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Forthcoming Workshops 

11-13 September 2002, a three-day 
introductory workshop to multilevel 
modelling using MLwiN will take place 
in the Institute of Education, University 
of London. 
 
This workshop can be booked on-line: 
http://multilevel.ioe.ac.uk/support/ 
workshop.html. 
 
Enquiries to Amy Burch at 
Mathematical Sciences, Institute of 
Education, 20 Bedford Way, London 
WC1H 0AL, United Kingdom. Tel: +44 
(0) 20 7612 6688, Fax: +44 (0) 20 7612 
6572, email: a.burch@ioe.ac.uk. 
 
If you plan to run any workshops using 
MLwiN, please notify Amy Burch and 
she will advertise these workshops on 
the multilevel web site. 
 
Royal Statistical Society 
Conference, Plymouth, 3-6 
September 2002 

The following four papers will be 
presented by members of the Centre for 
Multilevel Modelling, Institute of 

Education. For further details about the 
conference, go to: 
http://www.tech.plym.ac.uk/maths/resea
rch/stats/rssprogramme.html 
 
1. Multiple membership models for 
complex multilevel data structures 
Harvey Goldstein and William Browne 
h.goldstein@ioe.ac.uk 
 
In the standard multilevel model lower 
level units are uniquely classified within 
one higher level unit, for example 
students within schools or people within 
households. In many kinds of data, 
however, individuals will ‘belong’ to 
more than one such unit. 
 
 

Also in this issue 
Modelling ordinal data using MLwiN 

Fitting multilevel models under 
informative probability sampling 
Review of ‘Multilevel Analysis, 
Techniques and Applications’ 

MLwiN/MLn activities: Summary of 
an electronic survey 

MLwiN Version 1.2 – Development 
version 

Some new references on multilevel 
modelling 

 

 
__________________________________________________ 

 
 

http://multilevel.ioe.ac.uk/support/workshop.html
http://multilevel.ioe.ac.uk/support/workshop.html
mailto:a.burch@ioe.ac.uk
http://www.tech.plym.ac.uk/maths/research/stats/rssprogramme.html
http://www.tech.plym.ac.uk/maths/research/stats/rssprogramme.html
mailto:h.goldstein@ioe.ac.uk


MULTILEVEL MODELLING NEWSLETTER Vol. 14 No. 1 
 
Thus, in a longitudinal study students 
may move between schools so that the 
school ‘effect’ must be considered as 
shared among the schools attended. 
Likewise, over time, individuals may 
experience more than one household. 
 
In order to model such data multiple 
membership models have been 
developed. The talk will describe such 
models, introducing a new notation and 
examples of applications. An 
application to the analysis of poultry 
salmonella outbreaks will be presented. 
The lowest level unit is a poultry flock 
whose members are derived from 
several parent flocks and there is also a 
cross classification of the parent flocks 
with the poultry farms. The modelling 
approach provides estimates of the 
contributions of each parent flock to the 
infection probability. 
 
The methodology can also be used for 
fitting spatial models. An interesting 
application arises in education and other 
areas where measurements are available 
for individuals, for example 
achievement scores, and also for groups 
of individuals where there is a single 
group response. Under suitable 
conditions, the joint analysis of 
individual and group responses allows 
the estimation of the effective 
contribution each individual makes 
towards the group response together 
with the relationship between that and 
the individual’s separate response. 
 
2. An MCMC algorithm for problems 
involving ‘constrained’ variance 
matrices with applications in 
multilevel modelling 
William Browne 
w.browne@ioe.ac.uk 

General-purpose Bayesian software 
packages, for example WinBUGS, that 
utilize MCMC methods are now being 
used widely by quantitative researchers. 
To make such software as flexible as 
possible, MCMC methods that can be 
adapted to fit the widest range of 
statistical models have been preferred. 
Originally, Gibbs sampling algorithms 
primarily through the AR sampler were 
used to fit models using univariate 
updates with the restriction that all 
conditional posteriors be log concave. 
More recently this restriction has been 
removed by using adaptive (random-
walk) Metropolis samplers for 
parameters without log concave 
distributions. These samplers are used 
(where necessary) in both the 
WinBUGS and MLwiN software 
packages. 
 
In this talk, we discuss another feature 
of certain statistical models - 
‘constrained’ variance matrices - which 
cannot currently be dealt with in general 
purpose packages. By ‘constrained’ we 
mean that the variance matrix is subject 
to some additional constraints (as well 
as the positive definite constraint). For 
example, two elements of the matrix 
could be constrained to be equal, or an 
element could equal a constant or be a 
function of predictor variables. 
 
3. Exploring differential parental 
treatment of siblings using multilevel 
models 
Jon Rasbash with Thomas G. O'Connor, 
Institute of Psychiatry, University of 
London and Jenny Jenkins, University 
of Toronto 
j.rasbash@ioe.ac.uk 
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In family studies a question of great 
interest is the extent to which children 
in the same family get treated 
differently by their parents. There is 
much professional theorising and lay 
speculation about the existence and 
effect of differential parental treatment. 
In this paper we use multilevel 
modelling techniques to explore the 
nature and extent of differential 
parenting. Data from 8,476 children, 
between 4 and 11 years old, in 3,762 
families were analysed. The data came 
from a large-scale population study in 
Canada. We currently have data for the 
first wave in the longitudinal study. We 
only have one time point, but do have 
data on multiple children per family. 
This means that our models can 
describe the extent to which differential 
parental treatment exists, but they 
cannot address questions about the 
subsequent effects of differential 
parenting. Multilevel modelling 
provides a natural and powerful 
framework for handling family data. In 
the study parents rate their relationship 
with each of their children using a 
number of items. These items are then 
combined into a single score, which 
serves as the response variable in our 
models. In these models the level one 
variance (between child within family) 
gives us a direct measure of differential 
parenting. The paper shows how 
multilevel modelling can provide some 
important descriptions of differential 
parenting by modelling the level one 
variance as a complex function of 
predictors. 
 

4. A Multilevel Multistate Competing 
Risks Model for Event History Data 
Fiona Steele and Harvey Goldstein 
f.steele@ioe.ac.uk 
 
Event history data are collected in many 
social surveys, providing a longitudinal 
record of events such as changes in 
partnerships and employment.  Most of 
these events can be experienced more 
than once over an individual’s lifetime, 
and durations between events may be 
correlated.  Multilevel event history 
models have been developed to analyse 
repeated events.  Another common 
feature of event history data is that there 
are sometimes several ‘competing’ 
events that may occur, or an event can 
be experienced for one of several 
reasons.  For example, a cohabiting 
partnership may end in marriage or 
separation. Multilevel event history 
models have been developed to handle 
such competing risks. Another 
extension to the basic repeated events 
model is the multistate model which has 
been developed for situations where an 
individual may be in one of several 
possible states at a given point in time, 
for example in or out of a partnership. 
In this paper, we propose a general 
model for the analysis of repeated 
events which allows for both competing 
risks and multiple states, where the 
competing risks may be state-
dependent. The multilevel multistate 
competing risks model is applied in an 
analysis of transitions in and out of 
contraceptive use in Indonesia, using 
retrospective contraceptive histories 
collected in a national survey. 
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Modelling ordinal data using MLwiN 
Ian Plewis 

Institute of Education, University of London. 
i.plewis@ioe.ac.uk 

 
Introduction 
 
The literature contains a number of 
ways of representing the ordering in an 
ordered categorical response. Perhaps 

the most popular is to use cumulative 
logits in a proportional odds model. For 
a variable with M categories, the 
cumulative logits are: 
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and for a two level model (for example, occasions i within subjects j), we might write: 
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Here, the right-hand side of the model is 
a quadratic in age with the variation in 
the coefficients across subjects assumed 
to be multivariate Normal. The 
MULTICAT macro in MLwiN (Yang, 
1997) is available to estimate this 
model, using quasi-likelihood methods. 
See Fielding (1999) and Ribaudo et al. 
(1999) for applications. 
 
An alternative representation of the 
ordering is to use log continuation odds 
(or continuation ratios), defined as: 
 

mij
mc

cij �� /log�
�

 - m = 1..M-1 

 
These M-1 odds are asymptotically 
independent binary functions (Fienberg, 
1980) and can therefore be treated as a 
set of multivariate binary responses. It 
is relatively straightforward to set up 

this model in MLwiN, essentially by 
constructing a series of cumulative 
responses and treating all the odds for 
m/ < m, m > 1 as missing. As each 
successive log odds is based on a 
smaller and smaller part of an assumed 
underlying continuous distribution, the 
number of missing responses increases 
as m increases. The model can be set up 
using the multivariate window in 
MLwiN with the level one covariance 
matrix set to an identity matrix of order 
M-1, assuming Bernoulli variation. It is 
possible to allow the model coefficients 
to vary with m, i.e. to have βmhj, h ≥ 0 on 
the right-hand side of the model. (Note 
that MLwiN uses subscripts j and k 
rather than i and j because level one (i) 
is used to define the multivariate 
structure of the M-1 responses.) 
 
The purpose of this article is not to 
argue for the superiority of one 
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representation of ordering over another 
but to show that there is more than one 
way of specifying multilevel models for 
ordinal data. The choice between the 
different specifications should be based 
on the nature of the response and on 
goodness-of-fit criteria. 
 
An application 
 
Ten Have and Uttal (1994) published 
data from a study of young children's 
search strategies. Children were 
randomly assigned to two conditions 
and observed for ten trials so i = 1..10 
and n = 1..89 in equation (1). The 
response was the number of attempts up 
to three a child needed to find a hidden 
toy given a map that was either rotated 
(treatment = 1) or non-rotated 
(treatment = 0), so the response was an 
ordered 4-category variable 
(immediately successful through to 
failure, the latter being common). There 
were no missing data. Ten Have and 

Uttal used a continuation odds approach 
within a Bayesian (MCMC) framework 
but quasi-likelihood is used for most of 
the analyses presented here. 
 
To be consistent with Ten Have and 
Uttal, the following effects are included 
in the initial model: linear and quadratic 
terms for trial (centred at zero), both 
varying randomly across children, and a 
treatment effect that interacts with these 
linear and quadratic terms. The main 
effect of treatment is allowed to be 
different for each continuation odds.   
 
Four models were fitted using second-
order penalized quasi-likelihood 
(PQL(2)): two continuation odds 
models with different assumptions 
about the random effects, a proportional 
odds model and a binary model for 
which the response was just success or 
failure at each trial. The fixed effects 
are shown in Table 1.  
 

 
Table 1: Fixed effects and standard errors for four models 
 
 Cont. Odds (1) Cont. Odds (2) Prop. Odds Binary 
Cons.1 -0.95 (0.22) -0.98 (0.19) -0.85 (0.20) 0.50 (0.25) 
Cons.2 -0.85 (0.23) -0.93 (0.21) 0.027 (0.19)    - 
Cons.3 -0.91 (0.26) -1.26 (0.24) 0.46 (0.20)    - 
Trt.,cons1 1.28 (0.30) 1.24 (0.26) 1.17 (0.27) 1.17 (0.37) 
Trt.,cons2 0.96 (0.32) 0.73 (0.30)    "    - 
Trt.,cons3 0.37 (0.38) 0.25 (0.36)    "    - 
Trial, linear 0.25 (0.040) 0.18 (0.032) 0.19 (0.035) 0.24 (0.051) 
Trial, quad. -0.069 (0.015) -0.046 (0.012) -0.053 (0.013) -0.061 (0.019) 
Trt.*linear -0.18 (0.049) -0.14 (0.042) -0.14 (0.046) -0.21 (0.074) 
Trt.*quad. 0.049 (0.019) 0.033 (0.016) 0.034 (0.018) 0.067 (0.028) 

 
'Cons. m' (m = 1, 2, 3) are the three cut-
points; the second and third of these 
have different interpretations for the 

continuation odds and proportional odds 
models. The MULTICAT macro makes 
the usual proportionality assumption so 
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that the fixed effects are constrained to 
the same for each cut-point. Following 
Ten Have and Uttal, the trial main 
effects and the treatment*trial 
interactions are the same for each cut-
point in the continuation odds model. 
However, whereas the proportional 
odds model assumes a constant 
treatment main effect, the continuation 
odds models allow it to vary with cut-
point and the estimates suggest that the 

effect is stronger in terms of influencing 
early success. This is illustrated in 
Figure 1 which is based on the estimates 
for the second continuation odds model 
in Table 1. Otherwise, the estimates are 
fairly consistent across models 
(including the binary model) and tell a 
similar story to Ten Have and Uttal 
although direct comparisons with the 
published estimates are difficult as they 
use a different parameterisation. 

 
Figure 1: Treatment and trial effects 
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Notes 
 
The numbers above the bars are trial numbers. The odds for the non-rotated group are coloured blue, the 
rotated group brown. The treatment differences become smaller across the continuation odds. The odds 
initially rise with trial but later start to decline. 
 
We turn now to the random effects. In 
the first continuation odds model, a full 
covariance matrix at level two is 
estimated; in other words, a model with 
nine variances (three each for the cut-
points and for the linear and quadratic 
trial terms) and hence 36 covariances. 
The algorithm converges but, not 
surprisingly with just 89 subjects, a 
number of the parameters have zero 
estimates and one of the correlations is 
less than minus 1. The level two 
covariance matrix for the second 

continuation odds model in Table 1 is 
the same as the one used by Ten Have 
and Uttal - single variances for the 
intercept, linear and quadratic terms and 
the three associated covariances. The 
variance for the quadratic term, and its 
associated covariances, are estimated to 
be zero.  Table 2 gives the results for 
this model, and also for the proportional 
odds model (for which only the constant 
term has a positive variance) and for the 
model with a binary response. Those 
random effects for which it was possible 
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to get a non-zero estimate are all, apart 
from the intercept, small. The posterior 
distribution for the variance component 
for the quadratic trial effect obtained by 
Ten Have and Uttal is not, however, 
massed near zero although the linear 
effect is. For the binary model, 

estimates from running a MCMC model 
with 100K iterations, a thinning rate of 
10% and non-informative Wishart 
priors for the random effects produced 
similar estimates to those obtained by 
PQL(2).  

 
Table 2: Random effects, standard errors and correlations 
 
 Cont. Odds (2) Prop. Odds Binary 
Intercept 0.65 (0.13) 0.80 (0.17) 1.42 (0.44) 
Trial, linear 0.0021 (0.0081) 0 0.028 (0.018) 
Trial, quadratic 0 0 0.0030 (0.0024) 
Cov (int., linear) 0.017 (0.015) 

(0.44) 
0 0.082 (0.063) 

(0.42) 
Cov. (int., quad.) 0 0 -0.0035 (0.025)  

(-0.05) 
Cov. (lin., quad.) 0 0 -0.0052 (0.0046) 

(-0.57) 
 
Discussion 
 
Using continuation odds for ordered 
responses can sometimes be more 
natural than using proportional odds, for 
example when subjects can only move 
up (or down) a scale over time - 
educational qualifications is one 
example. There is also an advantage 
within the current version of MLwiN of 
not having to use a macro to estimate 
the model. On the other hand, the 
assumption of proportionality leads to a 
more parsimonious model, although, for 
the data used here, perhaps a less 
realistic one. 
 
One of the issues to be considered when 
estimating a continuation odds model is 
how much complexity to put into the 
random part of the model. Although the 
odds are asymptotically independent, it 
could be more valid to allow the 

Bernoulli variates at level one to covary 
when there are only a small number of 
level-one units per level-two unit. With 
repeated measures data, it is unusual to 
have more than the 10 occasions (trials) 
analysed here. The level-one 
correlations were small with these data 
but their introduction into the model led 
to some level-two correlations 
becoming greater than one. It is worth 
noting that, for the full covariance 
matrix at level two, some of the 
variances and covariances associated 
with the quadratic trial term were non-
zero but for the less complex model, 
this was not so. Further exploration of 
these issues within a MCMC framework 
could be fruitful. However, the model's 
flexibility in terms of allowing higher 
level variances to vary with the cut-
points is likely to be useful only with 
much larger datasets than the one used 
here. 

7 
 



MULTILEVEL MODELLING NEWSLETTER Vol. 14 No. 1 
 
Rather than a logit link, a 
complementary log-log link might be 
more appropriate especially as this 
strengthens the connection with hazard 
models. However, its application led to 
zero estimates for the variances of the 
trial terms with these data. Another 
extension that might be particularly 
appropriate with repeated measures data 
of the kind analysed here, with little 
time elapsing between trials, would be 
to introduce some kind of time series 
structure at level one (Barbosa and 
Goldstein, 2000), to allow for the 
possibility that the residuals from 
successive trials could be correlated. 
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Fitting multilevel models under informative probability 

sampling 
Danny Pfeffermann1, Fernando Moura2 and Pedro Nascimento Silva3 

1Hebrew University, Israel and University of Southampton, UK  
2Federal University of Rio de Janeiro, Brazil 

3IBGE, Brazil 
msdanny@socsci.soton.ac.uk 

 
Introduction 
 
Classical theory underlying the use of 
multilevel models assumes implicitly 

either that all the population groups  
(clusters) at all levels are represented in 
the sample or that they are selected by 
simple random sampling. This 
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assumption may not hold in a typical 
sample survey where the clusters or the 
final sampling units or both are often 
selected with unequal selection 
probabilities. When the selection 
probabilities are related to the values of 
the response variable even after 
conditioning on the model covariates, 
the sampling process becomes 
informative and the model holding for 
the sample data is then different from 
the population model. Ignoring the 
sampling process in such cases may 
yield biased estimators and distort the 
analysis. 
 
As an example, consider a study of 
pupils' proficiencies with schools as the 
second level units and pupils as first 
level units, and suppose that the schools 
are selected with probabilities 
proportional to their sizes. If the size of 
the school is related to the school's 
achievements, say the large schools are 
mostly in areas with low achievements, 
and the size of the school is not 
included among the model covariates, 
the sample of schools will tend to 
contain large schools with low 
achievements, and hence no longer 
represent the population of schools. 
 
As suggested by the example, a possible 
way to deal with the problem of 
informative sampling is to include 
among the model covariates all the 
design variables that define the 
selection probabilities at the various 
levels. This approach is often not 
practical, however. 
 
In a recent article, Pfeffermann et al. 
(1998a) propose probability weighting 
of first and second level units to adjust 

for the effect of informative sampling 
on the estimation of the multilevel 
model parameters. The authors also 
develop appropriate variance estimators. 
The use of this procedure is justified 
based on asymptotic arguments but it is 
shown to perform well in a simulation 
study even with moderate sample sizes. 
Nonetheless, the use of the sampling 
weights (inverse of sample inclusion 
probabilities) for bias correction has 
four important limitations: 
 
1. The variances of the weighted 

estimators are generally larger 
than the variances of the 
corresponding unweighted 
estimators. 

 
2. Inference is restricted primarily to 

point estimation. Probabilistic 
statements require asymptotic 
normality assumptions. The exact 
distribution of weighted point 
estimators is generally unknown. 

 
3. The use of the randomisation 

distribution for inference (the 
distribution over all possible 
samples from the target 
population) does not permit in 
general to condition on the 
selected sample of clusters 
(second and higher level units) or 
values of the model explanatory 
variables. 

 
4. It is not clear how to predict 

second and higher level random 
effects under informative 
sampling with this approach; for 
example, how to predict the mean 
school achievement for schools 
not represented in the sample.  
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The purpose of this article is to describe 
a model dependent approach for 
multilevel modelling under informative 
sampling, as proposed by Pfeffermann 
et al (2001). The idea behind the 
approach is to extract the hierarchical 
model holding for the sample data as a 
function of the population model and 
the first order sample inclusion 
probabilities, and then fit the sample 
model using classical techniques. An 
important implication of the use of this 
approach is that the selection 
probabilities feature in the analysis as 

additional outcome values that are used 
to strengthen the estimators. Evidently, 
if the sample model is specified 
correctly, the use of this approach 
overcomes the limitations mentioned 
with respect to the probability 
weighting approach. We restrict 
ourselves to a two level model and 
apply the full Bayesian paradigm by use 
of Markov Chain Monte Carlo 
(MCMC) integration, but the approach 
can be extended to higher level models 
and different inference procedures. 
 

 
Population model, sampling design and sample model 
 
Consider the following two-level hierarchical model: 
 
First level:  (1) | ' ; ~ ( , ) , ...2

0 0 0 1ij j j ij ij ij jy x N i
�

� � � � � �� � � � M

Second level: ' ; ~ ( , ) , ...2
0 0j j j j u 1z u u N j� � �� � � N  (2) 

 
This model is often referred to in the 
literature as the random intercept 
regression model and it contains as 
unknown parameters the vectors of 
coefficients ( ) and the first and 
second level variances (� ,� ). Note 
that the intercepts are modelled as linear 
functions of known regressor values 

,� �
2
�

2
u

.jz  
In the simulation experiment described 
in Section 4 the outcome  is the test 

score of pupil i in school
ijy

j ,  defines 
the sex, age and parents’ education of 
the same pupil and 

ijx

jz  consists of two 
dummy variables defining geographical 
regions. The second level random 
effects  account for the variation of 
the intercept terms not explained by the 
variables 

ju

jz . 

We assume a two stage sampling 
process. In the first stage Nn  
second level units are selected with 
probabilities  that could 
be correlated with the random effects 

. In the second stage  first level 
units are sampled from second level unit 

�

Pr( )j j s� � �

jm

 selected in the first stage, with 
probabilities  that 

may be correlated with the residuals� . 
In Section 3 we elaborate on the 
sampling process used for the 
simulation study. 

| Pr( |i j ji s� � � )s�

ij

j

ju

j

 

 
Following Pfeffermann et al. (1998), the 
sample distributions of the first and 
second level units are respectively, 
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where js  defines the first level sample 
from second level unit j , 

,  and 
 and  are the population and 

sample distributions with expectations 
 and . 

( ,0j j ', 2
�

� � � ��

)(�pf

(�pE

M

) ),'( 2
u��� �

)(�sf

)(�sE)
 
Equations (3) and (4) define another 
two level model, holding for the sample 
data. This model depends on the 
population model and the first order 
sample selection probabilities of first 
and second level units. The expectations 
in (3) and (4) can be modelled based on 
knowledge of the sampling process and 
the sample data. See Pfeffermann and 
Sverchkov (1999) for discussion and 
examples and also the section below. 
 
Monte Carlo simulation experiment 
 
The purpose of the simulation 
experiment is to study the performance 
of the model dependent approach 
introduced in the previous section and 
compare it with the probability 
weighting procedure described in 
Pfeffermann et al. (1998a), with both 
approaches compared to the common 
practice of ignoring the sampling 
process in the estimation process. The 
model and sampling design underlying 
this experiment follow the Basic 
Education Evaluation study carried out 
in 1996 in Rio de Janeiro, Brazil. The 

outcome data in that study are the 
proficiency scores of 14,831 pupils in 
392 schools located in three different 
regions. In what follows we use schools 
to define the second level units and 
pupils to define the first level units. The 
experiment consists of generating 400 
populations from the model defined by 
(1) and (2) and selecting four samples 
from each population using four 
different sampling designs, defined by 
combining each of two methods for the 
selection of schools with two different 
methods for the sampling of pupils 
within the selected schools. Schools 
were selected using either Method A1 - 
simple random sampling without 
replacement (SRSWR) or Method A2 - 
probability proportional to the school 
size (PPS) using the Sampford method, 
with the school size generated as, 
 
log( ) ~ ( ' , )2

3 0j j jM N z� � � �� . (5) 
 

Note that Method A2 is informative 
since the school sizes depend on the 
intercepts 0 j� . Students within the 
selected schools were sampled by either 
Method B1- SRSWR or Method B2- 
disproportionate stratified sampling 
with the strata defined by the values of 
propensity scores, 
 

),0(~, 2
10 ���� Nybbp ijijijij ��� . (6) 
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Method B2 is again informative since 
the propensity scores depend on the 
proficiency scores . One sample of 
40 schools and 10 pupils from each 
selected school were drawn from each 
population using each of the 4 sampling 
schemes. For the stratified sample 
selection (Method B2) we sampled four 
pupils from strata one and two and two 
pupils from stratum three. 

ijy

 
The sample models for general two-
stage sampling schemes are defined by 
(3) and (4). The expectations defining 
these models under the informative 
sampling schemes A2 and B2 
considered in the present simulation are 
given in equations (8), (9), (10) and (11) 
of Pfeffermann et al. (2001). 
 
The population model defined by (1) 
and (2) has a Bayesian hierarchical 
structure with� , � ,  and �  as 
hyper-parameters. The MCMC 
algorithm applied for the present 
experiment (see Section 1) consists of 
sampling alternately from the 
conditional posterior distribution of 
each of the unknown parameters, given 
the data and the remaining quantities. 
Our proposed adjustment for the effect 
of informative sampling consists of 
replacing the population densities 

2
�

�
2
u

( | , )  and ( |f z ,0p j j� �  
defined by (1) and (2) by their sample 
counterparts defined by (3) and (4). In 
the simulation study we assigned non-
informative priors to the hyper-
parameters as described in Pfeffermann 
et al. (2001). The MCMC computations 
have been implemented using version 
1.3 of the WinBUGS program 
(Spiegelhalter et al. 2000), generating 

5000 values from each posterior 
distribution after discarding the first 
5000 values as ‘burn in’. The 
conditional posterior distributions of the 
various parameters given the data and 
the remaining parameter values, needed 
for application of the MCMC 
simulation are defined in Pfeffermann et 
al. (2001). 
 
Simulation results 
 
The full set of simulation results is 
presented in Pfeffermann et al. (2001). 
Here we present only a subset of these 
results, focusing on the estimation bias. 
The simulation results are based on 400 
replications, where each replication 
consists of generating a new population 
and selecting a single sample of 40 
schools and 10 pupils from each school 
by each of the four sampling methods 
described above. 
 
We start by showing the results 
obtained when ignoring the sample 
selection and fitting the population 
model. These results serve as 
benchmarks for assessing the 
performance of the alternative 
approaches of probability weighting and 
the use of  the sample model to deal 
with the effects of informative 
sampling. Table 1 shows the true hyper-
parameter values, the percent absolute 
bias (PAB) and the p-values (P-V) of 
the conventional t-tests of bias as 
obtained under the four sampling 
methods. Note that the parameter 
estimates from each sample are the 
empirical means of the 5000 values 
drawn from the corresponding posterior 
distribution after discarding the first 
5000 values as ‘burn in’. 

p ij ij jf y x � )
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Table 1. Percent Absolute Bias (PAB) and P-Values (P-V) of tests of bias when 
ignoring the sampling process 
 

Selection of Schools  
Non Informative, Method A1 Informative, Method A2 

Selection of 
Students 

Non Informative
Method B1 

Informative 
Method B2 

Non Informative 
Method B1 

Informative 
Method B2 

Parameter PAB P-V PAB P-V PAB P-V PAB P-V 
�0= 86.9 0.0 97.3 3.2 0.0 7.0 0.0 1.0 0.5 
�1= -6.8 4.3 40.5 18.2 0.0 1.8 71.4 25.9 0.0 
�2= -13.8 0.6 84.0 25.9 0.0 4.1 13.6 29.3 0.0 
�1= -10.9 0.4 81.4 6.2 0.0 1.2 40.0 4.3 0.5 
�2= -16.0 0.6 58.6 6.9 0.0 0.2 83.1 5.1 0.0 
�3= -36.5 0.1 84.4 4.9 0.0 0.4 57.8 3.9 0.0 
�4= -7.2 3.7 11.5 2.2 36.6 1.0 65.6 2.9 21.2 

=132.2 23.6 0.0 50.7 0.0 19.3 0.0 53.9 0.0 

=963.0 1.3 0.0 8.8 0.0 0.6 0.0 9.1 0.0 

2
u�

2
�

�

 
The results in Table 1 illustrate the kind 
of biases that can be encountered when 
ignoring an informative sample 
selection process. For the present 
simulation, informative sampling of 
pupils within the schools (Method B2) 
has a much stronger biasing effect than 
informative selection of schools (use of 
PPS sampling, Method A2). In 
particular, large biases are observed 
when estimating the between schools 
variance  and the two region 
coefficients  and� . (The estimator 

 is biased under all four sampling 
schemes considered, as discussed 
below.) The P-values for the 
significance of the bias indicate that 
almost all the estimators are biased 
under informative selection of pupils 
(Method B2). There is also a 

statistically significant bias in the 
estimation of the intercept, �  and the 
within school variance, �  under 
informative selection of the schools, 
even with non-informative selection of 
pupils, although the relative bias is 
rather low in these cases. 

2
u�

2
u

1� 2
2ˆ u�

0
2
�

 
Next we compare the two approaches 
that account for the sample selection 
process. Table 2 shows the bias 
estimates obtained under probability 
weighting (PW) and the use of the 
sample model (SM). As clearly seen, 
the bias estimates are generally much 
smaller with the use of these approaches 
than in Table 1, particularly under 
Method B2, but under probability 
weighting large and significant biases 
still persist in the estimation of �  with 
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all four sampling schemes and the 
estimation of �  under informative 
selection of schools and non-
informative selection of pupils. The use 
of the sample model yields biased 
estimates for �  under non-informative 
selection of pupils within the schools 
(Method B1) with both sampling 
methods for the schools. The latter bias 

may seem surprising particularly since 
the bias is much smaller under 
informative selection of pupils but this 
is not unique to our study (see below). 
Except for these cases, the use of 
probability weighting and the sample 
model yield similar biases under the 
four sampling methods. 

1

2
u

 

 
Table 2. Percent Absolute Bias (PAB) when accounting for the sampling process by 
use of Probability Weighting (PW) and the Sample Model (SM) 
 

Selection of Schools   
Non Informative, Method A1 Informative, Method A2 

Selection of 
Students  

Non Informative
Method B1 

Informative 
Method B2 

Non Informative 
Method B1 

Informative 
Method B2 

Parameter PW SM PW SM PW SM PW SM 
�0=86.9 0.1 0.0 0.6 0.9 1.9 0.1 1.3 0.2 
�1=-6.8 5.1 4.3 1.1 2.8 14.9 1.7 5.7 5.3 
�2=-13.8 0.9 0.6 1.6 3.0 5.8 4.1 0.6 0.2 
�1=-10.9 0.3 0.4 2.5 3.8 1.6 1.5 0.6 2.9 
�2=-16.0 0.6 0.6 2.9 4.0 0.5 0.1 1.4 2.1 
�3=-36.5 0.1 0.1 2.7 3.4 1.0 0.3 2.3 3.2 
�4=-7.2 3.8 3.7 0.7 0.0 2.6 1.1 0.8 1.2 

=132.2 10.2 23.6 25.3 6.2 19.6 18.4 34.7 8.3 

=963.0 0.8 1.3 1.0 2.3 1.8 0.2 0.9 4.0 

2
u�

2
�

�

 
Empirical percentage coverage of 
nominal 95% confidence intervals as 
obtained when ignoring the sampling 
design and by use of probability 
weighting and the sample model was 
also examined in the simulation study. 
The use of the sample model yields 
almost perfect coverage percentages for 
all the parameters under all the 
sampling schemes, including for the 
between schools variance, �  where 
the point estimators have a large relative 

bias (Table 1). This is not the case with 
PW or when ignoring the sampling 
process. See Pfeffermann et al. (2001). 
The occasionally bad performance of 
the PW approach even in cases where 
the corresponding point estimators have 
a small bias suggests that with the 
sample sizes considered in this study 
the use of the normal approximation is 
not valid. These results illustrate the 
possible advantage of the use of the 
posterior distribution for the 
construction of confidence (credibility) 

2
u
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intervals. We mention in this regard that 
we also computed the means and 
standard deviations of the lengths of the 
confidence intervals over the 400 
replications and none of the three 
approaches dominates the others in this 
respect. 
 
We noted earlier the large bias of the 
posterior mean of �  in the case of 
non-informative selection of pupils 
within the schools. Browne and Draper 
(2002) observed a similar bias in a 
different context and compare the use of 
different prior distributions for� . The 
use of probability weighting yields 
biased estimators for this variance under 
all four sampling schemes. It is 
important to mention in this regard that, 
unlike the estimation of the within 
schools variance,�  , that uses all the 

 pupil observations, the effective 
sample size for the estimation of �  is 
40, the number of selected schools. In 
order to study the effect of the number 
of schools on the behaviour of the 
posterior mean of �  we are currently 
repeating the same simulation study 
increasing the number of schools in the 
sample from 40 to 80. Preliminary 
results obtained so far show bias 
reductions in the order of 35%-50% 
under both probability weighting and 
when using the sample model. 

2
u

2
�

2
u

2
u

1040�
2
u

 
Summary and outline of future work 
 
An important message reinforced in the 
present study is that ignoring an 
informative sample selection scheme 
and fitting the population model may 
yield large biases of point estimators 

and distort the analysis. We compare 
two approaches for controlling the bias. 
The first approach uses probability 
weighting to obtain approximately 
unbiased and consistent estimators for 
the corresponding census estimators 
under the randomisation distribution. 
The census estimators are the 
hypothetical estimators computed from 
all the population values, which for 
large populations are expected to be 
sufficiently close to the true model 
parameters. The second approach 
attempts to identify the parametric 
model holding for the sample data as a 
function of the population model and 
the first order sample selection 
probabilities and then fits the sample 
model. The two approaches have been 
shown in the simulation experiment to 
remove the bias of the point estimators 
except in the case of the between school 
variance where with a small number of 
schools the use of probability weighting 
produces large biases under all 
sampling schemes considered, including 
the non-informative scheme where both 
the selection of schools and the 
selection of pupils within the selected 
schools is by simple random sampling. 
The use of the sample model likewise 
produces biased estimators for this 
variance and the bias depends also in 
this case on the choice of the 
corresponding prior distribution. 
 
Probability weighting has two important 
advantages over the use of the sample 
model. First and foremost, it does not 
require any additional assumptions 
beyond the specification of the 
population model, although the 
validation of the model under this 
approach is an open problem. The 
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second advantage of this approach is 
that it is very simple and requires 
minimal computation resources, 
including the estimation of the 
variances of the point estimators. 
However, the use of probability 
weighting has some serious limitations 
already discussed in the introduction. 
 
The use of the sample model is much 
more flexible and, with the specification 
of appropriate prior distributions, it 
makes it possible to simulate from the 
posterior distribution of the target 
parameters. This major advantage of the 
use of the sample model is 
demonstrated when comparing the 
percentage coverage of confidence 
intervals produced by the two 
approaches. Inference based on the 
sample model requires, however, the 
specification of the conditional 
expectations of the sample selection 
probabilities at the various levels of the 
model hierarchy given the values of the 
corresponding response and explanatory 
variables. As illustrated in the present 
study, these expectations may depend 
on a large number of additional 
unknown parameters that need to be 
estimated along with the population 
parameters (see Pfeffermann et al. 2001 
for details). Application of this 
approach by MCMC is very 
computationally intensive and with 
small sample sizes, the performance of 
variance estimators may depend on the 
specification of the prior distributions 
even if restricted to non-informative 
priors. Nonetheless, with correct 
specification of the sample model the 
use of this approach overcomes the 
inference limitations of probability 
weighting noted in the introduction. 

The major question underlying the use 
of the sample model for inference is its 
robustness to wrong specification of the 
conditional expectations of the sample 
selection probabilities that determine 
the sample model. This issue is 
currently under investigation.  
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Review of ‘Multilevel Analysis, Techniques and Applications’. 

Joop Hox. x + 304 pages (2002). Mahwah NJ: Lawrence 
Erlbaum Associates Inc 

M J R Healy 
Institute of Education, University of London 

 
Here is another introductory textbook, 
aimed mostly at the social sciences. It 
includes both regression and variance 
structure models and it assumes a basic 
knowledge of the corresponding 
techniques for single level data, 
including structural equation modelling. 
 
The first part of the book follows quite 
closely the plan of the MLwiN manual.  
The first introductory chapter aims at 
motivating the use of multilevel 
methods.  Chapter 2 introduces the 
usual two level model and this is 
followed by discussions of estimation 
methods and tests of significance. One 
chapter deals with repeated 
measurements, another with binary data 
and proportions using a logistic model.  
Methods for cross-classifications, meta-
analyses and multivariate data are also 
described.  A useful chapter is devoted 
to power calculations and sample size 
calculations.  Advanced methods 
include robust standard errors, 
bootstrapping and Bayesian techniques 
such as MCMC.  The remaining three 
chapters are devoted to factor, path and 
latent-curve models.  A substantial 
number of datasets are used as 
examples, some genuine, some 

simulated, and most of the tabulated 
results are in a form which will be 
familiar to MLwiN users. 
 
There are by now several introductory 
texts on multilevel modelling (there is 
even one competing text from the same 
publisher) and it has to be asked 
whether the book under review presents 
particularly attractive features.  I found 
its approach quite difficult in several 
respects.  The initial (artificial) example 
relates to a number of classes with girl 
and boy pupils in each.  The y-variate is 
a 0-10 popularity score (possibly 
somewhat non-Normal?) and the 
predictors are gender at level 1 and 
teacher's length of experience at level 2. 
This immediately introduces a 
categorical variable so that the ‘slopes’ 
at level 1 (even when actually plotted as 
straight lines) are somewhat 
metaphorical.  The earliest two level 
model to be considered has both 
intercepts and slopes random so that the 
discussion has to plunge immediately 
into cross-level interactions and 
heteroscedastic errors. On the other 
hand, no provision is made for different 
variances for boys and girls.  As is not 
uncommon, the discussion of centering 
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is needlessly elaborate.  A reader who 
struggles with the explanation of the 
third ‘dummy’ level in cross-classified 
analysis on page 126 is not likely to be 
encouraged by the MLwiN equations 
window that appears on the same page. 
 
The publishers rather blandly announce 
that camera-ready copy was supplied by 
the author. This means that the rather 

numerous misprints must be laid at the 
author’s door. 
 
Explaining multilevel modelling to an 
audience of social scientists is no easy 
task.  The pioneers, Goldstein and Bryk 
& Raudenbush did their best, and I am 
not sure that this book or their other 
successors have improved upon them.

MLwiN/MLn activities: Summary of an electronic survey 
Min Yang 

Institute of Education, University of London 
 
The survey of MLwiN/MLn user activity 
was designed to collect feedback from 
users on what purposes they used the 
program for, what difficulties they had 
in using it, and what new features they 
would like the program to have in 
future.  
 
The questionnaire was placed on the 
web site of the Centre for Multilevel 
Modelling. Invitation to participate in 
the survey was made through the 
multilevel email discussion list and the 
Centre newsletter mailing list. Over six 
weeks, 100 users replied. A brief 
summary of the survey data follows. 
 
The majority of respondents are from 
universities and research institutions in 
the higher education sector. A minority 
are from government organisations or 
independent institutions, and a few are 
self-employed statisticians or analysts. 
They come from the following areas: 
Europe (32%), North America (26%), 
United Kingdom (21%), Australia (9%), 
Other (12%).  

Their experiences in using MLwiN/MLn 
go back to before 1995 with 39% 
having at least five years experience 
although the same percentage have two 
years experience or less.  
 
Only 15% of users said that they used 
the program for teaching on courses or 
workshops. There was praise for the 
Equation window, and for the examples 
and manuals that are suitable for 
teaching. The main drawbacks are 
occasional program crashes and lack of 
good facilities for data preparation. It 
was found difficult to explain to 
students the reasons for creating 
columns of constants and the 
denominators for modelling binary 
outcomes. 
 
Eighty two percent of respondents made 
remarks on new features that they 
would like to see in future versions of 
MLwiN. In brief, their suggestions can 
be grouped into 10 classes in the 
following table. For each suggested new 
feature, the Project team has responded 
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in terms of possible solutions, both short-term and long-term. 
 
Summary for new features requested by MLwiN users 
 
Description of the new features 
required 

% of 
respondents

Response by the Team 

1. Better data import and export. 
Better facilities for data exchange 
between other packages such as 
SAS, SPSS, SPLUS, Excel, 
ACCESS, Fox, STATA 

39 The development version of 
MLwiN* can import categorical 
alphanumeric variables. We 
currently have no plans to build 
direct data exchange with other 
packages via non-ASCII data 
formats. 

2. New tools (Spline /local 
regression), estimation procedures, 
automatic inclusion of test statistics 
and p-values on model output, 
Heckman models, maximum 
likelihood estimation for GLMM, 
more development for survival 
models, factor analysis & IRT 
model, automatic inclusion of ICC 

18 We are currently researching 
simulated maximum likelihood 
and quadrature as two possible 
estimation procedures for 
producing direct likelihood 
estimation for GLMMs. A basic 
factor analysis model, estimated 
via MCMC, is included in the 
development version of MLwiN. 
We have just received research 
funding to further develop 
modelling of multivariate 
multilevel survival data. 

3. More elaborate manuals or on-
line help for data management, for 
commands/macros, for graphics, 
and for troubleshooting. More 
examples for different models 

18 New manuals are currently being 
written. Also, we are 
commissioning other training 
materials to be written. These 
materials will appear in a training 
archive of our web site. 

4. Make the program more stable, 
crashing less 

12 We are working on it. 
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5. Having a GUI for more complex 
models such as multinomial models, 
survival models, time series models, 
cross-classified and multiple 
membership models, getting rid of 
BCONS/PCONS and better 
performance on GLMM 

11 The development version of 
MLwiN has a setup window for 
cross-classified and multiple 
membership models using an 
MCMC engine for estimation. 
The models are easier to specify 
in the new version and the 
MCMC estimation algorithm is 
inherently more efficient than 
IGLS for non-hierarchical models. 
BCONS/PCONS etc will be 
removed from the next release of 
the development version which 
will result in a more direct 
representation for GLMM in 
MLwiN. Also multinomial models 
will be available from the 
equations window. 

6. Better graphical facilities 10  
7. Version for student, for OS 
platforms such as Linux and Mac 

5 We are not considering producing 
MAC or LINUX versions of 
MLwiN. We do not produce a 
student version. However, there is 
a training version of MLwiN 
available from tramss.data-
archive.ac.uk. This training 
version will be extended and we 
will implement a training archive 
on the MLwiN website. 

8. More user-friendly in general 5 We are trying. We are currently 
developing software features and 
documentation to make the move 
from single level modelling to 
multilevel modelling easier. 

9. Allowing string variables 2 The development version can now 
read alphanumeric data. 

10. Macro facilities fitting models 
one after another in batch mode 

1 This can already be done using 
the macro language. 

 
*See companion note in this newsletter entitled “MLwiN Version 1.2 – Development 
version” 
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MLwiN Version 1.2 – Development version 
William Browne and Jon Rasbash 

Institute of Education, University of London 
 
On 12th April 2002 a new 
‘development’ version of the MLwiN 
software package was made available to 
the MLwiN user community. This 
version of the software contains many 
improvements and new features 
including the ability to fit many new 
models. It will be regularly updated 
with bug fixes and additional features 
until the end of the MLwiN project 
team’s current ESRC funded project in 
February 2003 when it is envisaged that 
it will replace MLwiN 1.1 as the official 
released version of the software. 
 
The software is available to download 
(for existing MLwiN users) from the 
website at 
http://multilevel.ioe.ac.uk/dev/develop.html 
The software was last updated on 15th 
May 2002. 
 
Data input has been improved greatly in 
MLwiN 1.2. The software can now read 
in alphanumeric data via the ‘Paste’ 
option and automatically treats such 

data as categorical. There is also an 
improved interface for fitting 
categorical parameters as main effects 
and interaction terms into a model. 
 
The MCMC estimation methods have 
been greatly extended and a new 
MCMC manual is available to 
download from the web page. MCMC 
can now be used to fit many models 
previously only available using 
likelihood-based methods e.g. 
multivariate response models and 
complex level one variation. There are 
also many other models that are either 
only available using MCMC or are 
easier to fit using this method. New 
models available using MCMC include 
multilevel factor analysis models, 
measurement error models, cross-
classified, multiple membership and 
spatial models. There is also the 
opportunity to use the DIC diagnostic 
for model comparison for some types of 
models. 

Some Recent Publications Using Multilevel Models 
 
Issue on Multilevel Modelling of 
Statistical Methods in Medical 
Research, 10 (6). (2001). 
Thompson, S. G., Turner, R. M., and 
Warn, D. E., Multilevel models for 
meta-analysis, and their application to 
absolute risk differences, 375-392. 
van den Oord, E. J. C. G., Estimating 
effects of latent and measured 

genotypes in multilevel models, 393-
407. 
Rabe-Hesketh, S., Yang, S. and Pickles, 
A., Multilevel models for censored and 
latent responses, 409-427. 
Longford, N. T., Multilevel analysis 
with messy data, 429-444. 
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