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Editorial 

The first Multilevel Modelling Newsletter 
appeared in 1989 when the technique was not 
widely known and there was felt to be a need to 
have a relatively informal forum for discussion 
of applications and methodological 
developments.  

The Centre for Multilevel Modelling moved 
from the Institute of Education to Bristol 
University in 2005 under the joint direction of 
Jon Rasbash and Fiona Steele. With this move 
and all the exciting developments it has opened 
up, we have been reviewing all our activities 
and after various discussions feel that the time 
has come to close down this newsletter. 

First of all, the techniques themselves are now 
relatively well known and have been 
incorporated into the major statistical software 
packages. Thus there is far less need for the 
newsletter.  

Secondly, we have noticed a reduction in the 
number of articles sent to us for publication and 
for referencing, partly at least because of the 
existence of many other outlets.  

Thirdly, the internet has changed the way in 
which materials can be accessed. Most of the 
functions of the newsletter can be implemented 
rather better through web based materials: Jon 
Rasbash describes some of our Centre plans  to 
do this elsewhere in this newsletter and Hilary 
Browne describes how our revamped website 
will look. 

So this is the last edition. In signing off, as the 
final editor, I would like to pay tribute to all of 
those who directly edited, produced and 
contributed to the Newsletter and to the  

 

Economic and Social Research Council for 
continuing financial support. In particular, 
thanks are due to Bob Prosser who started it all 
off and set the format for what followed, to 
Amy Burch who produced the finished copy for 
many years, to Min Yang and to Ian Plewis who 
stepped down as editor in 2005.  

Harvey Goldstein 
h.goldstein@bristol.ac.uk
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Centre for Multilevel Modelling, University of Bristol 

Hilary Browne 
hilary.browne@bristol.ac.uk. 

new website - http://www.cmm.bristol.ac.uk
 
Multilevel Modelling centre of excellence 

Our new web site which supersedes www.MLwiN.com is now on-line and fully-functioning 
 
My brief as the Multilevel Modelling web developer was to construct a site that reflects on-line the reality 
of the Centre for Multilevel modelling as the global authority on multilevel modelling that we have 
become.  The centre is the home for our multilevel modelling research and software development as well 
as production and sales of MLwiN software.   
 
The new site has been constructed using the latest CSS layout techniques and adherence to international 
web-accessibility guidelines.  Every page from  MLwiN.com has been examined and the content fully-
updated by the team, and will now be easier to find as more logical and numerous  links have been put in 
to improve navigation. We hope you find the nested navigations bars helpful and logical.  
 
New features 

There is plenty of previously unseen new material, eg in the research section as well as information about 
the UK free-download offer and the new MLwiN  version 2.1. 
 
Search Bar 
You can use the new search bar on the top right hand side which word-searches the whole of this site 
including the hundreds of PDF documents, or you may find our web site map helpful.   
 
Harvey Goldstein will continue to run his own personal pages independently on the site:  
http://www.cmm.bristol.ac.uk/team/HG_Personal/index.shtml,. The search bar also searches all his web 
pages and PDFs. 
 
Four new Forms 
There are now four on-line forms where you can 

1. order MLwiN software 
2. apply for the new free MLwiN download if you are a UK-based academic 
3. request technical support if you are a MLwiN customer 
4. reserve multilevel modeling workshop places 

 
Web Site Plans 
 
We plan in the next few months to improve the on-line purchasing experience, and also produce on-line 
learning materials in several forms, such as podcasts and multilingual audio-visual presentations.  Also 
interactive question-answer projects, many projects are currently being developed by the team.  
 

mailto:hilary.browne@bristol.ac.uk
http://www.cmm.bristol.ac.uk/
http://www.cmm.bris.ac.uk/MLwiN/ordering/ac-uk.shtml
http://www.cmm.bris.ac.uk/MLwiN/features/mlwin-2-1.shtml
http://www.cmm.bristol.ac.uk/images/CMM-web-diagram.doc
http://www.cmm.bristol.ac.uk/team/HG_Personal/index.shtml
http://www.cmm.bristol.ac.uk/MLwiN/ordering/index.shtml
http://www.cmm.bris.ac.uk/MLwiN/ordering/ac-uk.shtml
http://www.cmm.bris.ac.uk/MLwiN/tech-support/tech-enq-form.shtml
http://www.cmm.bris.ac.uk/MLwiN/tech-support/workshops/bookings.shtml
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Do take a cyber-tour around the new web site, and let me know your feedback – email: 
hilary.browne@bristol.ac.uk. 
 
 
 
 
 
 
 

 
New features in version 2.1 of MLwiN 

Jon Rasbash 
Centre for Multilevel Modelling, University of Bristol 

j.rasbash@bristol.ac.uk 
 
The beta version of 2.1 will be available by December 2006. It will be announced on the MlwiN web site. 
Version 2.1 of MLwiN has three sets of new features: 
 

• Improved model specification interface 
• A new “bespoke predictions” window 
• Surface plotting routines 

 
Improved Model Specification Term 

When variables and interactions were created in previous versions, recoding main effects(changing the 
centering or  reference categories) did not update the interactions involving these changed variables. 
Interactions + main effects had to be removed from the model , main effects recoded and then main 
effects and interactions re-entered. This can be a time consuming and error prone process. In the new 
version, polynomials are created by specifying an optional order. If polynomial order, reference category 
(for a categorical variable) or centering value for a main effect is changed all associated interactions are 
updated. 
 
The Specify Term window used to add terms and interactions into the model has been updated to include 
this extra functionaliy 
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Bespoke Predictions Window 

The current predictions window only predicts for values within the range of the observed data. Often we 
want to generate predictions for a specific (“bespoke”) set of values for the explanatory variables to 
explore a multidimensional model predictions space. 
 
The “bespoke” predictions window allows users to specify a set of values for each predictor variable and 
a prediction data set is created containing all combinations of these variables. Values of all interaction 
terms in the model can of course be automatically derived and need not be specified. Model predictions 
(and confidence intervals) are then calculated for the generated prediction data set. Another plot-
specification window then facilitates specification of visulations of the prediction data set in up to 4 
dimensions of predictor variable using colour coding and trellis plots. 
 
Where the response is discrete, predictions can be on the link function scale for example log, logit, 
complementary-log-log, or the natural probability or count scale. This automation is particularly useful 
for multicategory response models where calculating probablities for each response category as a function 
of explanatory variables along with confidence intervals is less than straightforward. Predictions may be 
cluster specific or population average allowing users the ability to visualise and explore the consequences 
of these two different model assumptions. 
 
 For example, below is a 2 level multinomial model from  the MlwiN user guide. The model compares the 
odds of using different types of contraception: sterilised, modern or traditional against a common 
reference category of no contraception. These odds are modelled as functions of the number of previous 
children(lc0, lc1, lc2, lc3+) the age of the woman(age) and the interaction of these two variables. 
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The bespoke predictions window for this model looks like this: 
 

 
 
The top panel labelled setup allows specification of the explanatory variable values for the bespoke 
prediction grid. The lower screen allows specification of a percentile value for confidence and coverage 
intervals around predictions; whether predictions should be on the logit or probability scale; whether 
predictions are to be cluster specific or population average, and the final portion of the screen also allows 
coverage intervals based on between-district variation to be included. 
 
A plotting window allows flexible specification of how the prediction results are to be plotted 
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For example, here we ask for the x variable to be age, the 4 response types to be grouped together on each 
graph and the different levels of lc(#of children) to be placed on a vertical trellis. 
 
 Pressing Apply creates: 
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Similar bespoke prediction and visualisation functionality exists for Normal, Poisson, Binomial and 
negative binomial models. 
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Surface Plotting 

Some basic surface plotting and rotation functions have been added. For example, below is a rotatable 
surface plot of the interaction between 2 continuous variables 
 

 
 
 
 
 
_____________________________________________________________________________________ 
 

 
The new Multilevel Centre web site 

 
In September 2006 the new web site for the Centre for Multilevel Modelling went live. 
Located at the University of Bristol this is a complete redesign by Hilary Browne 
(Hilary.Browne@bristol.ac.uk) which updates the software ordering, publications etc. 
The launch coincided with the availability of a free version for the UK academic 
community. 
 
The new address is *****. 
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Fitting bivariate models for longitudinal data with 

informative drop-outs using MLwiN 
Nikos Pantazis & Giota Touloumi 

Department of Hygiene & Epidemiology, Athens Medical School 
npantaz@med.uoa.gr

 
 

Introduction 
 
In many research areas it is common for 
longitudinal data on one or more continuous 
response variables and event history data for a 
terminating event to be both collected for each 
individual participating in a study. A well-
known example, which was also the 
motivation for this study, derives from the 
epidemiology of HIV-1 infection: two of the 
most commonly used markers of disease 
progression (CD4 cell count and HIV-RNA 
viral load) are routinely measured at various 
time points for each study participant along 
with the time of serious clinical events such as 
AIDS onset or death. One major statistical 
problem in such studies, where the main 
objective is to estimate the rate of change in 
continuous response variables, is that the series 
of repeated measurements are prematurely 
terminated for some individuals due to the 
occurrence of the terminating event. Several 
methods to analyze such unbalanced data are 
available provided the probability of the 
terminating event is not related to the response 
variable or is related only to the observed part 
of the vector of repeated measurements i.e. 
missing data are at random. According to the 
terminology introduced by Little and Rubin 
(1987), missing data can be classified as: 
completely at random (MCAR) when the 
probability of non-response does not depend 
on the response vector Y or at random (MAR) 
when the probability of non-response does not 
depend on the unobserved part of the responses 
(Ym) given the observed part (Yo). Finally, 
when the probability of non-response depends 
on unobserved outcomes, missing data are 
called non-ignorable (MNI). Wu and Carroll 
(1988) introduced the term “informative right 
censoring” for the special case of non-
ignorable missing data where the probability of 
an individual terminating the study early is 
related to that subject’s underlying marker’s 
trend. Laird (1988) gives a detailed discussion 
of the impact of various missingness processes 
on inference about the response variable, 

concluding that likelihood based approaches 
can provide valid inferences ignoring the 
missingness process when data are MCAR or 
MAR. However, serious biases can occur 
when missingness is non-ignorable. In such a 
case one needs to apply methods that 
simultaneously model the observed data and 
the missingness process. 
Little (1995) summarized methods proposed to 
jointly model the measurement and drop-out 
process and outlined possible extensions. Wu 
and Caroll (1988) and Wu and Bailey (1989) 
studied the parametric conditional linear model 
which was later extended by Schluchter (1992) 
who proposed a log-normal model for the 
drop-out process and a linear random effects 
model for the longitudinal measurements. 
Maximum likelihood estimation in this model 
was accomplished using an EM algorithm. 
Faucett and Thomas (1996) and Touloumi et 
al. (1999) proposed similar parametric models 
where the estimation procedure was based on 
Bayesian methods (Gibbs sampling) or a 
combination of the restricted iterative 
generalized least squares method (RIGLS) 
with a nested EM algorithm respectively. 
Most of the proposed methods that jointly 
model the repeated response measurements 
and the drop-out mechanism are dealing with 
data on a single marker. We have recently 
extended the Joint Multivariate Random 
Effects (JMRE) model proposed by  Touloumi 
et al. (1999), in order to simultaneously model 
longitudinal data of two correlated continuous 
markers in the presence of informative drop-
outs (Pantazis et al., 2005). The bivariate 
JMRE model allowed also for non-linear 
trends in one of the two modelled continuous 
markers. 
In this paper we briefly review the bivariate 
JMRE model and its estimation procedure, we 
focus on the data preparation and the use of the 
MLwiN statistical software to fit the model 
and present the most interesting results of the 
application of the model on simulated data. 
Concluding remarks and references to some 
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applications of the JMRE models are given in 
the final section. 
 
Review of the bivariate JMRE model 
 
Following Little’s (1995) terminology, the bivariate JMRE 
model belongs to the class of “non-ignorable random-
coefficient based drop-out” models. The model combines a 
bivariate linear mixed model for the underlying patterns of 
the markers’ evolution with an accelerated failure time 
survival model for the drop-out process. The key feature of 
the model is that survival model’s residuals are allowed to 
be correlated with both markers’ random effects. 

 

 

Bivariate markers’ model 
 

We assume that two continuous markers are measured 
repeatedly for each individual in the study. Superscripts  
and  are used for these two markers, while superscript 

 is used to denote survival parts of the model. Subscripts 

c
r

t
j  and i  are used to denote data of the 

thj  

measurement on the  individual. Assuming that the 
markers’ trends can be described by two linear mixed 
models with correlated random-effects, a bivariate model 
for the longitudinal markers’ measurements can be written 
as follows: 

thi

c c c c c
ij ij ij i ijy e= + +x b z β c

r r r r r r
iij ij ij ij

y e= + +x b z β

 

and 

' ' ' '  

Vectors  (kc x 1) and  (kr x 1) contain 
random (subject-specific) regression 
coefficients for kc and kr explanatory variables 
included in the corresponding design vectors 

(1 x kc) and (1 x kr). 

c
iβ

r
iβ

c
ijz '

r
ij

z

The joint distribution of  and  is 
assumed to be multivariate normal with zero 
mean and variance-covariance matrix:  

c
iβ

r
iβ

,
c

c r
cr r

⎡ ⎤Σ
Σ = ⎢ ⎥Σ Σ⎣ ⎦

 

Matrices (kc x kc) and (kr x kr) include 
variances and covariances of the random 
effects for the first and second marker 
respectively, while 

cΣ rΣ

crΣ (kr x kc) includes 
covariances between random effects of each 
marker. 
Vectors (pc x 1) and (pr x 1) contain 
fixed regression coefficients for the two 
markers whereas (1 x pc) and (1 x pr) 

are the corresponding design vectors 
containing the values of pc and pr explanatory 
variables respectively.  Finally  and  are 

level-1 residuals for the two continuous 
markers.  

cb rb

c
ijx '

r
ij

x

c
ije '

r
ij

e

The bivariate markers’ model can be written in 
matrix form as follows: 

0 0
0 0

c c c cc
i i i i
r r r rr
i i i i

X Z
X Z

c
i
r
i

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

Y β eb
Y β eb

 

 
Survival model 
 
Censoring of survival times due to loss to 
follow-up or due to study termination is 
assumed to be a totally random process. Let  
be the observed survival time (i.e. time from 
some well defined time origin to the 
terminating event 

iT

s
iT  or censored survival 

time ). Thus . Survival 
time observations include also an indicator 
variable 

iC min( , )s
i iT T= iC

iδ  taking the value of 1 if 
s

i iT T= and 0 otherwise.  The survival model 
is a log-normal one with the following form: 
 

log( )s t t t
i iT iβ= +x b  

 
where (ν x 1) is the vector of regression 
coefficients and (1 x ν) is the design vector 
of ν explanatory variables for the survival 
model. Finally 

tb
t
ix

t
iβ  is the survival residual for 

the  individual. Survival residuals are 
assumed to follow the normal distribution with 

zero mean and variance .  

thi

2tσ
 

JMRE model 
 

We assume that the joint distribution of the survival 

residuals 
t
iβ  and the between-subjects markers’ residuals 

,  is  multivariate normal: c
iβ

r
iβ

 

int int,
0

c
i

jo r jo
i i

t
i

N
β

⎡ ⎤ ⎛ ⎞⎡ ⎤
⎢ ⎥ ⎜ ⎟⎢ ⎥= Σ⎢ ⎥ ⎜ ⎟⎢ ⎥

⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

β 0
β β 0�  
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where 
2

int

c

jo cr r

ct rt tσ

⎡ ⎤Σ
⎢ ⎥

Σ = Σ Σ⎢ ⎥
⎢ ⎥
⎣ ⎦σ σ

. 

 

Vectors ( 1 x kc) and  ( 1 x kr) include 
covariances of markers’ random effects and survival 
residuals.  

ctσ rtσ

 

The joint model can now be written in the 
usual mixed models formulation: 
 

joint joint joint joint joint joint
i i i iX Z= + +Y b β ei

⎤
⎦

  
where  

int , , ln( )
T T T

jo c r s
i i i iT⎡= ⎣Y Y Y  

 and  

int , ,
T T T T

jo c r t⎡ ⎤= ⎣ ⎦b b b b . 

It is assumed that level-1 residuals are 
uncorrelated given the random effects and 

have constant variances  and for the 
first and second marker respectively. 

2cσ
2rσ

 

Fitting Procedure 

For uncensored survival data (i.e. s
i iT T=  for 

all individuals) all the model parameters can be 
estimated using the Restricted Iterative 
Generalized Least Squares (RIGLS) method or 
the Restricted Maximum Likelihood (REML) 
method in any statistical software package 
with reasonable flexibility in the definition of 
the variance matrix. The RIGLS method, 
assuming multivariate Normality, yields 
estimates which are equivalent to the REML 
ones and has been described in detail 
elsewhere (Goldstein, 1995). 

With censored survival data, however, the 
standard RIGLS method has to be modified in 
order to obtain unbiased estimates of the model 
parameters. To deal with censored survival 
data a version of the EM algorithm is applied, 
considering censored survival observations as 
missing data. Thus at each iteration and only 
for individuals with censored survival 
observations, the survival part of the response 
variable (i.e. the logarithm of censored 
survival times) and the corresponding survival 
components of the residuals cross-product 
matrix are replaced by their conditional 
expectations given the observed data and the 

current parameter estimates (E-step). New 
parameters’ estimates are obtained via RIGLS 
(M-step) and these two steps are repeated until 
convergence. The calculation of these 
conditional expectations is based on 
multivariate normal theory (Johnson and 
Wichern, 1998) and properties of the truncated 
normal distribution (Johnson and Kotz, 1970). 
The null hypothesis [ ,  (that is, non-

informative drop-out) can be tested by the likelihood ratio 
(LR) test, estimating the likelihood of the joint model and 

the model in which [ , is constrained to [ , . 

However it should be noted that the validity of the LR test 
for non-ignorability depends critically on the model’s 
assumptions (Kenward, 1998). 

] [ ,ct rt =σ σ 0 0]

]

r

ct rtσ σ ]0 0

Due to the replacement of censored survival 
times by their conditional expectations during 
the fitting procedure, without taking into 
account the uncertainty of these expectations, 
standard errors of the fixed effects parameters 
can be underestimated. This effect is of 
minimal magnitude especially on standard 
errors of markers’ parameters but if the focus 
is on the survival model one can use the Louis 
(1982) method or alternatively a 
computationally simpler approach based on a 
modified version of the multiple imputations 
method to adjust the standard errors (Rubin, 
1978; Touloumi et al., 2003).  Therefore 
hypotheses testing based on Wald tests should 
be performed after the adjustment of standard 
errors, especially for factors affecting the 
survival part of the model. Alternatively one 
can use likelihood ratio tests to compare nested 
models, provided that the IGLS algorithm is 
used for estimation or the fixed part of the 
models under consideration is the same, in 
case of estimation through the restricted 
version of the algorithm (RIGLS). 
The basic model, as described above, can be 
used for linear or piecewise linear average 
markers’ trends. However in our motivation 
example one of the two continuous markers 
was characterized by a fast initial exponential 
like decline followed by a slow, almost linear, 
increase thereafter. In order to describe this 
trend with reasonable flexibility we used a 
nonlinear model. The model used is a mixture 
of a linear model describing the ultimate trend 
and an exponential one to capture the initial 
decline. More specifically the model for this 
marker has the following form: 

 

3
0 0 1 1 2( ) e

r
ijb tr r r r r r

ij i i ij ijY b b t b eβ β −= + + + + +  
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The specific model is relatively simple, allows 
the estimation of various quantities of clinical 
interest (e.g. time from infection until 
minimum virus load levels) and has easy 
interpretable parameters.  
In order to estimate all model’s parameters we 
used a “linearization” method based on a first 
order Taylor approximation (McCullagh and 
Nelder, 1989; Goldstein, 1995) incorporated in 
the main JMRE fitting algorithm.  

 

 
Implementation in MLwiN 
 
As noted in the previous section if the survival 
time is observed for all individuals the model 
can be easily fitted in MLwiN requiring only 
some appropriate data preparation. More 
specifically repeated measurements for the first 
and second marker along with the logarithm of 
the survival time should be stacked underneath 
each other for each individual to form the 

response vector . A similar strategy 
should be followed for the design matrices for 
fixed and random effects. In the following 
table, data for the first individual are shown; 
id is a sequential identifier for the individuals 
and yvar is the combined response vector. 
consc, consr and conss are indicator 
variables for the first marker, the second 
marker and the survival measurements 
respectively but will also be used as parts of 
the appropriate design matrices. timec and 
timer are the actual times for the 
measurements of the first and second marker 
respectively.  

joint

iY

 
id yvar consc timec consr timer conss

1 27.6 1 6.26 0 0 0 

1 30.8 1 6.53 0 0 0 

1 25.6 1 6.81 0 0 0 

1 28.7 1 7.01 0 0 0 

1 27.3 1 7.32 0 0 0 

1 26.9 1 7.60 0 0 0 

1 27.5 1 7.85 0 0 0 

1 2.4 0 0 1 6.53 0 

1 2.3 0 0 1 6.81 0 

1 2.2 0 0 0 0 1 

 
Data should also contain a constant variable of 
ones (cons). Any available covariates that 
may be included in the joint design matrices 
should be arranged in similar way as the 
consc, consr, conss, timer, times 
variables (for example if the age of an 
individual is considered it should be entered as 

three different variables agec, ager, ages 
which will contain the actual age or zero 
according to the corresponding indicator 
variable). The following code declares the 
model without any additional covariates (linear 
average trend, random intercept and random 
slope for both markers) and starts its 
estimation: 
 
resp "yvar" 
 
expl "consc" "timec" "consr" "timer" 
"conss" 
 
iden 1 "cons" 
 
iden 2 "id" 
 
setv 1 "consc" "consr" 
 
clre 1 "consc" "consr" 
 
setv 2 "consc"  "timec" "consr" "timer" 
"conss" 
 
batc 
 
start 

 
With censored survival data for some of the 
individuals, the aforementioned procedure 
must be adjusted to incorporate the nested EM 
algorithm. More specifically we have used the 
PREFile MLwiN command to invoke a 
macro implementing the EM algorithm prior to 
each RIGLS iteration. Alternatively one can 
use the “Options -> Directories -> Pre file” 
dialog to invoke the macro. An additional 
indicator variable taking the value of one if the 
survival time is right censored and zero 
otherwise should be included in the data in 
order to discriminate between censored and 
actual survival times respectively. The macro 
called by the  PREFile command estimates 
the expected survival time for each individual 
with censored survival time and the 
corresponding part of the residuals cross-
product matrix conditional on current estimates 
and the data and substitutes these observed 
quantities with the expected ones, prior to each 
RIGLS iteration until convergence. Initial 
estimates can be obtained running a few 
RIGLS iterations treating censored survival 
times as observed (i.e. not invoking the EM 
algorithm). Finally additional macros have 
been developed to implement the 
“linearization” method for the non-linear trend 
for one of the two markers and the multiple 
imputation adjustments of the standard errors. 
All additional macros used in the fitting of the 
bivariate JMRE model are available upon 
request from the authors. 
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Simulations 
 
We performed various simulation studies to 
evaluate the performance of the bivariate 
JMRE model in terms of bias and precision. 
The performance of the proposed model was 
compared also against simpler models such as 
two independent univariate JMRE models, a 
bivariate random effects model and two 
independent univariate random effects models. 
Finally, the robustness of the model was 
investigated by examining the effects of 
violating some of its distributional 
assumptions. 

 

500 data sets were generated under the 
following assumptions: (a) a linear trend for 
the first marker (CD4 cell counts on the 
square-root scale) allowing for individual level 
random deviations in both the intercept and the 
slope, (b) a non-linear model, as described in 
the fitting procedure section, for the second 
marker (HIV– RNA viral load levels on the 
log10-scale), (c) survival times follow a log-
normal distribution, (d) random effects of 
marker trends and survival residuals have a 
joint distribution which is a multivariate 
normal distribution and (e) missing markers’ 
data can be due to death or onset of AIDS 
(informative censoring) or due to withdrawal 
at 5% per year (assumed completely at 
random). The CD4 cell data were truncated 
when the value of 0 was reached. The choice 
of the parameters was based on results from 
real examples. More specifically, correlation 
between marker intercepts was assumed to be -
0.39 and between CD4 cell count slope and 
HIV–RNA ultimate slope -0.52 and the 
survival time was assumed to be correlated 
mainly with the HIV–RNA intercept (r=-0.37) 
and CD4 cell count slope (r=0.42). Each data 
set contained 200 subjects and the study 
duration was assumed to be 20 years with 
assessment for both markers every 3 months. 
Table 1 shows the results of the simulation 
study for the fixed effects parameters. Under 
the label ‘true’ are the parameter values that 
were used to generate the data. As shown in 

Table 1 the parameters which are most affected 
by ignoring informative censoring are the 
average rate of CD4 cell decline and the 
ultimate slope of the viral load. The bias in the 
slopes is in the direction expected: the rates of 
CD4 cell loss and viral load increase are 
underestimated. Subjects with steeper CD4 cell 
declines or faster viral load ultimate increases 
tend to have shorter survival times, resulting in 
higher proportions of informatively missing 
markers’ data and thus these subjects are 
downweighted during the random-effects 
estimation procedure, resulting in 
overoptimistic estimates. 
Regarding the bias in the random-effects 
parameters, the bivariate JMRE model yields 
the least biased estimates compared with the 
estimates from the other three approaches. The 
bias in the estimated variances and covariances 
ranged from -3.6% to 10.8% under the 
bivariate JMRE model, from -30.0% to 30.6% 
for the two independent JMRE models and -
15.2% to 26.3% under the other two 
approaches. For the two independent JMRE 
models the biases were particularly large for 
the covariances between survival time and 
CD4 cell count intercept and slope and with 
HIV–RNA ultimate slope. Of course, the two 
independent JMRE models approaches do not 
provide estimates of the correlation between 
the two markers, whereas the other two 
approaches, which also ignore informative 
censoring, do not provide any information 
about the relationship between survival time 
and marker values.  
Empirical coverage probabilities for the 
marker intercepts were between 94.2% and 
95.2% in all four approaches. In contrast the 
bias in the estimation of CD4 cell counts and 
HIV–RNA slopes resulted in low values of 
empirical coverage probabilities in the two 
univariate random effects models (57.8% and 
67.4% respectively) and the bivariate random-
effects model (75.2% and 77.6% respectively) 
whereas the two independent JMRE models 
(91.6% and 91.8% respectively) and the 
bivariate JMRE model (95.0% and 94.2% 
respectively) performed much better.  
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Table 1. Simulation results: estimates, percentage bias and mean-squared errors by the 
four approaches; the bivariate JMRE model, two independent random-effects models, 
the bivariate random-effect model and two independent JMRE models 
  Bivariate  Two independent Bivariate  Two independent

  JMRE model  RE models RE model JMRE models 
  Estimate Estimate Estimate Estimate 

  (%Bias) (%Bias) (%Bias) (%Bias) 
Parameter TRUE (MSE) (MSE) (MSE) (MSE) 

CD4 intercept 25.72 25.702 25.605 25.631 25.671 
cells/μl )   -0.07 -0.45 -0.34 -0.19 

  0.131 0.131 0.131 0.131 
CD4 slope -1.131 -1.119 -0.998 -1.032 -1.09 

( cells/μl per year)   1.06 11.73 8.74 3.66 
  0.00672 0.00591 0.00584 0.00662 

HIV-RNA 3.874 3.876 3.89 3.885 3.88 
 intercept  0.06 0.41 0.28 0.16 

(log10 copies/ml)   0.00363 0.00361 0.00357 0.00363 
HIV-RNA  0.077 0.075 0.06 0.063 0.071 

ultimate slope  -2.77 -21.57 -17.88 -7.39 
(log10 copies/ml per year)  0.000136 0.000117 0.000117 0.000131 

HIV-RNA 1.13 1.129 1.116 1.121 1.125 
Nonlinear parameter b2  -0.08 -1.24 -0.84 -0.42 

(log10 copies/ml)    0.00137 0.00135 0.00136 0.00137 
HIV-RNA 4 4.008 4.073 4.038 4.029 

Nonlinear parameter b3  0.2 1.83 0.94 0.73 
 (years-1)  0.104 0.109 0.105 0.107 

Log Survival time 2.3 2.305   2.248 
(years)  0.23   -2.27 

  0.01046   0.00934 
 
 
Further simulations were performed in order to 
asses the performance of the bivariate JMRE 
model when data deviate from its assumptions. 
Various scenarios with level-2 (random 
effects) or level-1 residuals’ distributions being 
heavy tailed or skewed (generated from 
multivariate t or Gumbel distributions 
respectively) were evaluated. Moreover, we 
assessed the effects of misspecifying the drop-
out model and violating the assumption of 
conditional independence of the two markers 
level-1 residuals. Results, based on 500 
replications for each scenario, showed that 
although variance components estimation was 
affected by heavy-tailed or skewed random 
effects distributions, fixed effects parameters 
were only marginally affected (bias 0.0% - 
1.1% and 0.1% - 5.0% respectively). However 
95% coverage probabilities were lower than 
expected especially when random effects 
distributions were skewed (93.8% - 95.2% and 

83.2% – 95.6% respectively). Deviations from 
the assumed drop-out model or from level-1 
residuals’ distribution had smaller effects on 
both fixed effects and variance components. 
 
Discussion  
 
The analysis of repeated measurements data 
has been an active methodological research 
area for several years. The wide availability of 
appropriate statistical software has also 
facilitated the analysis of such data in many 
applications. However, incompleteness of 
longitudinal data is a common issue which 
should be taken into account at least as part of 
a sensitivity analysis. During the last two 
decades many statistical methods have been 
proposed for the analysis of repeated 
measurements of a continuous variable in 
presence of some non-ignorable missingness 
process. We have recently proposed a model 
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for simultaneously analysing longitudinal data 
of two correlated continuous variables subject 
to informative drop-out (Pantazis et al., 2005). 
The fitting procedure of this model was based 
on the RIGLS method combined with a nested 
EM algorithm and allowed also for a non-
linear average trend for one of the two 
modelled variables. A similar bivariate model 
was also recently proposed (Thiebaut et al., 
2005) and its estimation algorithm was based 
on direct maximization of the likelihood using 
Monte Carlo methods for the integration of 
random effects. Roy and Lin (2002) also have 
presented a latent variable approach for the 
analysis of such multivariate longitudinal data 
where the drop-out model that was used is 
similar to the model that was proposed by 
Diggle and Kenward (1994).  
The proposed model could be in principle 
fitted using a Bayesian approach. It should be 
noted that for the single marker case, Faucett 
and Thomas (1996) have proposed a similar 
model where a Markov chain Monte Carlo 
technique (Gibbs sampling) is used to estimate 
the joint posterior distribution of the unknown 
parameters of the model. 
The proposed bivariate JMRE model can be 
fitted in a computationally easy way within the 
MLwiN statistical software package requiring 
some minimal data preparation and an 
additional macro for the implementation of the 
nested EM algorithm. As shown in the 
simulation study the bivariate JMRE model 
achieves the greater bias reduction in all 
model’s parameters compared to the two 
independent JMRE models and especially the 
simple random effects models which ignore 
the informativeness of the missing data. 
Moreover, empirical coverage probabilities for 
the fixed effects were close to the nominal 
95% level. Moderate violations of its 
distributional or drop-out assumptions had 
negligible effect on fixed effects estimation 
whereas their standard errors were marginally 
affected especially with non-skewed random 
effects distributions. 

 

The JMRE models have thus far been applied 
to data derived from a big collaborative 
multicohort study within the framework of the 
natural history of the HIV-1 infection. For a 
comparison of results obtained by the 
univariate JMRE model and by a simple 
random effects model see CASCADE 
Collaboration (2003). For an application of the 
bivariate JMRE model where one of the two 
variables is modelled through a piecewise 
linear random effects model see (Touloumi et 
al., 2004). Finally for a comparison of the 

univariate and bivariate JMRE models 
allowing for non-linear trends in one of the 
two modelled markers applied to real data see 
(Pantazis et al., 2005.)  
A drawback of the macros used to fit the 
bivariate or univariate JMRE model, in their 
current state, is their dependence on the 
structure of the model under consideration. 
Slight modifications are needed to fit models 
with different random effects structures or 
different explanatory covariates in the survival 
part of the model. 
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Simulated maximum likelihood estimation for multilevel models 
with binary outcomes 

Edmond Ng 
University of Bristol 

 

Introduction  
 
Multilevel models for discrete data are extremely 
useful in a wide range of social science and medical 
settings, where the principal outcome is discrete and 
the data are naturally clustered. In our example, we 
shall consider data on the use of prenatal care during 
pregnancies in a developing country where children 
are nested within families. 

1

{ ( | , , , )} ( , ) ,     (1)
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i i i
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g y u x z f u duβ
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= Σ∏∫

 
However, unlike the case where the response in 
Normally distributed, when (restricted) maximum 
likelihood estimates can be readily obtained, fitting 
such models is not straightforward. This is because 
the discrete distribution of the response means that 
the likelihood is computed by integrating a product 
of discrete and normal densities, which has no 
analytical solution (see Rabe-Hesketh et al., 2005) and 
requires numerical techniques that become very time 
-consuming when the number of random parameters 
becomes large. 
 
One option to tackle this problem is to use Monte-
Carlo methods. In this article we aim to demonstrate 
the use of the technique of Simulated Maximum 
Likelihood (SML) (McCulloch, 1997)  to fit multilevel 
models with binary responses.  
 
Background 
 
Consider two-level data consisting, for example, of 
the same number of repeated observations on 
individual subjects. Let yi denote the ith response from 
a subject, ),,1( Ii K= , and assume that responses 
from different subjects are independent. For the sake 
of simplicity the subscript, j, for subject, is omitted 
throughout. Let u denote a p-vector of subject-
specific random effects, assumed to follow a 
multivariate normal distribution ),0( ΣN , with 
density ),( Σuf . Conditional on subject-specific 
random effects and covariates, the two-level 
multilevel model assumes individual repeated 
observations are independent. They follow a discrete 
distribution, denoted by ),,,|( iii zxuyg β , 

),,1( Ii K= , where  
 

1[ | , ] ( )T T
i i i i ,E y u x x z uλ β−= +  

 

ix  is a (qx1) vector of covariates at the ith response 

with (qx1) coefficient vector ,β  z  is a (px1) vector 

of covariates for the random effects and 

i

λ  is the 
link function (e.g. logistic, probit, log). 
 
The likelihood for the I observations on an individual 
is then 
 

( ; , )L y β Σ

where the integral is over the p-dimensional normal 
distribution of the random effects. As already 
discussed, when the response model, g, is normal (and 
λ  is the identity link), the integral is tractable and 
(restricted) maximum likelihood estimates can be 
found. However, when the response is discrete, there 
is no closed form expression for the integral.  
One possibility is to obtain approximate maximum 
likelihood estimates. We replace the likelihood above 
by a quasi-likelihood  approximation (marginal or 
penalised), which can be maximised using the 
algorithm for normal models (Breslow and Clayton, 
1993; Goldstein and Rasbash, 1996). However, the 
quasi-likelihood parameter estimates are known to be 
downwardly biased towards zero when the data are 
‘sparse’ and/or the fitted probabilities are close to 
zero or one (Rodríguez and Goldman, 1995; Lin and 
Breslow, 1996).  The other is numerical or Monte-
Carlo integration, which we will describe below. 
 
Simulated Maximum Likelihood (SML) 
 
In SML Monte-Carlo integration is used to repeatedly 
evaluate the likelihood given by (1) and a search is 
carried out over plausible values of Σ and β  to find 
those which give the maximum. 
 
We now describe how this can be done using 
importance sampling (see, e.g., Ripley, 1987, p 122). 
Briefly, if a random variable X has a probability 
density function p(x), and q(x)  is a probability density 
function defined on the same support, then, for any 
function k, 
 

( ) ( )k x p x dx∫  

=

≅ ∑
1

1 ( ) ( )/ ( ),             (2)
H

h h h
h

k x p x q x
H

  
 
where ),( 1 Hxx K  is an independent identically 
distributed sample from the density , and the 
approximation becomes exact as  The 

( )q x
.∞→H
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probability density  is known as the importance 
density. 

( )q x

 

We can apply this idea to (1) as follows. Let Σ  be 
the quasi-likelihood estimate of  Choose as the 
importance density the multivariate normal density 

with mean 0 and covariance matrix , which we 
write as  Simulate a large number, H, of 
draws from this distribution, 

~
.Σ

Σ~

( , ).f u Σ%

).,,( 1 Huu K  Then 
applying the importance principle (2), 
 

( ; , )L y β Σ  
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This approximation can be used in two ways. First, 
we can obtain an estimate of the log-likelihood at the 
quasi-likelihood parameter estimates by setting 

),( Σβ  equal to the quasi-likelihood estimates 

 In this case the importance ratio will be 
equal to 1. 

).~,~( Σβ

 
Secondly, by repeatedly calculating the right hand side 
of this expression at various values of ),,( Σβ  we 
can search for the parameter values that maximise the 
simulated likelihood. Note that we do not simulate a 
new sample, ),,,( 1 Huu K  as the search progresses. 
Rather, we simulate a sample at the beginning, and, 
conditional on this, find ),( Σβ  to maximise the 
Monte-Carlo estimate. If a new sample is drawn, then 
the estimate of the log-likelihood will be slightly 
different at the same parameter values, and this 
generally will lead to the optimising software 
reporting an error. 
 
In order to search for the maximum, the optimising 
software requires the derivative of (3) with respect to 

),( Σβ . While this can be worked out numerically, 
this is prohibitively slow for practical use. We have, 
therefore, calculated the derivatives of the right hand 
side of (3), with respect to ),( Σβ , for a sample of 
size H. Expressions for these are given in Appendix 
A in Ng et al. (2006).  
 
Once the maximum has been found, the analytic 
expressions for the derivative can be used to compute 
the asymptotic variance matrix of the parameter 
estimates.  
 

Two-stage algorithm 
approach to obtain  
maximum likelihood estimates 
 
McCulloch (1997) reports that SML only works well 
if the importance distribution is fairly accurate. If this 
is not the case, then one option is to use the iterative 
procedure described in Appendix B in Ng et al. 
(2006). Although, given time, this should lead to the 
maximum likelihood estimates, it is too slow for 
practical use; further it ignores the fact that good 
starting values are available from the quasi-likelihood 
estimates. The most accurate of these are the 2nd 
order Penalised Quasi-Likelihood (PQL) estimates 
(Goldstein and Rasbash, 1996). Accordingly, we 
propose the following algorithm: 
 
Two-stage algorithm: 
1. Fit the model using second-order PQL to give 

estimates denoted  ).~,~( Σβ
2. Set the importance density Σ=Σ ~

I  and 
simulate ),,( 1 Huu K  from the multivariate 
normal distribution with covariance matrix ;IΣ  

3. Fixing ),,( 1 Huu K , find the values of ),( Σβ  
that maximise the Monte-Carlo estimate of the 
likelihood (3), using the derivatives in Appendix  
A in Ng et al. (2006). Report these as the 
maximum likelihood estimates. 

4. Use the analytical form of the first derivatives to 
obtain a numerical estimate of the second 
derivative of the log-likelihood function at the 
maximum. Invert this for an estimate of the 
variance matrix of the parameter estimates. 

 

Example 
 
In the following example we give the results of 
applying SML to the analysis of a data set and 
compare them against those from other alternatives 
such as EM-Laplace2 (implemented in HLM 
version 6.02) (Raudenbush et al., 2000), MCMC 
(implemented in MLwiN 2.02) (Browne, 2002) and 
numerical (adaptive) quadrature methods 
(implemented in GLLAMM (Generalised Linear 
Latent And Mixed Models) (Rabe-Hesketh et al., 
2005) in Stata 8.2 and proc NLMIXED in SAS 
release 8.  

Data  
 
In these data there is a binary response on 737 
children (level 1) from 479 families (level 2), and 
three covariates. Fifty six percent of families have 
only one child, making this a ‘sparse’ data set for 
which quasi-likelihood estimates are most likely to 
suffer noticeable bias.  
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We fit the following model, where the binary 
response from child i in family j is denoted  :ijY
 
logit {Pr ( 1)}ijY =  

0 1 2 3( ) 1 2 3 ,j ij ij iju X X Xβ β β β= + + + +  
 
where  is the family specific random effect with 

variance  Using (i) 2nd order PQL, and (ii) 
second-order PQL followed by simulated maximum 
likelihood, as in our two-stage algorithm above, gives 
the results in Table 1. 

ju

.2
uσ

 
The 2nd order PQL estimates of random and fixed 
parameters are consistent with the downward biases 
found in Ng et al. (2006,  Table 1). This is most 
marked for the variance, which is 14% smaller 
than the SML estimate. Further, the standard errors 
appear to be underestimated by 2nd order PQL. 
Again, this is most marked for the standard error of 
the estimate of  

,2
uσ

.2
uσ

Additionally, SML, like the methods based on 
numerical integration, gives an estimate of the log-
likelihood at the maximum, shown in the bottom row 
of the table above.  This is useful for comparing 
models. For example, refitting the model without X1 
gives –2 × log-likelihood = 793.0 (1 dp). The 
likelihood ratio test for the importance of X1 is thus 
793.0 – 791.4 = 1.6, which comparing with  is 
not significant at the 5% level. As expected, this 
agrees, to 1 dp, with the Wald test (0.581/0.466)2 
=1.6. Also the SML estimates for the fixed and the 

random parameters are very close to those from the 
two numerical integration methods, proc NLMIXED 
and GLLAMM. 

2
1χ

 
Relative to SML and NLMIXED, EM-Laplace2 
parameter estimates appear too small; in particular 
the random parameter,  is 45% less than the 
SML estimate. The reported deviance from EM-
Laplace2 is more than twice those from SML and the 
other two numerical methods, presumably because it 
includes an additional constant term from the 
likelihood. Changes in the deviance are similar, 
though.  

,2
uσ

The MCMC estimate for  is about 27% higher 
than the SML estimate.  The Gibbs sampling with 
Gamma diffuse priors (

2
uσ

α =0.001 and β =0.001) 
used in the MCMC run in MLwiN is based on a 
burn-in of 5,000 iterations and a chain-length of 
100,000. It was run for another 400,000 iterations to 
confirm the relatively large level 2 variance. The mean 
(SD), median and effective sample size (assuming 
successive values in chain independent) of the 
resulting chain are 3.511 (1.339), 3.126 and 2,014. 
Our results are probably due to the fact that, 
although the prior is diffuse, it gives zero weight to a 
zero variance, so that when there 
 is relatively little information in the data, both the 
posterior mean and median are pulled away from 
zero relative to the maximum likelihood estimate. 
Interestingly, the Bayesian Deviance Information 
Criterion, DIC, is fairly close to those from SML and 
the numerical methods. 
 

 
Table 1: Parameter estimates for the model for the data from PQL(2), SML, EM-Laplace2, MCMC, proc 
NLMIXED and GLLAMM 

 Estimation method 
 2nd order 

PQL 
2nd order PQL 
followed by 
SML(H=3000) 

EM-Laplace2 MCMC Proc 
NLMIXED 

GLLAMM 

Fixed 
parameters: 

      

0β  0.905 (0.244) 0.954 (0.275) 0.862 (0.209) 1.020 (0.299) 0.962 (0.276) 0.960 (0.274) 

1β  0.573 (0.445) 0.581 (0.466) 0.487 (0.418) 0.644 (0.491) 0.596 (0.471) 0.599 (0.470) 

2β  1.431 (0.218) 1.501 (0.258) 1.344 (0.208) 1.594 (0.282) 1.515 (0.259) 1.514 (0.259) 

3β  1.798 (0.351) 1.883 (0.408) 1.712 (0.316) 2.014 (0.449) 1.905 (0.410) 1.901 (0.408) 

Random 
parameters: 

      

2
uσ  2.402 (0.473) 2.800 (1.110) 1.546 (NA) 3.569 (1.399) 2.894 (1.087) 2.874 (1.073) 

–2 log-like. NA 792.0 2146.4 (DIC) 754.7 791.5 791.5 

Note: NA=Not available; DIC=Deviance Information Criterion; NLMIXED used adaptive quadrature;  
GLLAMM: 8 quadrature points were used. 
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Comparison with numerical 
integration methods in SAS 
 
To conclude, we present a further comparison of 
PQL followed by SML with the numerical integration 
method implemented in SAS. We found the latter 
considerably faster than Stata’s GLLAMM (see below 
for some timings) especially when there are many 
random effects in the model.  
 
We simulated data from a two-level logistic model, 
logit {Pr ( 1)}ijY =  

0 0 1 1( ) ( ) 1j j iu u jXβ β= + + +  

2 2 3 3( ) 2 ( ) 3 ,j ij j iju X u Xβ β+ + + +  
where  
 

[1111]β ′= , 1 to 3 ~ N(0,1)X X  and 
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There are 200 level 2 units with 1 to 19 level 1 units 
each. 
 
In the comparison, models with increasing numbers 
of random effects are fitted. Results from our ‘two-

stage algorithm’ are compared with those from proc 
NLMIXED. The optimisation technique used in 
proc NLMIXED is quasi-Newton and adaptive 
Gaussian quadrature is used to integrate over the 
random effects numerically. Parameter estimates 
and standard errors were very similar for both 
methods (results not shown). Table 2 shows the 
relative time taken to converge, the log-likelihood 
value, and absolute value of the largest gradient at 
convergence.  

 
The log-likelihood values are comparable between the 
two methods. The gradients at convergence are lower 
in NLMIXED. However, imposing a more stringent 
convergence criterion on SML would only be sensible 
if H were increased. Elapsed time goes up at an 
exponential rate in NLMIXED while we were able to 
achieve comparable accuracy with a more linear 
increase in time using SML. 
 
The similar parameter estimates, standard errors 
and log-likelihoods are encouraging. Since the 
relative increase in computational time for 
quadrature with increasing numbers of random 
effects is much faster, SML would appear to have 
the edge for models with a large number of random 
effects. We have not optimised our code in a low-
level language, so it is plausible that further 
optimisation could bring the baseline times for the 
two methods closer. In addition, as discussed 
below, SML has the potential to extend to non-
normal random effects and more than two levels. 

 

 

Table 2: Results from Simulated ML (H=5000) and SAS proc NLMIXED 
 Simulated Maximum Likelihood SAS proc NLMIXED 
Random 
parameters 
in model  

Time 
(minutes) 

Max. 
|gradient| 

Log-
likelihood 

Time 
(minutes) 

Max. 
|gradient| 

Log-
likelihood 

 1 3.4  0.004121 -1033.097 0.05 1.723e-6 -1033.021 
 3 4.9 0.017214 -1019.218 0.4 0.000719 -1019.143 
 6 30.0 0.006752 -1006.041 4.65 0.000437 -1005.950 
 10 86.1 0.004275 -995.822 32.35 0.00323 -997.042 

 

Finally, note that GLLAMM took 22 seconds, 
4.5 minutes and 93 minutes for the models with 
1, 3 and 6 random parameters. The model with 
10 random parameters had not converged after 
15 hours.   

Discussion  
 
We have demonstrated the application of SML 
to fit two-level models for binary responses. 
Our results show that SML performs 
comparably to the other methods, and has 

important advantages when the number of 
random parameters becomes large. 

 
Our experience confirms that of McCulloch 
(1997), that SML needs good starting values to 
converge to the maximum likelihood estimates. 
Using SML after 2nd order PQL therefore seems 
sensible. Our code, written  in Matlab, can be 
generalised to include other distributions 
(Poisson, negative binomial) and link functions. 
The code is available from the website of the 
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journal, Statistical Modelling 
(http://stat.uibk.ac.at/SMIJ).  
 

Finally, note that the SML approach is 
complementary to fitting similar models using a 
Bayesian approach, using MCMC methods in 
MLwiN, WinBUGS (Spiegelhalter et al. 1999) or 
other Bayesian software. Advantages of the SML 
approach are that it is unnecessary to specify 
priors for variance terms, which even if notionally 
‘uninformative’ may turn out to have unforeseen 
effects (see Table 1); that a likelihood is available 
for testing, and that Monte-Carlo error can be 
relatively straightforwardly addressed (e.g. Booth 
and Hobert, 1999). 
 
This article is an abridged version of Ng et al. 
(2006). 
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