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Forthcoming Workshops 

29-31 March 2004.  A three-day 
introductory workshop to multilevel 
modelling using MLwiN will take place 
at the University of Bristol. Enquiries to 
Teresa Nurser, Graduate School of 
Education, 35 Berkeley Square, Bristol 
BS8 1HJ, United Kingdom. 
Tel: +44 (0) 117 331 4289 
Fax: +44 (0) 117 925 5412 
Email: teresa.nurser@bristol.ac.uk. 
 
If you plan to run any workshops using 
MLwiN, please notify Amy Burch and 
she will advertise these workshops on 
the multilevel web site. 
 
Beta version of MLwiN 2.0 

The beta version of MLwiN version 2.0, 
available from 
http://multilevel.ioe.ac.uk/beta/index.html 
is now in the final stages of testing.  It 
will go on full release early in the New 
Year.  There are several enhancements 
to MLwiN version 2.0 from version 
1.10.  MCMC estimation has been 
greatly enhanced; new features include: 
1. The DIC diagnostic (Spiegelhalter 

et al., 2002.  Bayesian measures 

of model complexity and fit (with 
discussion).  Journal of the Royal 
Statistical Society, B, (64): 583-
640). 

2. Multilevel factor analysis models 
with multiple (correlated or 
uncorrelated) factors at each level. 

3. Multicategory ordered and 
unordered response models. 

4. Multivariate mixtures of 
continuous and binary responses. 

5. Complex level one models. 
6. Multivariate models, including 

those with missing responses. 
7. Adjustments for measurement 

error in predictors. 
8. Cross classified models. 
9. Multiple membership models. 
10. Autoregressive structures at level 

one. 
11. Spatial data models. 
12. An interface with the WINBUGS 

software package. 
 

Also in this issue 
Bootstrapping the Effects of 

Measurement Errors 
Review of ‘Applied Longitudinal 

Data Analysis’ 
Some new references on multilevel 

modelling 
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Changes to the user interface have been 
made to improve ease of use for the 
following features: 
 
1. The multivariate window has been 

removed and multivariate models 
are now set up using the 
‘responses’ button on the 
equations window.  

2. There is now an ‘add term’ button 
on the equations window for 
adding continuous variables, 
categorical variables and 
interactions to a model.  

3. A ‘notation’ button has been 
added to the equations window 
that allows switching between 
different notational 
representations. 

4. A separate MCMC menu has been 
added. 

5. Much improved interface for the 
specification of ordered and 
unordered categorical response 
models. 

6. Single level models can be 
specified using standard notation. 

 
MLwiN 2.0 documentation comes in 
two volumes.  The first volume, “A 
User Guide to MLwiN” now has an 
extra introductory chapter to help users 
better understand the key differences 
between single and multilevel models; 
also chapters on modelling for ordered 
and unordered categorical responses 
have been added.  The second volume, 
“MCMC estimation in MLwiN”, 
demonstrates both the theory and 
practice of fitting MCMC models in 
MLwiN.  Both volumes are 
approximately 300 pages long. 
 
We hope you enjoy using MLwiN 
version 2.0. 
 
Project Team, Centre for Multilevel 
Modelling, Institute of Education, 
University of London. 

Bootstrapping the Effects of Measurement Errors 
Dougal Hutchison, Jo Morrison and Rachel Felgate 

National Foundation for Educational Research 
d.hutchison@nfer.ac.uk 

 
Introduction 
 
This paper describes a method of 
allowing for measurement error in 
multilevel regression by using 
bootstrapping procedures.  We illustrate 
this method on a simple two level 
model with two explanatory variables, 
one of which is measured with error. 
 

A two level linear model for and true 
or ‘latent’ values , where i,j 

refers to the i  level-1 unit within the 
 level-2 unit, is given by 

ijy

ijij xx 21 ,
th

thj
 

ijjijijij euxxy ++++= 22110 βββ  (1) 
 

0),(),(),( ''' === ijjjiijjj euCoveeCovuuCov
jjii ≠≠ ',',  
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The ‘true’ or latent values  in (1) are 
observed with measurement error 

giving observed values  where 

ijx1

Xijm ij1

 
ijijij mxX += 11 . 

 
jj Xx 22 =  is considered to be measured 

without error in this example. 
 

0),(),(),( ' === jijijijjiij umCovemCovmmCov
 

0)( =ijmE ;  2)var( mijm σ=
 

ijm  is independent of  ijij xx 21 , .
 
When  is regressed on the observed 

 and  then 
ijy

ijX1 ijX 2

 
ijjijijij euXXy ''2211

+++= γγ   , 
 
and the resulting estimates 2,

1
γγ  are 

biased for 2,
1

ββ . 
 
These are standard assumptions in this 
type of work, as defined by Goldstein 
(2003): for examples of other 
assumptions, see Fuller (1987).  Theory 
has been developed in this area mainly 
for the situation where errors are 
normally distributed, but also for 
multinomial misclassification (Fuller, 
1987; Goldstein, 2003).  More general 
models have not been widely 
considered, though Woodhouse (1996) 
and Browne et al. (2001) have looked at 

the effect of errors in variables on 
slopes. 
 
The use of the bootstrap to correct 
for biases 
 
There are two main uses for 
bootstrapping techniques: estimation of 
sampling distributions and standard 
errors; and correction of biases.  We 
discuss the use of the bootstrap for 
sampling distributions and standard 
errors in a later section.  Bootstrapping 
techniques can be used to correct for 
biases in estimation techniques, using 
an iterative procedure.  We illustrate on 
model 1 above. 
 
Stage 1 
Regress  on observed y ),( 21 XXX =  
to obtain )ˆ,ˆ( 2010ˆ0 γγγ = . 
 
Stage 2 
Simulate , using ŷ 020100 ˆ)ˆ,ˆ(ˆ γβββ == , 

and an estimated value of )ˆ,ˆ(ˆ 21 xxx =  to 
be determined. 
Add measurement error to x̂  to give X̂ . 
Regress simulated  on ŷ X̂  to obtain 

b1γ̂ . 
Do this a large number B  of times, to 
obtain 1γ̂  the mean of the b1γ̂  

Estimate bias 1̂b  by )ˆˆ(ˆ
011 γγ −=b . 

Estimate 1β̂  as 10
ˆˆ b−β   

 
Stage 3 
Repeat stage 2, starting at 1β̂ . 
Keep iterating until process converges. 
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Example: Simulated data 
 
Generating the simulated dataset 

A dataset of 5000 cases of 200 level-2 
units with 25 level-1 units in each, was 
constructed according to model (1) with 

121 == ββ and  correlated 21, xx
21xxρ .  

 are the between-group variance 
and the within-group variance 
of , respectively.  

 and 
are the 

intracluster correlations for  
respectively. 

2
2

2
1, bb σσ

2
2

2
1, ww σσ

/(2
11 wrho σ=

/(2
22 wrho σ=

2

)2
1bσ+

)2
2bσ+

1x
σ

, x
2

1w
2

2wσ

21, xx

 
Analyses were carried out for a range of 
values for  for level 1 21, rhorho x -
reliability 1ρ  (Woodhouse et al., 1996) 
and for 

2x1xρ .  The aim was, given the 
observed covariance matrix , to 
produce two variables,  which 
have the error-corrected covariance 
matrix .  Note that the variables 
individually do not need to be only 
linear transformations of the 
corresponding observed variables. 

XC

21 ˆ,ˆ xx

xc

 
Estimating the coefficients 
 
We carried out the procedure separately 
for levels one and two. 
 
We estimated 
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at level one.  The program MLwiN 
(Rasbash et al., 2000) was used for this.  
Since we were not looking at level 2 
error, only the level 1 covariance matrix 

XC~  had to be corrected.  The matrix 

 was taken as the 

target for the simulation. 
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The command MRAN in MLwiN is now 
used on matrix xc~ to create the level 1 
part of the simulation data set.  

The resulting estimated matrix c~ is 
only equal to the required quantity in 
expectation and is subject to sampling 
fluctuation.  The variables are 
transformed to make the estimated 

)ˆ,ˆ( 21 xx

x
ˆ̂

xĉ~ precisely equal to cx
~ .  This is done 

by multiplying the data  by )ˆ,ˆ( 21 xx
1~~ −LM , where L~  is the Choleski 

decomposition of c  and x
ˆ̂~ M~  is the 

Choleski decomposition of cx
~ .  

Variables will be 21
~̂,~̂ xx .  

 
Similarly we created the level 2 data, 

21
ˆ,ˆ xx . 

Add 11
~̂,ˆ xx  and 22

~̂,ˆ xx

2

 to form the total 
.  Measurement error was added to 

 to give . 
21 ˆ,ˆ xx

1x̂ 1
ˆ,ˆ XX

 
The bootstrap procedure described in 
the previous section was used to 
estimate 21, ββ .  Sets of analyses using 
2000 replications were carried out.  Ten 
iterations were used to investigate the 
convergence of the procedure. 
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Figure 1 shows one example of the 
convergence of the process for a 
correlation 

4.0),( 21 =xxρ , rho , and 2.021 == rho
8.01 =ρ .  The true value for both 1β  

and 2β coefficients is 1.0.  The level-2 
variation is set at  and the level-
1 variation at .  It can be seen 
that at the first iteration, the coefficient 

of  is below the ‘true’ value, and that 
of  is above.  From about iteration 4, 
values stabilise to values slightly below 
1.0.  However, one would not expect 
the process to converge precisely to this 
value because of the random quantities 
introduced in generating the original 
data.  We consider whether this is a 
reasonable expectation below. 

42 =uσ
252 =eσ

1x

2x

 
Figure 1. Convergence of x1, x2 coefficients, N = 5000, corr = 0.8 
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Estimating standard errors by the 
bootstrap 
 
We estimated the standard errors as 
follows.  We produce a bootstrap 
replication of the original sample, and 
carry out the procedure on the resample.  
This was replicated many times:  i.e. we 
bootstrapped the bootstrap.  There are 
two types of possibility for the ‘outer’ 
bootstrap: 
 

a) Whole case resampling (resampling 
of level-2 units is recommended). 
 
b) Residuals resampling.  This can be 
either parametric or non-parametric 
(Carpenter et al., 1999; Hutchison, 
1999). 
 
Here we present results using whole 
case resampling.  This means that we 
have three levels of looping.  Some kind 
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of convention on nomenclature is 
obviously necessary. 
 
a) Resamples from the original (actual 
or generated) data set.  The literature 
suggests that it would be necessary to 
take of the order of 2000 resamples to 
get reliable estimates of the percentiles, 
confidence intervals, etc. 
 
b) Iterations to convergence reduce the 
(expected) bias in the estimate.  
Preliminary investigation has shown 
that the bias is effectively removed in 
four iterations for the simple model 
considered here and that the variation 
remaining is in the nature of oscillation 
rather than bias-correction.  (The 
required number of iterations may be 
larger on more complex problems.) 
 
c) We have found that 2000 replications 
within each iteration does a good job in 
reducing oscillation, though obviously 
this depends on the degree of precision 
required. 
 
This suggests a total of 16,000,000 
bootstrap analyses (per problem). 
 
However, if we have a large number of 
equivalent resamples, then this should 
provide a large set of comparable 
estimates.  If we know when the 
iterations have converged, then we can 
focus attention on the replications 
within each converged analysis.  This is 
a three level structure (replications 
within iterations within resamples).  
However, in the middle level, the 
iterations are not exchangeable if the 
procedure has not converged.  
Consequently we focus on a single 
iteration at or beyond the convergence 

stage.  This gives a two level model 
(replications within converged-iteration-
within-resample).  We can feed these 
results into a multilevel model. 
 
In fact we shouldn’t need a very large 
number of replications within each 
iteration, since the multilevel structure 
means that we can handle a degree of 
variation.  With a smaller number of 
replications, this would have the 
drawback that we wouldn’t necessarily 
know that the iterations have 
converged.  We would need to have 
some kind of prior idea of the total 
number of iterations under a wide range 
of resamples.  Alternatively one could 
run a larger number of iterations than 
strictly necessary, and examine the 
convergence behaviour. 
 
We then have a two level model for 

bcdβ , the  replication within the c  

iteration of the  resample. 

thd th

thb
 

bcdbcbcd e++= βββ 0  
 

22 ][,][ ebcdbc eVV σσβ β ==  
 

]}[{ bcVsqrt β  can be taken as an 
estimate of the standard error of the 
estimate of 0β .  A normal 
approximation to confidence intervals 
could be taken from the highest level 
variation.  For a more general result, 
shrunken top level residuals could be 
partially re-inflated to give the 
appropriate variance.  Then the 
percentiles of these partially reinflated 
residuals could be used to give 
percentiles of the distributions. 
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Example of implementation 
 
We created a basic data set of 5000 
cases, as above: 2000 resamples were 
drawn in each analysis, 10 iterations 
and 10 replications. 

 
Results of a set of simulations are 
shown in Table 1. 
 

 
Table 1. Results of bootstrap estimation of standard error (5000 resamples) 
 
Quantity Estimate Standard Error Generating value 

1β  0.99 0.015 1 

2β  0.99 0.011 1 
2
uσ  4.54 .76 4 
2
eσ  25.93 1.08 25 

 
The standard error of the coefficient 
is estimated as 0.015, and that for the 

 coefficient is rather smaller at 0.011.  
This would be expected, since there is 
no measurement error in . 

1x

2

2x

x
 
Comparing the estimated and 
generating values of the coefficients, we 
see that in every case the difference is 
less than the estimated standard error.  
Further investigations (below) 
considered whether the procedure is 
unbiased, by importing yet another level 
of bootstrapping, so that the entire 
procedure is replicated on a number of 
data sets generated according to the 
model. 
 
Consistency of estimates 
 
Obviously we cannot show that a 
method is unbiased or consistent using a 
single example.  The values of the 
estimates are dependent not simply on 
the true model and on the method, but 
also on the precise values of the 
measurement error added to give the 

observed values.  Preliminary 
investigations, however, seemed to 
show that larger samples gave results 
that were closer to the true generating 
values, but still slightly biased.  
Accordingly, a series of simulations 
were carried out for 50, 100 and 200 
level–2 units, and 25, 50, 100 and 200 
level-1 units within each, to observe the 
behaviour of the estimated parameters 
for increasing sample size.  10,000 
simulations were carried out for each 
such combination, each with 10 
iterations and 5 replications.  The same 
values of coefficients 1xβ , 

,2xβ 2
uσ ,  were used as before. 2

eσ
 
For all of these combinations of level-2 
and level-1 numbers, even the smallest, 
the resultant coefficient estimates were 
extremely close to their generating 
values.  The relative bias 

valuegenerating
biasmean )(=

1x

 was of the order of 

.002 for β , less than .001 for 2xβ , 

.005 for , and .004 for .  It was 2
uσ 2

eσ
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also found that the mean value of the 
four estimated coefficients 1xβ , 

2xβ 2
uσ ,  tended towards their true 

values with increasing numbers of 
level-2 and level-1 units.  They did this, 
moreover, in a manner suggesting a 
consistent asymptotic convergence.  
(The results of the analyses described 
here, in graphical form, may be 
obtained from the first author on 
request.) 

2
eσ

0.01   

0.012   

0.014   

0.016   

0.018   

0.02   

1   2 3   4   6 7 8 9 10   
ations 

5 
Iter

SE   

 
Computational efficiency 
 
Even with the short cuts outlined above, 
the process is highly computationally 
intensive.  For a single analysis, the 
bootstrap error correction takes of the 
order of 3 hours on a Dell Optiplex 300, 
and the standard error estimate nearer 
20.  It is obviously necessary to 
investigate how to cut these times, 
especially the standard error procedure, 
as much as possible if this approach is 
going to be widely used.  The procedure 

may be compared with the MCMC 
procedure described by Browne et al 
(2001).  While both methods appear to 
work well within the range of 
applications considered, the MCMC 
procedures appear to be considerably 
faster. 
 
Accordingly, we investigated the 
possibility of reducing: 
 
a) the number of iterations 
 
b) the number of replications within 
each iteration. 
 
Figure 2 shows the convergence of the 
standard error estimate with the number 
of iterations (2000 resamples, 10 
replications).  It can be seen that there is 
still a degree of oscillation after even 10 
iterations, but for practical purposes 3 
or 4 iterations would probably be 
sufficient.

 

Figure 2. Estimated standard error of βx versus number of iterations 
 

 

Est SE Beta - x   
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Similarly Figure 3 shows the extent to 
which the results stabilise compared 
with the number of replications.  The 
results have not completely settled 
down by 10 iterations, but, as in Figure 
2, the bias, as opposed to the oscillation, 
has probably been removed after four.  
The line for 10 replications is 
consistently the highest, suggesting that 

more replications would be required to 
get the estimate of standard error close 
to the asymptotic value to the third 
decimal place.  The method as applied 
lets each individual analysis iterate to 
convergence: further speeding up of the 
entire process might be possible if we 
do a fixed small number of iterations, 
say one or two. 

 
Figure 3. Convergence of SE estimates 
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Conclusions 
 
The results presented in this paper have 
provided an example of a potentially 
generalisable procedure for estimating 
the sampling behaviour of multilevel 
regression models under measurement 
error.  Further investigations will be 
required to see whether the short cuts 
described would work on other models 
and whether further speeding up is 
possible.  It would also be valuable to 
compare the results with those obtained 
by the MCMC procedure described by 
Browne et al. (2001) to see whether 

both methods work comparably well on 
a wide range of models. 
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The book is divided into two substantial 
parts, each of book length.  The first 
part deals with the multilevel approach 
to the analysis of growth and change, 
the second with techniques and models 
for ‘time to event’ data, firstly in 
discrete time and then in continuous 
time.  The two parts are essentially self-
contained and this is rather a pity 
because an opportunity is lost to show 
how repeated episodes in event history 
data can be handled within a multilevel 
framework.  Instead, the authors restrict 
themselves to single events and thus to 
single level logistic regression 
(proportional odds) models and Cox 
proportional hazards models. 
 
The great strength of the first part of the 
book is its painstaking description of 
the specification and interpretation of 
models that relate a single response to 
time or age.  The authors’ approach will 
appeal particularly to quantitative social 
scientists who have had just a little 
exposure to statistical modelling; those 
students looking for a more rigorous 
statistical approach might be put off by 
the high ratio of words to symbols.  The 
reader is taken slowly through ideas 
about age and time-related change to (in 
Chapter 3) a model with a random 
intercept and a random slope, ways of 
accounting for these variances surface 
in Chapter 4, different ways of dealing 
with time are covered in Chapter 5, 
extensions to discontinuous and non-
linear change in Chapter 6, implications 
of different assumptions about change 
in terms of the underlying covariance 
structure in Chapter 7, and finally there 
is a chapter discussing latent growth 

modelling from a structural equations 
modelling perspective. 
 
The authors’ approach – admirable as it 
is – does mean that a number of topics 
are not covered.  So there is nothing on 
models with more than two levels, on 
multivariate models with more than one 
outcome, on spline functions in Chapter 
5, and on models with binary or 
categorical outcomes.  There is also 
perhaps less than might have been 
expected on the analysis of residuals, 
outliers and influence.  Finally – and 
this is an important omission – there is 
essentially no discussion of the contrast 
between the unconditional or time-
related approach to the analysis of 
change favoured by the authors, and the 
conditional or regression approach in 
which earlier values of the outcome are 
used as explanatory variables.  Also, 
although time-varying predictors are 
covered in Chapter 5, there is no 
discussion of models in which yti (for 
example, political values) are related to 
xti (income, say) in a regression 
framework favoured by 
econometricians when analysing panel 
data. 
 
And so, to sum up, this is a fine book 
but one which is just a little limited in 
its coverage, especially for more 
experienced longitudinal researchers. 
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Please send us your new publications in multilevel modelling 

for inclusion in this section in future issues. 
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MLwiN Clinics in London 

 
Wednesday 4 February 2004 
Wednesday 3 March 2004 

 
at 
 

Centre for Multilevel Modelling 
11 Woburn Square, London WC1H 0NS 

 
Contact MLwiN Technical Support for appointments 

Tel: +44 (0) 20 7612 6688 
mlwin.support@ioe.ac.uk 

 
Future clinic dates will be announced at: 

http://multilevel.ioe.ac.uk/support/clinics.html 
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