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Forthcoming Workshops 

Multilevel Discrete-time Event 
History Analysis workshop 
 
10-11 February 2005.  A free two-day 
Multilevel Discrete-time Event History 
Analysis workshop will take place at 
Institute of Education.  The workshop is 
now fully booked, with priority given to 
researchers who intend to use event 
history analysis in their own research. 
Materials will be available to download 
after the workshop from: 
http://multilevel.ioe.ac.uk/team/mmmpceh.html
#workshop

 

 
Multilevel Modelling Workshop 
 
6-8 April 2005.  A three-day 
introductory workshop in multilevel 
modelling using MLwiN will take place 
at University of Bristol. 
Enquiries to: Theresa Andrews, School 
of Geographical Sciences, University of 
Bristol, University Road, Bristol BS8 
1SS, United Kingdom  
Tel: +44 (0) 117 954 5977 
Fax: +44 (0) 117 928 7878 
Email: theresa.andrews@bristol.ac.uk
 

If you plan to run any workshops using 
MLwiN, please notify Amy Burch 
a.burch@ioe.ac.uk and she will 
advertise these workshops on the 
multilevel web site. 
 
 
Publications reminder 

Don't forget to send us any details of 
publications in multilevel modelling for 
the next newsletter. 
 
 
 
 
 

Also in this issue 
Fifth International Amsterdam 

conference on "Multilevel Analysis" 
and a Workshop on multilevel latent 

class models 
The Role of the Hausman Test and 

whether Higher Level Effects should 
be treated as Random or Fixed 

Multiple Imputation using MLwiN 
A Review of Multilevel Software 

Packages 
Review of ‘Multilevel Modeling.  

Methodological Advances, Issues and 
Applications.’ 
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Fifth International Amsterdam 
conference on "Multilevel 
Analysis" and a Workshop on 
multilevel latent class models 

The 5th International Amsterdam 
Multilevel Conference is going to be 
held on 21-23 March 2005; the first two 
days with lectures, the third day with a 
workshop that will be taught by Jeroen 
Vermunt on multilevel latent class 
models.  There are at present two 
invited presentations: Harvey Goldstein 
on “Multilevel Structural Equation 
Modelling via MCMC” and Jeroen 
Vermunt on “Multilevel Latent Class 
and Mixture Models”. 
 
The conference will be about all aspects 
of statistical multilevel analysis: theory, 
software, methodology, and innovative 
applications.  It is organized by Joop J. 
Hox and Cora Maas (University of 
Utrecht) and Tom A.B. Snijders 
(University of Groningen). 
 
The conference and course will be held 
in the Amsterdam ARENA conference 
centre, which is close to the centre of 
the city and easy to reach by public 
transport. 
 
Conference: your contributions 
 
You are invited to submit abstracts for 
contributed presentations. 
 
Abstracts of 10 to 50 lines of text can be 
submitted until February 15, 2005.  
Those who submit an abstract will be 
notified before February 21 about the 
acceptance for presentation at the 
conference. 

Abstracts should be sent as an ASCII 
file (not in a different word processor 
format!!) by email to 
multilevelconference@mail.fss.uu.nl. 
 
Abstracts can also be submitted by 
postal mail to: 
Multilevel Conference 
c/o R. Holdinga 
Dept. of Methodology & Statistics 
FSW, UU 
P.O.B. 80140 
NL-3508 TC Utrecht 
The Netherlands 
or by fax to: 
+ 31 30 2535797 
 
Information 
 
Further information about the 
conference is available on the 
conference web site. 
http://www.uu.nl/uupublish/defaculteit/
organisatie/capaciteitsgroep/methodenle
erenst/methodenleerstat/multilevelconfe
r/34527main.html
 
A registration form is also available at 
this web site.  Further information can 
be obtained from j.hox@fss.uu.nl or 
c.maas@fss.uu.nl 
 
Prices 
 
The conference fee is € 250 and the 
price for the course is € 100.  However, 
people who pay before 1 February 2005 
will only pay € 200 and € 75, 
respectively.  For participants from 
Eastern Europe or Third World 
countries, a further € 50 reduction in 
fees is possible.  Coffee and tea are 
included in these prices. 
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The Role of the Hausman Test and whether Higher Level 
Effects should be treated as Random or Fixed 

Antony Fielding 
University of Birmingham 

a.fielding@bham.ac.uk
 

Introduction 
 
For expository purposes, and using 
standard notation, consider a basic two 
level linear model of the form: 
 

ijjijij euXy ++= β  
 
Initially the vector of coefficients β  is 
regarded as fixed.  The terms ju  
represent the effect of the j’th  level-two 
unit (panel units in many econometric 
applications) in shifting the intercept.  
The central question is whether these 
terms should be considered fixed or 
random?  In the fixed case, they are 
handled using fixed coefficients of 
dummy variables for level-two units.  
Under classical regression assumptions, 
a computationally efficient variant of 
OLS is an appropriate estimation 
procedure.  In the random case the 

ju are treated as i.i.d.  drawings from 
some population of effects, often 
assumed 2(0, )uN σ .  For this model, 
diverse estimation procedures are 
available.  However, the main focus 
here is feasible generalised least squares 
and in particular the iterative form  
(IGLS).  One of the crucial assumptions 
for consistent estimation of β  is that 

ju  are uncorrelated with the covariates 
X of the model.  It is as a test of this 
assumption that the Hausman procedure 
has been used.  The validity of the 

assumption is of no consequence for the 
consistency of OLS in the fixed case, 
since the level-two effects are partialled 
out in this process.  
 
Research contexts 
 
Design based inference criteria in 
traditional experimental frameworks 
through analysis of variance, and also 
for complex multi-stage sample survey 
data are well established.  Here fixed ju  
are usual if the level-two units are 
treated as pre-determined groupings and 
restricted inferences for those units only 
are of interest.  On the other hand, if 
generalisation is required beyond the 
units in the data to the broader 
population from which the units have 
been (randomly) drawn then it may 
seem appropriate to use random ju . 
 
Model based inference can lead to 
somewhat different perspectives, which 
have been the basis for developments of 
multilevel modelling methodology.  It is 
not unusual for instance, to use random 
effects models where the set of level-
two units are fixed by design or arise 
naturally from routine databases 
including where a full finite population 
of level-two units is present in a 
database.  This is quite common, for 
example, in educational progress studies 
where a full set of schools or 
universities at a point in time is under 
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study.  The desire to generalise and to 
acknowledge uncertainty not explicitly 
modelled, underpinned by an appeal to 
the superpopulation ideas of model 
based inference, seem compelling here. 
 
It seems then that the criteria on which 
to base the central decision are not quite 
so clear-cut as an initial focus on design 
considerations might imply.  
Considerations seem to extend beyond 
these.  However, there is a criterion 
which links design based and model 
based inference and seems to synthesise 
them: de Finetti’s notion of 
exchangeability.  This, according to 
Hausman  (1978), is necessary and 
sufficient for the random effects 
specification to be justified.  Briefly, the 
notion says that, given a set of sample 
units, we can consider exchanging any 
pair of the ju without changing the 
subjective distributional characteristics 
of the model.  Hausman refers to these 
two kinds of inference as logical as 
opposed to statistical questions, which 
focus on properties of various types of 
estimator leading naturally from 
whether to use fixed or random effects 
models.  An appeal to exchangeability 
might resolve some issues, which focus 
on the model itself and the context of its 
application.  However, there may be 
circumstances where a random effects 
specification seems appropriate on these 
logical grounds but estimation might 
proceed by conditioning on the 
particular sample of units and their ju .  
This is equivalent to adopting a fixed 
effects model.  It is these sorts of 
matters that lie behind the Hausman 
procedure, which will shortly be 
discussed. 

There are other practical issues, which 
subtly touch on the decision though 
these are not often made explicit in the 
literature.  In many econometric 
applications the focus is on models 
where the ju  are treated as nuisance 
factors, the X are all level-one variables, 
and the main interest is good estimation 
of the β .  If this is the case then a 
decision may be made between the 
conditional estimation using a fixed 
effects specification and a random 
effects specification on other pragmatic 
grounds.  Greene (2003) discusses 
many of these.  Fixed effects for ju  
might be avoided, for example, if there 
were a large number of them since each 
requires a separate parameter to 
estimate.  This is implicit even if 
deviations from level two means were 
used, as for example in panel studies, 
since degrees of freedom on which 
standard error estimates are based are 
then effectively small.  If there were 
few level-one observations per level-
two unit this might lead to poor 
precision.  On the other hand, with very 
few level-two units a fixed effects 
specification might be preferred since 
the inferences about level-two variation 
might be weak.  An extremely 
important consideration here though is 
the restriction of a fixed effects model 
to situations where no level-two 
variables are present in X.  If they were 
then they are confounded with fixed 

ju and the parameters of the model are 
not identifiable.  It is only a random 
effects specification that can handle 
level-two covariates and the extent to 
which level-two covariates can explain 
level-two variation.  It is clear that fixed 
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effects specifications for ju  are 
unsuitable for many of the complex 
questions to which multilevel 
methodology has been addressed. 
 
Hausman test 
 
The Hausman (1978) test procedure is 
ubiquitous in econometric software and 
applications, particularly to panel data, 
to the extent that it is often interpreted 
as an automatic resolution of the 
specification decision we have been 
examining.  It is, however, limited to 
situations where logic and context can 
leave the decision open.  Thus, for 
example, models that entertain level-
two covariates cannot fall within its 
remit. 
 
Hausman suggests a very general test 
that can be applied to a wide variety of 
possible model mis-specifications.  Its 
application to the current question is but 
one particularisation.  Holly (1982) also 
notes that it is rather curious since there 
are no stated parametric restriction 
hypotheses underlying the test.  The 
arguments are also conducted in 
asymptotic terms.  The idea is to 
compare two possible estimators of β .  

0β̂ will be asymptotically consistent 

with 0
ˆlim ββ =p  and efficient under a 

certain set of specifying assumptions.  
This will be the case for a GLS in the 
fully specified random effects model 
discussed above providing the ju are 
uncorrelated with all of the variables 
defining .  There may also be 

another estimator 
ijX

1̂β  such that 

1̂lim ββ =p  regardless of whether the 
above specifying restriction is valid or 
not.  This is the case in the 
circumstances under consideration for 
OLS estimates 1̂β  of a fixed effects 
model, which equivalently yield 
estimates of β  conditioned on sample 

ju .  We might, however, expect 1̂β  to 

be less efficient than 0β̂ .  The technical 
details of the procedure and derivation 
of the test statistic are given fully in the 
original paper and in standard 
econometric texts.  Broadly however, 
the argument centres on whether the 
sample evidence does or does not 
support 0

ˆlim lim 1̂β β=p p , as it will if 
the specifying restriction is valid.  With 

1 0}ˆ ˆ{β β−=q  and consistent estimators 

of the variances of 1̂β  and 0β̂ , the 
Hausman test statistic 

 is shown to have 
asymptotically a null 

1
1 0 )ˆ ˆˆ ˆ( β β −−′ qq Var Var

2χk  distribution, 
where k is the number of elements in 
β .  If it leads to the conclusion that the 

ju  are not uncorrelated with covariates 
then a fixed effects specification and 
OLS estimation is used.  It may be 
noted that such a decision does make a 
real difference in the practical 
estimation of β .  Many contrasting 
applications in the econometrics 
literature, including an original one by 
Hausman, point to sharp differences in 
estimates from the two approaches even 
in situations where they both may be 
expected to be consistent.  
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It is clear that the Hausman test is 
simply a diagnostic of one particular 
assumption behind the estimation 
procedure usually associated with the 
random effects model.  This may be 
fine in the restricted situations in which 
such a diagnostic is relevant.  However, 
it is equally clear that it does not 
address the decision framework for a 
wider class of problems where the 
logical status of the effects may be 
relevant.  Indeed this was recognised by 
Hausman (1978).  That it has become 
an almost routine procedure purporting 
to resolve this decision has, however, 
led to many reservations.  Detailed 
work on these broader reservations is, 
however, limited.  The aim of the rest of 
this article is to summarise what has 
been done, and to highlight areas where 
further work would be fruitful.  
Ongoing work by the present writer and 
colleagues will be reported at a later 
date. 
 
Limitations of the Hausman test  
 
The reservations uncovered in the 
literature fall into three broad groups.  
Firstly, even if attention is restricted to 
the use of Hausman in its diagnostic 
sense, is it a good diagnostic for these 
purposes?  Secondly, what is lost in 
terms of model building and 
development to answer important 
substantive questions if its use leads to 
the adoption of a fixed effects 
framework?  Thirdly, even if it was an 
acceptable diagnostic of the 
inconsistency of GLS, why are 
available consistent procedures not used 
more frequently? 
 

Skrondal and Rabe-Hesketh (2004) is 
one of the few general texts on 
modelling which address the first 
perspective.  They point out that the test 
appears sensitive to a variety of mis-
specifications other than the one under 
consideration.  Thus a significant value 
for the test statistic may be misleading 
as a diagnostic for this mis-
specification.  Some limited simulations 
by the present writer indicate that 
dropping a key covariate in the model 
can have this effect but there is scope 
for deeper work.  They also point out 
that the null distribution might not be 
well approximated by the asymptotic 
chi-square in finite samples.  This can 
lead to an overstated size of test.  Long 
and Trivedi (1993) have also 
commented on its poor power as a 
diagnostic in many typical multilevel 
structures.  Some aspects of this have 
been confirmed more recently by 
Ejrnaes and Holm (2004).  Concern has 
also been expressed at the possible 
narrowness of focus on consistency of 
estimators.  There is some thought that, 
due to its efficiency, a random effects 
GLS estimator may have advantages 
even if it is slightly biased and 
inconsistent.  Work is obviously 
required on all these questions but there 
is a certain sufficiency about the doubts 
they raise. 
 
Turning to the second group of 
reservations, there are examples in the 
literature where the problem has been 
finessed by switching from a fixed 
effects to a random effects model 
midway through an application.  
Fielding (2004) discusses one such 
application.  There is also a sense in 
which Hausman is used as if the model 
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under consideration is finished in that 
the covariates are pre-determined and 
all that remains is the question of how 
to treat the ju .  However, in model 
exploration we might suppose that 
Hausman on a base model has led to 
adoption of a fixed ju framework.  We 
know that fixed effect model estimates 
of coefficients have different precisions 
than for the random scenario.  In a 
stepwise approach to model building 
with strict criteria governing the 
addition of covariates this might lead to 
a fixed effects model excluding some 
which might have been included in a 
random effects model.  Differential 
effects of covariates between level-two 
units is one type of model development 
that it is frequently desired to explore.  
This can be accommodated in a random 
effects framework with the addition of 
one or more variance parameters.  In a 
fixed effects framework degrees of 
freedom might be stretched if large 
numbers of fixed interaction effects 
between dummies and covariates are 
included.  Implicitly in Hausman 
applications there is no corresponding 
test of the fixed effects model, which 
becomes a default option, which may in 
itself not be the correct specification.  
Model building strategies, which, at 
each stage of refinement, include an 
alternative decision making framework, 
might be more suitable.  One possibility 
might be a DIC criterion (Spiegelhalter 
et al, 2002) where the inclusion of the 
effective number of parameters might 
favour random effects. 
 
The last group of reservations really 
centres on why we should drop the 
flexibility of the random effects model 

if it is an appropriate specification.  The 
diagnostic test may question the key 
specifying assumption necessary for 
desirable properties of its usual 
estimator.  However, there are other 
estimators, which accommodate this.  
For instance, with correlation between 

ju  and specific level-one covariates, 
one could extend the random effects 
specification by including level-two 
means of these covariates.  Snijders and 
Berkhof (2004) have demonstrated that 
GLS will then yield consistent 
estimators of β  in the original model.  
This extension is equivalent to the 
auxiliary regressions and testing the 
additional coefficients suggested by 
Hausman as an easy way of 
implementing his test.  There are 
however, possible objections: the 
addition of context effects changes the 
characterisation of level-two variation 
when for substantive reasons such 
adjustments might not be desired in the 
study of level-two effects themselves.  
However, the consistent conditioned 
iterative generalised least squares 
procedure (CIGLS) developed by Rice 
et al. (1998) exploits these ideas without 
departing in this way from the 
specification of the original model.  The 
auxiliary regressions form an estimation 
step in an adaptation of an IGLS 
procedure, which can retain the original 
characterisation of level-two 
heterogeneity.  
 
Consistent instrumental variable (IV) 
estimation of various forms have also 
been proposed.  The main difficulty 
here has been finding suitable 
instruments and the recognition of low 
precision of IV in many circumstances.  
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Hausman and Taylor (1981), however, 
suggest that suitable instruments may be 
formed from transformations of the 
covariates themselves.  Arellano and 
Bover (1995) discuss a general 
framework for IV estimators.  Spencer 
and Fielding (2002) provide some 
evidence that IV estimators can be 
relatively precise if instruments are well 
chosen.  Monte Carlo Markov Chain 
estimation also offers further 
possibilities.  Congdon (2004) 
comments that it can accommodate ju  
correlated with X quite flexibly.  
 
In conclusion, the general lessons 
appear to be that the widely held belief 
that a significant Hausman test implies 
that a random effects framework be 
abandoned, is somewhat premature.  
This paper presents some of the issues 
as a stimulus to further debate and work 
on what is really quite a complex issue.  
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Introduction 
 
Missing data are ubiquitous in social 
science research.  They introduce 
ambiguity into the analysis beyond the 
familiar sampling imprecision.  
However, in analysing partially 
observed datasets, the aim is still to 
produce a valid analysis.  In this 
context, valid means that point 
estimates home in on the true values as 
the sample size increases, confidence 
intervals achieve their nominal coverage 
and inferences are correct.  However, 
when data are missing, routine analyses 
are only valid if certain assumptions are 
made. 
 
The key to understanding when 
analyses are going to be valid lies in the 
relationship between the process by 
which data become missing and the 
observed and unobserved data.  As 
described by Rubin (1976), if the 
process by which data become missing 

is unrelated to any observed or 
unobserved data, missing data are said 
to be ‘missing completely at random 
(MCAR)’.  If the process depends on 
the data, but conditional on the 
observed data does not depend on the 
unobserved data, missing data are said 
to be ‘missing at random (MAR)’.  If 
the process depends on the unobserved 
data, even after accounting for the 
information in the observed data, 
missing data are said to be ‘not missing 
at random (NMAR)’.  The two 
important points to note are (i) on the 
basis of the observed data alone, it is 
not possible definitively to say which of 
these three processes cause the data to 
be missing, and (ii) if the data are 
MCAR or MAR then likelihood based 
methods (such as used in multilevel 
models) can proceed without explicitly 
modelling the dropout mechanism. 
 
When data are missing, it is generally 
inappropriate to restrict analysis to units 
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with complete observations.  This is 
only valid under the restrictive MCAR 
assumption, and even then can waste 
information.  An intuitively attractive 
approach is to use the relationship 
amongst the observed variables to 
impute a plausible value for the missing 
variables.  Although this can reduce 
bias, such a single imputation 
underestimates the variance of 
estimators.  This led Rubin (1987) to 
propose multiple imputation, whereby a 
number of ‘complete’ datasets are 
formed by drawing the missing data 
from the estimated distribution of the 
missing given the observed data.  Each 
of the resulting ‘complete’ datasets can 
then be analysed in the usual way.  The 
attraction of the approach is that the 
results of these analyses can be 
combined using simple rules to obtain 
valid point estimates, variances and 
hence inferences.  Furthermore, the 
rules for combining the imputations are 
the same in almost every setting. 
 
Below, we briefly review the details of 
multiple imputation.  We then describe 
MLwiN macros that implement multiple 
imputation, and give an illustration of 
their use, before drawing some 
conclusions. 
 
Brief review of multiple imputation 
 
Suppose that the data Y can be split into 
observed and missing parts denoted by 
Y=(YO, YM).  Note that different units 
will typically have different 
combinations of missing and observed 
variables.  Let the quantity we are 
interested in calculating from the data 
be Q=Q(YO, YM), for example a 
regression coefficient or a variance 

term.  Ideally, we want to estimate the 
distribution of 
 

.)|(),()|( MOMMOO dYYYfYYQYQf ∫=
 
Multiple imputation assumes this 
distribution is approximately Normal, 
so that it can be described by its mean 
and variance.  These are estimated as 
follows.  First we note that under 
MCAR or MAR, regression models, in 
which only the responses are missing, 
give valid parameter estimates.  We 
therefore set up a (typically multivariate 
response) regression model in which all 
the partially observed variables are on 
the left-hand side.  Fitting this then 
gives a valid estimate of the distribution 
of YM | YO.  This model can be fitted by 
maximum likelihood or in a Bayesian 
framework, with uninformative priors.  
Having done this, we can then impute 
the missing data for partially observed 
units by drawing them from the 
distribution estimated by this model.  
This can be done a number of times, 
giving rise to a series of imputed 
datasets, each of which can be analysed 
as the original complete dataset was 
intended to be.  
 
Note that having only the partially 
observed variables on the left-hand side 
is not necessary but it makes 
computation quicker.  Under 
multivariate normality, the joint 
distribution of the missing and observed 
we estimate will be the same if we have 
all the variables on the left-hand side 
and only the constant on the right-hand 
side.  Thus, this method should work if 
a substantial majority of the variables 
have some missing data. 
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Suppose the analysis of each of K 
imputed datasets gives rise to estimates 
Q1,Q2,...QK, with standard errors σ1, 
σ2,... σK.. Then the mean of the 
distribution of Q, denoted  is 
approximated by the average of the 
estimates from the imputed datasets: 

MIQ
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The formula for the variance of the 
distribution of Q is more complicated; 
to overcome the drawbacks of single 
imputation it takes into account both 
between and within imputation 
components of variance.  Using 
conditional expectations, we can 
estimate this in terms of the Qk’s and 
σk’s: 
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where the term (1 + 1/K) in the second 
expression in the second line 
compensates for the finite number of 
imputations. 
 
Then, valid tests of hypotheses Q=Q0 
are obtained by referring 
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For multiple imputation to be valid, a 
number of conditions must hold.  First, 
the missing data must be MAR.  While 
multiple imputation can be applied if 
data are NMAR (where a joint model of 
the missingness mechanism and the data 
are required), this is not entirely 
straightforward, although it is possible 
to implement in MLwiN.  Second, the 
imputation model must include all the 
structure that we wish to investigate in 
the model of interest (i.e. in the model 
we intended to fit to the full data).  So, 
for example, covariates and interactions 
that are to be investigated in the full 
dataset must be included in the 
imputation model, otherwise the 
imputed observations will not have this 
structure.  Thirdly, and most 
importantly in this context, the 
imputation models must have the right 
variance structure.  If the data are 
multilevel, the imputation model must 
be too. 
 
Macros for multiple imputation in 
MLwiN 
 
We have already commented that if a 
dataset is multilevel, then the 
imputation model should be multilevel 
too.  Thus MLwiN  (Rasbash et al., 
2004) is a natural tool.  This is 
especially so as MLwiN can fit a range 
of Bayesian models using Markov 
Chain Monte Carlo, and draw samples 
from the posterior for missing response 
variables (Browne, 2004, chapter 17).  
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We have written a macro that uses these 
MCMC routines in MLwiN and enables 
multilevel multiple imputation to be 
performed semi-automatically, as part 
of the analysis process.  A user can set 
up and fit a model in the equations 
window, and then invoke the macro 
from the command interface window.  
The macro does the following: 
 
1. Records the model of interest  
2. Sets up a multilevel multivariate 

imputation model with the 
partially observed variables as 
responses, and fits this model in a 
Bayesian framework with 
uninformative priors using 
Markov Chain Monte Carlo 
methods 

3. Imputes a number of completed 
datasets 

4. Fits the model of interest to each 
of these datasets 

5. Combines the results, as set out in 
the previous section 

6. Presents the results in the 
equations window. 

 
The user has the option to specify the 
number of imputations, the number of 
updates of the sampler between 
imputations and whether the 
imputations are single or multilevel.  In 
addition, the user can suspend the 
macros before the imputation model is 
fitted, and add variables so that the 
imputation model is more general than 
the model of interest.  The multilevel 
imputation model has an unstructured 
covariance matrix at each level, to 
capture the multilevel structure of the 
data and draw appropriate imputations. 
 

For a more detailed introduction to 
multiple imputation, see the ‘getting 
started’ section of our website 
(www.missingdata.org.uk) or Schafer 
(1997, 1999). 
 
Example 
 
Consider the following data, extracted 
from Blatchford et al. (2002).  Note this 
dataset is not representative of the 
project dataset.  We have data on 4873 
pupils from 172 schools, and are 
interested in the relationship between 
literacy score at the end of reception 
year (variable nlitpost) on literacy 
score at baseline (variable nlitbase), 
eligibility for free school meals 
(variable fsmn: 1=eligible), term of 
entry (variable tentry: 1=Spring or 
Summer, 0=Autumn) and gender 
(variable gend: 1=male).  Both 
baseline and end of reception literacy 
score variables are standardised 
versions of the test results which are 
approximately Normal. 
 
Clearly, the dataset is multilevel, with 
pupils nested within schools.  For 
brevity, we focus on the coefficient for 
gender.  The results from the full data 
are shown in the first column of Table 
1.  After adjustment for the other 
variables, gender is significant, with 
boys doing worse than girls.  Note that 
ignoring the school level (which is 
highly significant) in the modelling 
leads to a marked inflation in the gender 
effect (second line of Table 1). 
 
We now make some of the pre-
reception literacy observations missing, 
according to the following rule: 
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) meals]} school freefor  eligible 1[pupil
 male] is pupil[15.0{

exp1/(1) Pr(Observe
−−

+=
nlitpost

nlitpre
 

 
In other words, for each pupil, we 
calculate this quantity, say p.  We then 
generate a uniform random variable, u, 
on [0,1].  If u>p we set the pupil’s 
nlitpre score to missing. 

The resulting dataset has only 3132 
complete observations (65% of the 
total) from 171 schools.  Fitting the 
model to these data gives the equations 
window shown below.  The coefficient 
for gender is reproduced in the third 
row of Table 1; it is biased down by 
~58%, and no longer significant. 

 

 
 
 
We now use the multiple imputation 
macro to impute the missing data under 
MAR.  In the command interface, the 
imputation options can be viewed by 
typing obey mi_options.  
 
We will carry out 10 imputations, as 
this is usually enough to make the 
fraction of the variance of the 
imputation parameter estimates due to 

simulation acceptably small (see 
Schafer, 1999).  Further, we update the 
sampler 500 times between each 
imputation.  As we have mean centred 
all our variables, this should be more 
than sufficient to make the imputations 
independent.  We will carry out 
multilevel imputations.  Setting these 
options gives: 
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The multiple imputation macro is then 
started by typing obey mi in the 
command interface.  The macro takes 
35 seconds on a 2.5Ghz PC.  The 

imputation model, which is set up 
automatically by the macro, is as 
follows: 
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Although only one variable has missing 
observations, the model is multivariate 
as MLwiN needs a fully observed 
variable on the left-hand side; the 
program chooses this to be free school 
meal eligibility.  For both responses, the 
model has components of variance for 
school and pupil, together with 
covariances between them. 
 

The imputation model can be displayed 
by selecting the appropriate option 
before starting the imputation process.  
Otherwise, it is only displayed 
fleetingly, and the macro proceeds 
automatically, displaying the results in 
the equations window, which is 
reproduced below.  The coefficient for 
gender is also shown in Table 1. 

 
 
The between and within imputation 
variances are stacked in columns named 
fp_withvar and fp_betvar.  From these 
we can calculate the degrees of freedom 
for the t-distribution for testing the 
hypothesis about gender; this comes to 
64.  The two-sided p-value for gender is 
thus 0.03.  Using the quantiles from the 
t-distribution we can calculate the 95% 
confidence interval shown in Table 1.  
Multilevel multiple imputation has 
moved the estimate for gender very 
close to the estimate for the fully 
observed data, but reduced the 

significance as a consequence of the lost 
information. 
 
Finally, for comparison, we present the 
results for single level imputation.  
These are obtained by setting b24=1 
and re-running the macro.  The results 
are shown in the bottom row of Table 1.  
We see that the coefficient for gender is 
now much smaller; further the p-value 
is 0.005, much more significant.  Note 
that the coefficient for gender is now 
much smaller than for the multilevel 
analysis of the fully observed data, but 
much closer to that for the single level 
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analysis for the fully observed data.  
The same goes for the confidence 
interval for gender.  We conclude that 
when data are multilevel, using a 

multilevel imputation model is 
important to avoid misleading 
conclusions. 
 

 
Table 1. Estimates of the (adjusted) effect of gender on literacy at the end of 
reception year, for multilevel and single level analyses of the full, partially 
observed and imputed datasets. 
 
Model Estimated effect of 

gender 
Standard error 90% confidence interval 

Full data (n=4873) -0.053 0.017 (-0.086, -0.020) 
Full data (n=4873), 
single level model 

-0.086 -0.021 (-0.127, -0.045) 

‘Observed’ data 
(n=3132) 

-0.022 0.022 (-0.065, 0.021) 

Multiple imputation -0.050 0.023 (-0.096, -0.004) 
Single level 
multiple imputation 

-0.073 0.025 (-0.123, -0.022) 

 
Finally, we note that this analysis has 
also been carried out in WinBUGS, 
which gave very similar answers, but 
required a lot more programming and 
data manipulation. 
 
Discussion 
 
The mi macro provides users of MLwiN 
with a general framework for analysing 
datasets with missing observations 
under the assumption of missing at 
random.  For models where all the 
variables needed for imputation are 
included in the model of interest, the 
macro can be used semi-automatically, 
as described above.  While users do not 
require a deep knowledge of multiple 
imputation to do this, this is obviously 
no substitute for carefully looking at the 
data before modelling.  In particular, the 
user will often want to include 
covariates, or interactions, in the 
imputation model, which are not in the 

model of interest.  The macros allow 
this to be done; there is an option to 
suspend the macro once the model of 
interest has been set up.  The imputation 
model can then be generalised by the 
addition of extra terms.  Additional 
variables which themselves have 
missing values should be added to the 
response (left-hand side).  Additional 
fully observed variables should be 
added to the explanatory variables 
(right-hand side).  The macro can then 
be resumed to automatically draw the 
imputations and analyse the imputed 
datasets.  Full details are given in the 
instructions available at 
www.missingdata.org.uk
 
The example shows the importance of 
using a multilevel imputation model 
when the data are multilevel.  Of the 
other software currently available for 
multiple imputation, SAS PROC MI, 
and Schafer’s NORM routine (See 
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multiplep-imputation.com) perform 
single level imputation only; they are 
equivalent to specifying a single level 
imputation in our macro.  Schafer’s 
PAN package is a stand alone Windows 
program suitable for repeated measures 
data, that uses a similar hierarchical 
structure to the mi macro; it is not 
however clear from the website whether 
it copes with more than two levels.  By 
contrast, the macro described here will 
handle up to four levels, and both 
imputation and analysis are combined in 
one package.  Further, the mi macro 
works by calling sub-macros, which can 
be exploited by experienced users for 
analyses where automatic use of the 
macro is inappropriate.  Automatic use 
of the macro will be inappropriate 
when, for example, the model of 
interest has linear and quadratic terms 
in, say, X, and X has missing 
observations.  This is because the macro 
would put X and X2 on the left hand 
side of the imputation model, which 
would then fail to fit.  What is needed is 
to impute X, then calculate X2 for each 
imputed dataset and fit the model of 
interest to this.  
 
Note that currently the mi macro only 
works for Normally distributed data.  
Schafer (1997, Ch. 6) recommends 
transforming non-Normal quantitative 
variables to approximate Normality 
before imputation, and imputing binary 
or ordinal data under the Normal model 
before rounding off to the nearest 
category.  His simulations suggest that 
under certain circumstances multiple 
imputation is fairly robust to model 
misspecification.  Handling non-Normal 
data in this way is an option in the 
current framework but the macro 

components cannot be used 
automatically in this case.  Currently, 
we are developing more appropriate 
methods for handling discrete data. 
 
As discussed in the introduction, the 
possibility that the data are not missing 
at random (NMAR) can never be ruled 
out.  Thus, it is often appropriate to look 
at the sensitivity of the analysis to 
NMAR.  We are currently developing 
an additional macro, which would use a 
weighting approach (Carpenter and 
Kenward, 2005) to test the robustness of 
conclusions to certain forms of NMAR. 
 
The macros described will be available 
from our website (missingdata.org.uk) 
from the beginning of January.  They 
require MLwiN release 2.0, and two 
additional patches, which can also be 
downloaded from the website. 
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A Review of Multilevel Software Packages 
Harvey Goldstein 

Institute of Education, University of London 
 
In 2002 the Centre for Multilevel 
Modelling decided to undertake a 
review of existing statistical packages 
that had facilities for multilevel 
modelling.  The review was co-
ordinated by Min Yang and it 
commissioned a number of people with 
extensive experience of multilevel 
modelling to undertake these reviews 
and the Centre is extremely grateful to 
those who gave their time to do this. 
The aim was to place each review on 
the Centre’s website together with a set 
of comparative summary tables.  A 
number of datasets were chosen to 
cover the main types of user models and 
each model was run with each package 
to evaluate numerical accuracy and 
timings. 
 

The full results of the review are 
available from: 
http://multilevel.ioe.ac.uk/softrev/index.html
although there are still a few gaps 
waiting to be filled. 
 
The datasets covered the following 
areas: 
• Two and three level Normal 

response models 
• Random coefficient models and 

heterogeneous variance models 
• Repeated measures models 
• Two level binary response models 
• Two level ordered category 

response models 
• Cross classified models 
 
Not all the packages could handle all 
the dataset types and where additional 
data structures could be modelled, e.g. 
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structural equation models, these are 
mentioned.  In addition, authors of 
reviews were invited to respond if they 
wished with their responses placed 
alongside the reviews.  In the event, 
none has to date taken up this offer. 
 
In terms of timings, because the reviews 
were carried out on different machines 
we have had to apply conversion factors 
so that there will be some uncertainty 
over these.  Nevertheless, while most 
packages performed similarly for most 
datasets there were certain notable 
differences.  All of the packages, except 
WINBUGS, use a likelihood based 
algorithm so that timings for these are 
comparable.  For a simple three level 
variance components model (on a 433 
MhZ Pentium II PC) AML took over 10 
hours compared to just over an hour for 
WINBUGS, a few minutes for SAS and 
SPSS and a few seconds for the 
remainder!  For the binary response 
data, different procedures were used: 
those using PQL methods took between 
one second (MLwiN and GENSTAT) 
and one minute (SAS).  Those using 
maximum likelihood varied between 
about three seconds (EGRET) and a 
minute (MIXOR), and WINBUGS took 
just under 45 minutes.  For the cross-
classified variance components model, 
most packages took less than a minute 
with about 40 minutes for WINBUGS.  
For the ordered category model, 
MIXOR was the quickest of the 
packages using maximum likelihood 

(under 10 seconds) and SAS the slowest 
(just under one minute).  There was 
good numerical agreement among 
packages. 
 
In terms of ease of use, to some extent 
this is a subjective perception and 
potential users should read the detailed 
reviews which take the reader through 
the analyses of the datasets.  User 
support varies among packages.  For 
example, most packages have adequate 
manuals and either email support or an 
active user group.  Flexibility in terms 
of the number of different models that 
can be fitted varies between MLwiN, 
WINBUGS, GENSTAT, STATA, aML 
and SAS that can fit a very wide range, 
to EGRET that is effectively restricted 
to handling discrete response data only, 
and SPSS that can handle a limited 
range of Normal response models. 
 
The web site is intended to respond to 
new software and new versions of 
existing software and will be updated 
periodically.  Software writers and 
anyone who would like to review any 
package are welcome and should 
contact Amy Burch 
(a.burch@ioe.ac.uk). 
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Review of ‘Multilevel Modeling.  Methodological Advances, 
Issues and Applications’. 

Reise, S. P. and Duan, N. (Eds.) (2003). 
Mahwah, NJ: Lawrence Erlbaum Associates Inc. 

ISBN: 0-8058-5170-4 $37.50, pp. 314. 
Ian Plewis 

Institute of Education, University of London 
 
As the title implies, this is a varied 
collection of 13 chapters, ranging from 
demanding theoretical chapters on 
modelling to a number of interesting 
applications, and with just one 
introductory chapter (Ch. 13 by the 
editors) on design.  The book is nicely 
produced; its strength is that anyone 
interested in multilevel modelling is 
likely to find at least one chapter of 
interest but this strength might also be a 
weakness when it comes to thinking 
about buying the book. 
 
At one end of the methodological 
spectrum, there are introductions to the 
two level model by Bachmann and 
Hornung (Ch. 8) and Rowe (Ch. 12) and 
to repeated measures data by Baumler et 
al. (Ch. 7).  At the other end, there is a 
chapter on mean and covariance 
structures (Bentler and Liang, Ch. 3) 
which is hard going and includes an 
unhelpful example, and one by Cudeck 
and Du Toit (Ch. 1) on nonlinear 
models for repeated measures with a 
focus on estimation issues. 
 
The remaining chapters cover a range of 
applications but, perhaps surprisingly, 
only one (Fielding, Ch. 9) deals with 
categorical response variables.  
Fielding, in a thorough and wide-

ranging chapter, presents illustrations of 
both hierarchical and cross-classified 
models for ordered categorical 
outcomes.  Two chapters deal with 
sensitivity issues: Seltzer and Choi (Ch. 
2) use different t-distributions to 
represent level-one and level-two 
variance in a fully Bayesian analysis of 
growth curve data with very few units at 
level two whereas Ecob and Der 
develop an iterative procedure for 
dealing with level-one outliers with 
similar kinds of data.  Growth curve 
modelling is, in fact, a recurrent theme, 
further illustrated by two chapters (4 
and 6) from the Muthén stable, one on 
relating two growth curves, contrasting 
multilevel modeling and one form of 
trajectory analysis, and the other using 
the models to estimate so-called 
complier effects in intervention studies. 
 
The collection is completed by a review 
of multilevel meta-analysis by Hox and 
de Leeuw (Ch. 5) and a chapter by 
Hutchison (Ch. 10) that tackles the 
important but often-ignored topic of the 
effects on estimates of measurement 
errors in explanatory variables and 
extends it, using bootstrap methods, to 
the multilevel context. 
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Some Recent Publications using Multilevel Models 
 
Bressoux, P., and Bianco, M. (2004).  
Long-term teacher effects on pupils' 
learning gains.  Oxford Review of 
Education, 30 (3): 327-345. 
 
Rabe-Hesketh, S., Skrondal, A., and 
Pickles, A. (2004).  Generalized 
multilevel structural equation 
modelling.  Psychometrika, 69 (2): 167-
190. 
 

Skrondal, A., and Rabe-Hesketh, S. 
(2004).  Generalized Latent Variable 
Modeling: Multilevel, Longitudinal and 
Structural Equation Models.  Boca 
Raton, FL: Chapman & Hall/ CRC 
Press. 
 
Zimprich, D., Hofer, S. M., and 
Aartsen, M. J. (2004).  Short-term 
versus long-term longitudinal changes 
in processing speed.  Gerontology, 50 
(1): 17-21. 

 
Please send us your new publications in multilevel modelling 

for inclusion in this section in future issues. 

 
 

 
MLwiN Clinics in London 

 
Wednesday 2 March 2005 
Wednesday 6 April 2005 

 
at 
 

Centre for Multilevel Modelling 
11 Woburn Square, London WC1H 0NS 

 
Contact MLwiN Technical Support for appointments 

Tel: +44 (0) 20 7612 6688 
mlwin.support@ioe.ac.uk

 
Future clinic dates will be announced at: 

http://multilevel.ioe.ac.uk/support/clinics.html
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