
Vol. 10 No. 1 February, 1998

Advanced Training Workshops in
multilevel modelling in 1998:

Under phase II of the Analysis of Large and Complex
Datasets (ALCD) programme of the Economic and
Social Research Council (ESRC) in the UK, five
advanced workshops for established researchers in the
fields of Education, Public Health,
Geography/Environment, Political Science and
Demography will be held. They are two-day
workshops by invitation at the Institute of Education
in London. The workshop dates and organisers are

� 2-3 Feb. by Harvey Goldstein (Education);
� 18-19 March by Ian Langford (Environment);
� 7-8 May by Alastair Leyland (Public Health);
� 15-16 October by Anthony Heath (Political);
� 3-4 Dec. by Ian Diamond (Demography).

More forthcoming Events:

• 6 April, a one-day workshop on Markov Chain
Monte Carlo estimation using MLwiN will take place
at Institute of Education, University of London. David
Draper and William Browne
(B.Browne@maths.bath.ac.uk) from Bath University
will be organising it.

• May 21-22, Statistics Canada Symposium 1998 will
be held in Ottawa, on the tipic of longitudinal analysis
for complex surveys. Multilevel modelling techniques
and applications to longitudinal survey data is one
of the topics (symposium@statcan.ca).

• Workshop in Toronto, a two-day workshop using
MLwiN will take in mid May in Toronto. Enquiries to
Lorna Earl (learl@oise.utoronto.ca).

• October 20, a one-day meeting in London will be
held on Applications of Random Effects / Multilevel
Models to Categorical Data in Social Science and
Medicine. This meeting is sponsored jointly by
Statistics in Society (JRSS (A)), the Social Statistics
and Medical Sections of the Royal Statistical Society,
and the ALCD programme of the ESRC. The aims of
the meeting are to bring together statisticians in the
UK and abroad working in these areas, to show
improvement of statistical inference by means of
applying these modern methods, to demonstrate to
interested non-statisticians the value of these
approaches and to produce a set of papers suitable for
publication in JRSS (A). The organizing committee
consists of Ian Plewis, Gillian Raab, Fred Smith,
Patrick Heady and John Wakefield
(i.plewis@ioe.ac.uk).
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Some features of MLwiN: a visual interface for multilevel modelling

The equations window

In MLwiN you can specify models in three different ways. The original command interface of MLn
can be used - and in release 1.0 you will have to use this for certain advanced features. A system of
dialogue boxes can be completed or you can directly manipulate the elements of the model equation.
Consistency is maintained so that, for example, completing a dialogue box also updates the
equations.

The MLwiN  window on the left shows a 2 level random coefficient
model with two explanatory variables, a constant, x0 , with no

subscripts and an explanatory variable with a level 1 and a level 2
subscript indicating that it varies across each type of unit. MLwiN
automatically decides which subscripts to use when you define a
variable. Note also the Normal distribution assumption - this can be
changed for generalised linear models. along with a selection of link
functions. The last two lines define the random variables at each level.

Graphing in MLwiN

Extensive plotting facilities are available. Any graph can be altered in terms of colour, symbols, lines
etc.

We can superimpose graphs, lay them out in patterns (such as
trellis plots), label them, identify points or lines on them in
terms of data units and copy and paste them to other
applications. Several special kinds of graphs are created
directly by the software.

For example the ’caterpillar’ graph on the left is created from
the ’residuals window’ and represents a set of ordered ’shrunken’
residual estimates of  ’school effects’ with 95% confidence
intervals from a variance components model.



Monitoring MCMC estimation

MCMC methods allow Bayesian models to be fitted with
prior parameter distributions By default MLwiN sets diffuse
priors. Both Gibbs sampling and the Metropolis-Hastings
algorithm are used.

We can obtain summary measures and diagnostics by
clicking any of these graphs to obtain a window such as the
one on the left which shows a kernel density plot,
autocorrelation functions and estimates of required chain
length etc. for a level 2 variance parameter. Had an
informative prior been specified its distribution would have
been superimposed on that of the posterior kernel density.

MLwiN has been created by the Multilevel Models Project team based at the Institute of Education,
University of London together with various colleagues in other centres, and with support from the
ESRC (UK). It is to be launched mid February 1998. It has a Web site
(http://www.ioe.ac.uk/mlwin/) where you can browse features, keep up to date with the latest
upgrades and releases and download an order form. For further details, send email to
mln.order@ioe.ac.uk or phone +44 (0)171 612 6027 or fax +44 (0)171 612 6032. For technical
support, send email to m.yang@ioe.ac.uk.

The next issue of the Newsletter will contain a review of MLwiN.



Some Publications in 1997
Using Multilevel Models

Adams, R. J., Wilson, M. and Wu, M. (1997).
Multilevel item response models: An approach
to errors in variables regression. Journal of
Educational and behavioural Statistics 22:
47-76.

Agresti, A. (1997). A model for repeated
measurements of a multivariate binaryu
response. Journal of the American Statistical
Association 92: 315-21.

Altman, D. G. and Bland, J. M. (1997). Units
of analysis. British Medical Journal 314:
1874.

Bernardinalli, L., Pascutto, C., Best, N. G.
and Gilks, W. R. (1997). Disease mapping
with errors in covariates. Statistics in
Medicine 16: 741-52.

Bigerstaff, B. J. and Tweedie, R. L. (1997).
Incorporating variability in estimates of
heterogeneity in the random effects model in
meta analysis. Statistics in Medicine 16: 753-
68.

Candy, S. G. (1997). Estimation in forest
yield models using composite link functions
with random effects. Biometrics 53: 146-60.

Catalano, P. J. (1997). Bivariate modelling of
clustered continuous and ordered categorical
outcomes. Statistics in Medicine 16: 883-900.

Chan, J. S. K. and Kuk, A. Y. C. (1997).
Maximum likelihood estimation for probit-
linear mixed models with correlated random
effects. Biometrics 53: 86-97.

Christiansen, C. L. and Morris, C. (1997).
Hierarchical Poisson regression modelling.

Journal of the American Statistical
Association 92: 618-632.

Ecochard, R. (1997). Random effect models
in the statistical analysis of human
fecundability data. PhD theses, University of
Cambridge.

Goldstein, H. and Sammons, P. (1997). The
influence of secondary and junior schools on
sixteen year examination performance: a
cross-classified multilevel analysis. School
effectiveness and school improvement. 8:
219-230.

Greenland, S. (1997). Second stage least
squares versus penalized quasi-likelihood for
fitting hierarchical models in epidemiologic
analyses. Statistics in Medicine 16: 515-26.

Heitjan, D. F. and Sharma, D. (1997).
Modelling repeated-series longitudinal data.
Statistics in Medicine 16: 347-355.

Hill, P. W. and Goldstein, H. (1997).
Multilevel modelling of educational data with
cross classification and missing identification
of units. Journal of Educational and
Behavioural statistics (to appear).

Hogan, J. W. and Laird, N. M. (1997).
Mixture models for the joint distribution of
repeated measures and event times. Statistics
in Medicine 16: 239-258.

Hogan, J. W. and laird, N. M. (1997). Model
based approaches to analysing incomplete
longitudinal and failure time data. Statistics in
Medicine 16: 259-272.

Larose, D. T. and Dey, D. K. (1997).
Grouped random effects models for Bayesian
meta analysis. Statistics in Medicine 16:
1817-30.
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Association 91: 775-79.
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Please send us your new
publications in multilevel

modelling for inclusion in this
section in future issues.



Workshops and Courses in
Multilevel Modelling in 1997

Trondheim, Norway, 3-6 November
1997: This workshop was organised by
the Department of Sociology and Political
Science, Norwegian University of Science
and Techonology (NTNU) in Trondheim
as a part of the Department’s Ph.D.
program. The course was for beginners
without extensive background in statistics.
Attending the course and writing a paper
applying multilevel analysis, give the
participants 3 credits in the Ph.D program.
Participants from other fields and/or from
other parts of the country was invited to
participate. The participants (12 in all)
came from fields including Psychology
and Veterinary sciences.

The workshop was administered by
Kristen Ringdal from the Department of
Sociology and Political Science and the
main lecturers were Jon Rasbash and Min
Yang from the Multilevel Models Project
at the Institute of Education in London.
The course was entirely based on the beta-
version of MLwiN, the Windows 95/NT
version of MLn. The program stood up
well in the demonstrations and exercises
over the four days. Its new graphical user
interface makes it quite superior to the
current (dos) version of MLn. MLwiN will
obviously lower the costs of beginners
starting to learn multilevel analysis. The
experieneced used will also see the
benefits, especially in the handling of non-
linear, and multivariate models that both
are more accessible through simplified
procedures. Our impressions from the few
days of intensive exercises are positive,

although all functions of the final version
were not implemented in early November

. (Professor Kristen Ringdal)

Postdam, Germany, 28-29 November
1997: This was a two-day workshop on
Multilevel Analysis of Longitudinal
Survey Data  held at the Faculty of
Economics, Business Management and
Social Sciences, University of Potsdam
(Germany). It was sponsored by the
"Laengsschnitt-Werkstatt Berlin-
Brandenburg" which is a recently
established network of longitudinal
researchers with institutional affiliations to
universities and research centers in the
Berlin-Potsdam area.

The workshop was on theory and methods
of multilevel analysis and their
applicability in longitudinal research. The
list of speakers included social scientists
and statisticians from Belgium, Germany,
the Netherlands,the United Kingdom and
Italy. All in all, 50 participants attended
the workshop.

There were three invited presentations,
each opening a major workshop section.
The opening lecture on "Multilevel
analysis of longitudinal data: Models and
issues" was given by Joop Hox
(Amsterdam / Utrecht) to introduce
multilevel models for longitudinal data. A
lecture on "Crossed random effects in
multilevel models", with applications in
social networks and spatial models was
given by Tom A.B. Snijders (Groningen)
to open the section on random cross-
classified models. Min Yang (London)
demonstrated the new MLwin software
with an example of longitudinal data
analysis.



In addition the following papers were
contributed:

� Regression Models for Clustered and
Interdependent Observations by
Ulrich Poetter and Goetz Rohwer
(Bochum).

� Multilevel Models for Panel Data.
Overview and Applications by Uwe
Blien and Katja Wolf (Nuernberg).

� Random Effect Models for Event
Data: a Study of University Dropout
by Massimo Montagni and Gori
Enrico (Florence).

� Longitudinal Meta-Analysis by Cora
Maas and Joop Hox (Utrecht).

� Analysis of Product Usage Diary Data
by Helena Romaniuk, Philip Cooper
and Chris Skinner (Southampton).

� Application of Parametric and
Nonparametric Hierarchical
Modelling to Longitudinal Data by A.
Lopatatzidis, L. Moore, A.R. Cooper,
T.J. Peters (Bristol).

� Multilevel Analysis in Demographic
Research: Some Critical Issues by
Giulia Rivellini (Milano) and
Susanna Zaccarin (Trieste).

� Analysing Unit-nonresponse in Panel
Surveys with a Multilevel Cross
Classified Model by Jan Pickery,
Geert Loosveldt and Ann Carton
(Leuven).

� Modelling Interaction Between
Fertility and Working Careers in Italy:
a Comparison Between Two
Methodological Approaches by

Simona Drovandi and Carla
Rampichini (Firenze).

� Analyzing Change and Structural
Effects by (Multivariate) Multilevel
Analysis by Uwe Engel and Manuela
Poetschke (Potsdam).

A selection of papers will appear in a
book on Multilevel Analysis of Complex
Survey Data (edited. by Uwe Engel and
Joop Hox).

(Professor Uwe Engel)

MLwiN/MLn Clinics in London
1998

Tuesday February 10
Tuesday March 3
Tuesday April 7
Tuesday May 5
Tuesday June 2

at
Multilevel Models Project

11 Woburn Square, London WC1A 0SN
Contact Min Yang /Geoff Woodhouse for

appointment

Tel: (0)171 612 6682 / 6657
Email: m.yang@ioe.ac.uk /

teuegmw@ioe.ac.uk
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Multilevel models where the
random effects are

correlated with the fixed
predictors: a conditioned
iterative generalised least

squares estimator (CIGLS)

Nigel Rice1, Andrew Jones2 and Harvey
Goldstein3

Introduction

This paper is a shortened version of a
longer paper submitted for publication. It
considers an extension to the iterative
generalised least squares estimator (IGLS)
to produce consistent estimates of fixed
predictor parameters for multilevel models
where the random effects are correlated
with the fixed predictors and group
sample sizes are small. The motivation for
this work draws heavily on the
econometrics literature on panel data
estimators and the debate surrounding the
use of fixed versus random effects.

There has been much debate in the
literature on panel data estimators,
between the two alternative specifications
of fixed and random effects (see for
example, Judge et al (1980), Hsiao (1986)
and Baltagi (1995)). In its simplest form a
variance components repeated measures
or time series cross-sectional model can
be specified in the following manner:

                                               
1 Centre for Health Economics, University of
York, York, Y01 5DD, England. E-mail:
nr5@york.ac.uk
2 Department of Economics and Related Studies,
University of York, York, Y01 5DD, England.
3 Institute of Education, University of London,
London, WC1H 0AL, England.

Consider a simple 2-level variance
components model. In the fixed effects
model the level 2 group effects are treated
as fixed but unknown to the observer.
Such models allow the investigator to
make inference conditional on the effects
that are contained within the sample. In
contrast, a random effects specification
may be viewed as providing marginal or
unconditional inference with respect to the
population of all effects. It treats the
effects as being random draws from an
i.i.d distribution, typically Normal. The
choice of specification may, in certain
circumstances, be clear to the analyst and
depend on the manner in which the data
were sampled and the context of the
investigation. For example, see
discussions by Hausman (1978) and
Goldstein (1995).

In this paper, we add to the debate on the
relative merits of fixed and random effects
by considering the general case of
multilevel models. The procedure is
general and may be extended more than
two levels of the data hierarchy as well as
random-coefficients and variable within
group sample sizes.

Model specification

The 2-level variance components model
may be written

y X u eij X ij j ij= + +( )β
i N j M= =1 1, , ; , ,K K

(1)

Here X  is a K × 1vector of exogenous
variables, and β X  a K × 1 vector of

constants. We assume here that there are



M level 2 units or groups and N
observations in total (and hence a total of
N level 1 observations). Group sample
sizes n j  are not required to be constant

across the M groups. The components u j

and eij  are residuals at level 2 and level 1

respectively, assumed to be i.i.d. with zero
mean and constant variance:
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The quantities of interest in (1) are the

estimated parameters $β X  (termed the
fixed part parameters) and the estimated
random components $σ u

2  and $σ e
2  (termed

the random part parameters).

In the absence of correlation between the
components of X  and the level 2 random
effects u j , the iterative GLS estimator

produces both efficient and consistent
estimates of the fixed and random part
parameters for fixed n j  (Goldstein,

1986). However where correlations
between the level 2 random effects u j  and

components of X exist, although IGLS
estimation is efficient it is inconsistent as
M → ∞  when group sample sizes n j are

small (for example, see Blundell and
Windmeijer (1997) for a full discussion
relating to multilevel models).

Consistent estimation

Consistent estimation of βX  in (1) can be
achieved by specifying the model as a
fixed effects model and estimating by
OLS. We write

y X d eij X ij j ij ij
i

N

= + + ∗

=

−

∑( )β α
1

1

(2)

If we pre-multiply (2) (whilst retaining the
multilevel notation) by the idempotent
matrix

{ }Q Q Q I J nj j n n jj j
= = −, /

(3)

where { }denotes a matrix, and

I Jn nj j
, are respectively the identity matrix

and the square matrix of ones, of order
n j , we have (in matrix notation):

QY QX QEX= + ∗β
(4)

Applying OLS to (4) leads to consistent
estimates of β X . The estimator

( ) ( )X QX X QYT T−1 is known as the within
groups or covariance estimator (CV) (for
example, see Hsiao (1995)).

We now consider the following alternative
conditioned iterative estimation procedure
(CIGLS). IGLS estimation may be viewed
as a two step procedure for each iteration.
In the first step we re-express model (5) in
matrix notation as:
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where ι n j
 is a vector of ones of length n j ,

$β X
∗  is the current estimate of βX  and Sj

is obtained by stacking the vectors s1  to

sM  and is of length n Nj
j

M

=
∑ =

1

. In other

words, the vector S consists of the group
means of the estimated residuals from the
previous iteration. Once S is constructed,
updated estimates of βX  are then obtained
through GLS estimation of (5).

In the second step, we condition on $βX

and form the matrix Y WW
*

$ $= ′ . By

stacking the columns of Y
*

 these are
regressed on the random parameter design
matrix and GLS estimation produces the
parameters of interest; $σ e

2  and $σ u
2  (for a

variance components model, the random
parameter design matrix is the block
diagonal matrix leading to the covariance
matrix V with elements σ σe n u nI J

j j

2 2+ for

each group or block (for a full discussion,
see Goldstein, 1995).

Suitable starting values for $β X
∗  may be

obtained by OLS estimation of (2).
Iteration of the two steps proceeds to
convergence defined by a pre-assigned

tolerence for ( $ $ )β βX X− ∗ .

Convergence

We can re-express S in (5) as

S I Q Y X X= − − ∗( )( $ )β  
(7)

where Q  is defined in (3) and I is the
identity matrix. It then follows directly
from (5) that

Y X I Q Y X EX X S= + − − +∗β β β(( )( $ ))

(8)

If at convergence we have $ $β βX X= ∗ , and
$ .β S = 1 0 , (5) reduces to

QY QX EX= +β
(9)

which is equivalent to the within groups

specification (4) with E E Q=
*

. .

It follows immediately therefore that the
GLS estimator for the full set of fixed

coefficients β
β
βZ

X

S

=

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both the efficient and consistent



(maximum likelihood under Normality)
estimator of β X .

Note, that in comparison to the GLS
estimator, the OLS estimator ignores the
lack of independence induced by
premultiplying E in the equivalent
multilevel fixed effects specification of (1)
or (5) by Q . Also, if at convergence we

obtain a value of $β S  substantially different

from 1.0 this may indicate misspecification
in either the fixed or random parts of the
model and could form a basis for
diagnostic specification checks.

This procedure can be extended to the
case where there are group level
explanatory variables and where the
LSDV is inapplicable. It also readily
extends to the random coefficient case and
to any number of levels. In the next
section we look at some simulation
results.

Simulations

We consider the simulation of a random
coefficient at level 2, such that:

y x x v x eij ij ij j j ij ij= + + + + +1 1 151 2 2. λ

where

n j j
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The results of simulating the above model

are presented in Table 1. We obtain
improved estimates using CIGLS over
IGLS, particularly for β 1  which
corresponds to the LSDV estimate. The
difference between the estimated constant
and β 2  derived through LSDV and
CIGLS is due to the different assumptions
concerning the ‘baseline group’ adopted.
For CIGLS the constant represents a
weighted average over all level 2 units, as
does the estimate for β 2 . In contrast,
LSDV estimates are made relative to a
chosen ‘baseline group’ and as such can
only be interpreted respective to a
particular level 2 unit.

Conclusions

The iterative generalised least squares
estimator conditioning on the mean level 2
effects (CIGLS) provides both efficient
and consistent estimates of β X  when the
random effects are correlated with one or
more of the fixed predictors and group
sample sizes, n j , are small. Modifications

to the standard IGLS estimation routine
are trivial and computationally
undemanding in the case where variance
components models are considered. More
elaborate estimation is required where a
random coefficient is also correlated with
a fixed predictor, but again this can be
handled adequately using existing
software (MLn, Rasbash, J. et al (1995)).
In all cases, the procedure avoids the use
of dummy variables (as in the standard
LSDV estimator) and hence the associated
loss in degrees of freedom, and the
requirement to transform data to represent
deviations from group means.



Table 1. Random coefficient model
OLS

LSDV
Multilevel

IGLS
Multilevel

CIGLS
Mean SD MSE Mean SD MSE Mean SD MSE

Random effects
Level 2

v
2σ

λσ 2

( , )λσ v

Level 1

e*
2σ

Fixed predictors
Constant

β1

β 2

--
--
--

2.251

1.026
1.007
1.494

--
--
--

0.342

1.297
0.133
1.567

--
--
--

0.180

5.575
1.004
4.719

0.966
1.243
0.537

1.502

1.002
1.093
1.507

0.373
0.448
0.304

0.227

0.211
0.129
0.235

0.140
0.266
0.380

0.299

4.035
0.839
2.285

1.029
1.253
0.564

1.494

1.003
1.007
1.506

0.389
0.449
0.312

0.225

0.215
0.133
0.234

0.152
0.262
0.415

0.307

4.035
1.003
2.285
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Random effects models for
event data ---- evaluating

effectiveness of universities
through the analysis of

student careers
Enrico Gori11 - Massimo Montagni2

1. Introduction

The analysis of university student’s
careers by duration models has received
increasing attention in recent years (Zwick
et Braun 1988; Civian 1990). There are
many reasons for applying this kind of
analysis to the Italian University. First of
all the average time to graduation (7-8
years) is much higher than that
institutionally planned (4-5 years). Several
students are still enrolled after 17 years.
Finally a high percentage of freshmen (25-
35%, depending on the faculty) dropout in
the first two years, while others (20-30%)
dropout after 3 or more years, having
taken a small part of the planned exams.
In this paper the main concern is with
dropout problem. Although a competing
risk model should be used, we confine
ourselves to the analysis of dropout risk,
by censoring all graduate students at the
beginning of the interval in which this
event occurred (Allison 1982).

                                               
1 Dipartimento di Scienze Statistiche, via Treppo
18, 33100 Udine. Email: gori@dss.uniud.it
2 Dottorato in Statistica Applicata - Dipartimento
di Statistica ’G.Parenti’, via Morgagni 59, 50136
Firenze. Email:montagni@stat.ds.unifi.it

2. Evaluating effectiveness in
education

Following Willms (1992), in defining
effectiveness it is worth to distinguish
between:

• type A effects, which include the
effects of institutional policy and
practices (e.g. resources),
characteristics (e.g. class sizes),
composition (e.g. socioeconomic
background of pupils), and the effects
of social and economic factors (e.g.
local employment rate);

• type B effects, which includes only
institutional policy and practice,
controlling for the other factors
mentioned above.

In both cases we assume, obviously, to
control for individual inputs. With
reference to the basic variance
components model:

ijiijij euy ++′= xβ

where i indexes the “agent” (school,
faculty), and j indexes the individuals, if

ijx  includes only individual covariates, iu

measures type A effects, which are of
main interest for the “clients“ (students
and families) in order to choose the “best”
agent. If we include in ijx  also the other

factors (characteristics, composition, etc.),
out of the control of agents and principals,

iu  can be interpreted as type B effects,

and they are of main interest for
“principals” (administrators) (Goldstein
and Thomas 1996). But in order to get
deeper insight into type B effects, it seems
to be appropriate to distinguish between:



� B1 effects, which are related to
observable characteristics of the
“production function” of each agent,
under its control (for example the
amount of resources employed, the
class size etc.) Note: we think that
these effects should include also what
Willms defines as “characteristics
(e.g. class sizes)” if they are under the
control of the agent or  principal.

• B2 effects, which are related to
unobservable management ability of
the agent.

A possible way to identify these effects is
to specify the overall type B effects as a
function of observable characteristics of
the production process at the “agent”
level:

( ) iii vhu += γ;z

where iz  are agent specific observable

characteristics, h(.) is a “technological”
relation, γ  are parameters to be

estimated; ( )γ;ih z  will measure type B1

effects, while iv  will measure type B2

effects. Both effects are of interest for the
“principal”, but B1 effects are more
important to plan “production strategies”,
while B2 effects are more useful to
implement “incentives policies” (Laffont
and Tirole 1993) aimed to growth
effectiveness and stimulate competition
between agents. For reasons of equity,
principal cannot compare performances
(effectiveness) of agents which differ for
the amount of resources. Especially if
resources are allocated between agents by
the principal, and the allocation is based

on effectiveness measures: in this case B2
measure should be used.

So it can be quite interesting to investigate
the relation between output measured at
the student level and resources, in
particular the number of teachers with
respect to students. Although Aitkin and
Longford (1986) have shown that type B
effects explain some significant portion of
the individual variance, other studies do
not support an effect of resources on
student output (Hanushek, 1986; Pincus
and Rolph, 1986). It must be noticed,
however, that these last studies are based
on data aggregated at school level.

3. Data and variables

A sample of 2400 freshmen, enrolled at
one of the 11 faculties of the University of
Florence, between years 1975-1984, was
drawn from administrative archives. The
follow-up period for each freshman is 8
years long. The time unit for events is the
academic year. Students migrating to
other universities are considered as
censored observations, under the
hypothesis that migration and dropout are
independent. The reconstruction of the
data for the analysis, with the method of
failure indicators, provided a total of
about 10500 student year-observations.

For each student were also available
information, ijx , such as sex, cohort,

region of residence, regularity in the
school career preceding enrollment,
eventual delay in the enrollment, kind of
high school, score achieved at high school
final examination-average sore of peers.
For what concerns faculty (agent)
characteristics iz , the number of freshmen



and teachers were considered: these are
time varying explanatory variables. For
every year, the number of freshmen
approximates the number of competitors
that each student must face in the access
to resources, i.e. teachers.

4. Model

Given the kind of data a discrete time
duration model was formulated. The
hazard function, conditional on student
characteristics, resources and faculty, is
defined as the probability:

( ) ( )ititijititijijt vztTtTPvzt ,,,,,; xx ≥=== λλ

If we choose for the hazard a logistic
specification, a multilevel discrete time
duration model can be specified as
follows:

( ) ( )
ijt

tindependen

tjiijtijt By λλ ,1~
,,

ititijtijt v+′+′+= γβαλ zxlogit

with 21 Ni K= , the number of faculties,
kt K1= , the number of intervals (8

years), itnj K1= , the number of students

enrolled in faculty i which are at risk in the
interval t . Baseline hazard parameters are
assumed to be random at faculty level and
across time intervals. The agent variables
are introduced by a translog function. We
chose to specify the model in a Bayesian
framework, with non informative prior for
the parameters, that is:

( )( ){ } uniformkt
r

t ∝= γβα ,,1L ,

( ) ( )2
...

1,1 ,0~
2 v

dii

ktNiit Nv σ
LL == ,

( )001.0,001.0~2 IGvσ .

The reason for choosing a Bayesian
approach was mainly motivated by the
small number of second level units (11
faculties). We estimated the model with
Monte Carlo Markov Chain techniques;
we set up a Metropolis algorithm (Tierney
1994).

5. Empirical results

A summary of the results is presented in
table 1. For what concerns type B1
effects, although most of the parameters
involving freshmen have a posterior
distribution that includes zero, the number
of teachers is significant in explaining
dropout hazard. Moreover, if we look at
the graph of the dropout hazard in the first
year (fig. 1) for the baseline student, this is
an increasing function of the number of
freshmen and a decreasing function of the
number of teachers. This means that,
although number of freshmen is not
significant, the sign is that expected. It
seems that a deeper analysis is needed to
identify the “right” number of students in
competition for access to resources. The
posterior expectation of standard
deviation of faculties effects is
substantially larger than 0 when compared
to the standard error, this means that,
controlling for B1 effects, “ability of the
faculties” (B2 effects), matter in
explaining individual output. Note it may
be questionable to define as “more
effective” a faculty with a lower dropout
hazard. But, on one hand dropout rates of
Italian universities are so high that it is



very important to try to reduce it; on the
other hand we can try to correct possible
distortions of this indicator, using other
indicators, such as the success of
graduates in the labor market. We
derived also simultaneous interval for
ranks of faculties, based on probability of
dropout within the first three years. From
figure 2 we can see that there are 2 groups
of faculties for which 90th interval for
ranks do not overlap.

6. Conclusions

In evaluating effectiveness of public
services such as education Willms (1992)
introduced the distinction between type A
and type B effects. In this work we
introduce a distinction of type B effects in
B1 and B2 effects. The results of the
analysis show that in this case study this
classification it’s quite important. The
distinction between the two types of
effects is relevant for the principal,
because B1 effects are more important to
plan “production strategies”, while type
B2 effects are more useful to implement
“incentives policies”. This aspect is
particularly important in situations such as
Italian University, where resources are
allocated by principal (government) to
agents (universities), on the basis of their
effectiveness (relative performances). Not
doing so it is equivalent to compare
schools performances without adjusting
for characteristics of their students. This is
not only illogical, but, in the case at hand,
also iniquitous given the very large
differences in the amount of resources per
student, allocated by government between
universities and faculties in Italy.
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Tab. 1 - Posterior distributions from MCMC based on iterations 30,000-50,000
(samples of 4,000 values)

Parameter Mean S.D. 5th cen.95th cen. Parameter Mean S.D. 5th cen.95th cen.

Baseline parameters

α1 -2.27 0.22 -2.63 -1.94
α2 -3.08 0.22 -3.44 -2.72
α3 -3.64 0.24 -4.06 -3.27
α4 -3.82 0.23 -4.24 -3.43
α5 -4.32 0.27 -4.77 -3.89
α6 -3.98 0.26 -4.42 -3.56
α7 -4.29 0.30 -4.78 -3.80
α8 -3.98 0.30 -4.47 -3.50

School career preceding enrollment

Regular -----
Not regular 0.28 0.11 0.09 0.44

Delay in the enrollment

No -----
Yes 0.89 0.08 0.76 1.03

Region of residence

Florence -----
Tuscany -0.48 0.11 -0.66 -0.31
Rest of Italy 0.11 0.09 -0.04 0.25

Kind of high school

Classical studies -----
Scientific studies 0.29 0.14 0.12 0.47
Techniques studies 1.47 0.11 1.31 1.66
Other 1.21 0.10 0.97 1.44

Sex

Male -----
Female 0.03 0.09 -0.11 0.18
High school score-0.041 0.005 -0.05 -0.03
- average score

Cohort

1975 -----
1976 0.28 0.17 -0.002 0.57
1977 0.18 0.17 -0.09 0.46
1978 0.30 0.16 0.03 0.57
1979 0.50 0.06 0.23 0.77
1980 0.07 0.20 -0.27 0.41
1981 -0.03 0.21 -0.39 0.33
1982 0.11 0.17 -0.17 0.39
1983 0.09 0.16 -0.17 0.36
1984 -0.04 0.17 -0.31 0.24

Institutional factors

Log Teachers -0.52 0.11 -0.70 -0.34
(Log Teachers)^2 -0.04 0.26 -0.47 0.39
Log freshmen -0.02 0.13 -0.22 0.20
(Log Freshmen)^2 -0.23 0.21 -0.59 0.11
(Log Teachers)* -0.17 0.25 -0.60 0.24
(Log Freshmen)

vσ 0.28 0.06 0.18 0.38
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Fig. 2 - 90 percent interval for simultaneous ranks 
based on dropout probability within first three years


