a comparison of schools, by depart-
ment, in which separate models have been fitted for
each subject. In the simplest situation, these mod-
els might have one explanatory variable with a fixed
slope and a random intercept. In presenting school
differences, we have found bar graphs to be effective,
and they are well received by headteachers.

Figure 1 shows the kind of chart we have used
in the A Level Information System (Fitz-Gibbon,
1989) to summarize data for a school or college. The
expected (average) achievement corresponds to )A/j,
and the actual level is given by Y. If the slopes are
allowed to vary, then the charts could still be used,
but it would then be important to base the expected
and actual values on a hypothetical average pupil
for a particular department and to explain that a
different pattern might be seen if more/ less able
students were considered.

Charts such as these could be used to convey
a variety of findings by presenting breakdowns by
gender, ability band, and so on. But there is an un-
comfortable simplification if there is evidence that
slopes vary across schools, and in fact it might be
better to use a more complex graph.

To show the whole picture to school personnel,
one might use a graph like the one in Figure 2, but
with many schools the presentation could become
quite confusing. An alternative would be to indicate
the general trend with a single regression line and
to place a particular school’s results on the same
graph. It would be desirable to indicate confidence
limits on such a graph.

Various elaborations are possible. The per-
formance of different subgroups within institutions
could be compared with the overall average patterns
for these subgroups. When a context effect has been
identified, it would be necessary to show a general
line which took that effect into account, and so a
series of diagrams would be appropriate.

A third type of graphical output could be used
to portray some overall patterns in the data. Fig-
ure 3, for example, shows relationships among three
explanatory variables—two continuous and one cat-
egorical. '

There are clearly some very exciting possibil-
ities for the graphical presentation of findings from
a multilevel analysis such as showing interactions in
three dimensions and picturing the achievements of
various subgroups, but it must be recognized that a
single picture would take considerable time and ef-
fort to produce at the moment. In our view, an im-
portant addition to multilevel software would be the
capacity to produce the kinds of output described
above and/ or to produce output which could be
read directly into graphing packages.
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