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SUMMARY

The analysis of repeated measures data can be conducted efficiently using a two-level random coemcients
model. A standard assumption is that the within-individual (level 1) residuals are uncorrelated. In some
cases' especially where measurements are made close together in time, this may not be reasonable and this
additional correlation structure should also be modelled. A time series model for such data is proposed
which consists of a standard multilevel model for repeated measures data augmented by an autocorrelation
model for the level I residuals. First- and second-order autoregressive models are ionsidered in detail,
together with a seasonal component. Both discrete and continuoui time are considered and it is shown how
the autocorrelation parameters can themselves be structured in terms of further explanatory variables. The
models are fitted to a data set consisting of repeated height measurements on chiidren.

I .  INTRODUCTION

In the typical repeated measures study we can write the common basic model for the jth
measurement or reading on the 7th subject as

( 1 )
q

+ \ -' /-/
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r r .  -  \ -
l t J -  L

f t = O
T i* tfi hz i j t  *  € i j

where t refers to time or age and the z's are covariates. In the terminology of multilevel
modellingl, the successive measurements or readings constitute level 1 and are nested within the
individuals, level 2. ln a growth curve context, /;; usuall] refers to chronological age. The
covariates z1;i me! be defined at either the individual or occasion level. Commonly, the lower
order polynomial coefficients Tix (k - 0, ...,s,s <p), are taken to be random at level 2 with
coefficient values varying and covarying between individuals. In the standard formulation the
level I random terms €;i ?ra assumed to be distributed independently with zero mean and
constant variance.

This basic model has been studied by several authors, among the earliest being Laird and
Ware;2 Goldsteinl (Chapter 4) extended it to the case where the level 1 variance is ailowed to be
a function of further variables, notably time or age. An important advantage of (1) over previous
formulations (see, for example,Grizzle and Allen 3) is that the time intervals need not be constant;
the number and spacing of measurements can vary from subject to subject.

The model given by (1)-is a natural formulation for growth data, since it separates explicitly
between-individual and within-individual variation. From a biological point of view mo-dell ing
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with randomly varying coemcients has several advantages. After fitting the model we can obtain
posterior estimates of the coefficients for each individual to characterize growth in terms of its
average rate of change, acceleration, etc. This might then be used diagnostically to detect those
with very abnormal growth patterns. Secondly, it allows the fitting of group factors and other
covariates to study both how the mean values of the growth parameters change across groups
and to see how much of the group differences and the between-individual variation can be
explained by other factors.

In reality the assumption of independence for the level I residuals is often unrealistic Equation
(1) models a smooth summary curve for each individual graduating the set of measurements for
that individual. Clearly, when many measurements are taken close enough together in time, and
assuming growth to be a continuous process but rougher than the smoothness implied by models
such as (1), then the level I residuals about each individual's underlying smooth curve will tend to
be correlated, a positive residual tending to be followed by another positive residual etc. We
therefore require models which explicitly recognize the possibility of an autocorrelation structure
among the eii. The purpose of the present paper is to study such models in a multilevel framework
thereby extending the existing literature.

Some recent papers have addressed this issue. Chi and Reinsela and Lees consider the
extension of (1)when there is a fixed set of occasions with equal intervals for each subject together
with a discrete time first-order autoregressive (AR(l)) model for the level 1 random variables.
Diggle6 uses a model where the covariance between level I residuals which are s time units apart
is given by

O 2  " -  
a s c  

.

This model allows the spacing of occasions to vary continuously and reflects the fact that the
serial correlation will decrease as s increases. Furthermore, when c is equal to one, it is the
continuous time analogue of a first-order autoregressive model which is also considered by Jones
and Boadi-BoatengT. These papers derive maximum likelihood estimators, but Diggle only
considers a variance components model, that is where a simple variance term describes the level 2
variation.

Jennrich and Schluchter8 also consider autoregressive models, but these are applied to the total
covariance matrix without separately modelling the between- and within-individual variation as
in (1).

We generalize (1) to consider the specification of a more general class of level 1 serial
correlation models for both equal interval, discrete time and continuous time.

2. THE MI.]LTILEVEL LINEAR MODEL

For simplicity we consider the two-level model. Extensions to three or more levels are straight-
forward, and in particular we can deal with autocorrelation structures at higher levels.

We can rewrite (1) in the general form

!ri : 2o 0iox;ip I €;i

which also allows for random coefficients of covariates. For a coefficient in this model which does
vary across individuals we can write

0io:  f i *  *  ezxi
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so that, writing z for x when a random coefficient is present, a general two-level model can be
written as follows

l i i  :Lox t to  Pe + z27 i ;  €21 i  * z t ^ t j  € t ^ i j

where pz is the number of coefficients random at level 2 and where there are pL coefficients
random at level I to allow for a complex level I variance structure. In matrix form we have

Y : X f r * E z * E r

Er  :  { r r ^ ) ,  Ez  :  {ez t }

E(et^ii e t^i '  j ') :0' i * i ' ,  for all j  and j '

E(eui  €zt j ' )  :4,  j  + j '

where €2t: {zztti ez,i} and e2tj is the lth level 2 random variable with zero mean,
€r^: {tr^,i et^ii} and e1^ii is the nth level I random variable with zero mean, and Z2: {zztti}
and Zr: {zr^,i} are the level 2 and level I random component design matrices. The level 2
random variables E2 are assumed to be independent of the level 1 random variables 81. The
vector 0 : {Fo} contains the fixed coefficients to be estimated, and X : {X ii} is the design matrix
for the fixed coefficients. The columns of X and Z 1 and Z 2 may or may not coincide. Typically, Z 1
and 22 are subsets of X and the associated random variables are referred to as random
coefficients corresponding to the elements of B.

In this two-level model the covariance matrix of the observations

v :  E{Y -  xp) (Y  -  xp) ' }

is block diagonal. The 7th block of this, corresponding to observations on the jth subject, is
modelled by the following structure:e

V i :  Vr i  a  Zz iQrZ l i  (3 )

where Qz : cov(Er). The matrix Z2iis the subset of Zrfor theTth block and contains the values of
the explanatory variables for the variables random at level 2. The matrix V y is the contribution
to Vi of the level 1 variation and is usually taken to be diagonal. Thus, in the simplest case of
u uu.iun.e components model with a single between-l evel-2 units variance o!2, and a single
between-level-1 units variance o!r, we have

Vr j :  o? t  In r ,  { l z :  o?z

where In, is the identity matrix of order n; which is the number of level I units in theTth level2 unit

and Z ,, Z 2 are now vectors of ones. The models considered in this paper extend the model given

by (3) by allowing the level I residuals to be autocorrelated, that is E(emiieni' j) #0, and this
gives rise to complex structures for the V1;.

Assuming multivariate Normality, we have a choice of algorithms for obtaining maximum
likelihood estimators. Here we use the lterative Generalized Least Squares (IGLS) algorithm, one
advantage of which is that it provides a conceptually straightforward procedure based upon
generalized least squares regression and is easily extensible as shown below. In the absence of
autocorrelation the estimates which are produced are maximum likelihood by virtue of the
equivalence between maximum likelihood and IGLS estimates and between restricted maximum
likelihood and restricted unbiased IGLS estimates for Normallv distributed data.e'r0 The

algorithm proceeds as shown in Appendix I.

P2

I =  I

(2)
P r

t
m = l
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3. FITTING THE DISCRETE TIME AUTOREGRESSIVE MODEL

Consider first the single level stationary AR(l) model with observations e, given by

€ t :  p€ , -1*  r , ,  va r (e , ) :  o? ,  va r (v , )  :63 ,  E (v , )  :6 .

We can obtain either maximum likelihood or least squares estimates for p, o! and o]; for a long
series these estimates are equivalent. Using the simpler, non-iterative least squares procedure we
would estimate p by treating (4) as a simple regression through the origin.

Now consider the two-level model (1) in which the eii follow an AR(l) process. A natural
generahzation might be as follows. At each iteration we obtain the (predicted) level I residuals, d,,
(see for example Goldstein,l Appendix 3.2). Least squares estimates of the autoregressive para-
meters could then be obtained by a simple regression, pooling over the level 2 units. The level
1 residual estimates, however, are biased, with the bias depending on the number of level I units in
the level 2 unit. We could work with unbiased, adjusted, residuals A,i - A.ibut these are negatively
correlated, the correlation being - 1.0 lf n, : 2. The correlation approaches zero only as n;
becomes large. In the typical case with small n;, therefore, this procedure will be unsuitable.

We proceed instead by extending the design matrix X** (see Appendix I) to incorporate
a further random parameter design vector whose coefficient is p. Consider the extension of (1)
where the level 1 residuals e;; follow an AR(l) process as in (4). The level I contribution to the
residual covariance matrix for Vyi (in addition to the diagonal matrix o!1r,,,,7 has (k, /) element
ptk-ti of,, and we can write, omitting the subscript for level l,

Vr j :  o!  Is11 + po'"  R6,y

where the (k, /)th element of R(,,), is defined as

( 0  i f  l c :  I
R , , , , (k ,  / )  :  i' " r ' \  

[ p ( ] k - t t - r )  r f  k + l

The vectors vech(o? Rr,r) and vech(11nr;) can be included as explanatory variable vectors in X*x,
with the additional coefficients p, o! to be estimated.

The estimation typically proceeds as follows. We first obtain a solution which excludes the
autoregressive component, then using a suitable starting value for p calculate R1,r;; in many cases
zeto can be used. Updated estimates of p, of are obtained and after each iteration R1nr, is
recalculated and the procedure repeated until convergence. Care is needed over numerjcal
precision to avoid rounding errors in the calculation of V. For prediction of future level I
residuals we can use the estimated autocovariances, with the set of past estimated level 1 residuals
as explanatory variables in a l inear predictor.

The above discussion has assumed complete data, but the extension where observations at
some occasions are missing is straightforward. The only modification involves noting that some
subdiagonals of Rlnr; will contain lags of different degree.

3.1. The second-order autoregressive model

The model for a second-order autoregressive sequence in discrete time can be written as

(4)

(5)

(6)e t :  P t € , - t  *  P z € t - z  *  t ,
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so that, writing z f.or x when a random coefficient is present, a general two-level model can be
written as follows

l i i  : 2vx i i v  P1 ,  * 2 2 1 ; ;  € 2 1 i  * z t m i i  € t a i

where pz is the number of coefficients random at level 2 and where there arc pr coefficients
random at level I to allow for a complex level I variance structure. In matrix form we have

Y : X 0 * E z * E r

Er  :  { t t ^ } ,  Ez  :  {ez t }

E(er^ i i  €r^ i '  j , )  :0,  i  + i ' ,  for  a l l  j  and j '

E (er t i  €z r j , )  :4 ,  j  +  j '

where €2t: {zztii eui} and e2rj is the /th level 2 random variable with zero mean,
€r^: {tr^,i er^ti} and ey^i; is the nrth level I random variable with zero mean, and 22: {zz,ti}
and Z , : {2,,^,i} are the level 2 and level I random component design matrices. The level 2
random variables E2 are assumed to be independent of the level 1 random variables E1. The
vector 0 : {Fo} contains the fixed coefficients to be estimated, and X : {X ii} is the design matrix
for the fixed coefficients. The columns of X and Z , and Z 2 may or may not coincide. Typically, Z 1
and 22 are subsets of X and the associated random variables are referred to as random
coefficients corresponding to the elements of B.

In this two-level model the covariance matrix of the observations

v : E { Y - x p ) ( Y - x i l r }

is block diagonal. The jth block of this, corresponding to observations on the 7th subject, is
modelled by the following structure:e

V; :  Vr i  I  Zz iQrZT;  (3 )

where Oz : cov(E2). The matrix Z2iis the subset of Zrfor thejth block and contains the values of
the explanatory variables for the variables random at level 2. The matrix Z1; is the contribution
to Vi of the level 1 variation and is usually taken to be diagonal. Thus, in the simplest case of
u uutiun.e components model with a single between-level-2 units variance o!2, and a single
between-level-1 units variance o!r, we have

v r j :  o ? t I n , ,  { l z :  o ? z

where /", is the identity matrix of order n; which is the number of level I units in theTth level2 unit

and Z y Z 2 are now vectors of ones. The models considered in this paper extend the model given

by (3) by allowing the level I residuals to be autocorrelated, that is E(et^iiet^t' j) #0, and this
gives rise to complex structures for the 21.;.

Assuming multivariate Normality, we have a choice of algorithms for obtaining maximum
likelihood estimators. Here we use the Iterative Generalized Least Squares (IGLS) algorithm, one

advantage of which is that it provides a conceptually straightforward procedure based upon
generalized least squares regression and is easily extensible as shown below. In the absence of
autocorrelation the estimates which are produced are maximum likelihood by virtue of the

equivalence between maximum likelihood and IGLS estimates and between restricted maximum
likelihood and restricted unbiased IGLS estimates for Normallv distributed data.e'10 The

algorithm proceeds as shown in Appendix I.
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3. FITTING THE DISCRETE TIME AUTOREGRESSIVE MODEL

Consider first the single level stationary AR(1) model with observations e, given by

€ t :  g € , - 1 *  r , ,  v a r ( e , ) :  o ? ,  v a r ( v , )  - -  o 2 " ,  E ( v , ) :  g .

We can obtain either maximum likelihood or least squares estimates for p, o! and ol; for a long
series these estimates are equivalent. Using the simpler, non-iterative least squares procedure we
would estimate p by treating (4) as a simple regression through the origin.

Now consider the two-level model (1) in which the eii follow an AR(l) process. A natural
generalization might be as follows. At each iteration we obtain the (predicted) level 1 residuals, d,,
(see for example Goldstein,r Appendix 3.2). Least squares estimates of the autoregressive para-
meters could then be obtained by a simple regression, pooling over the level 2 units. The level
1 residual estimates, however, are biased, with the bias depending on the number of level 1 units in
the level 2 unit. We could work with unbiased, adjusted, residuals A,i - A.ibut these are negatively
correlated, the correlation being - 1.0 rf n,:2. The correlation approaches zero only as n;
becomes large. In the typical case with small n;, therefore, this procedure will be unsuitable.

We proceed instead by extending the design matrix X** (see Appendix I) to incorporate
a further random parameter design vector whose coefficient is p. Consider the extension of (1)
where the level 1 residuals e;; follow an AR(1) process as in (4). The level I contribution to the
residual covariance matrix for V11(in addition to the diagonal matrix oZIo,) has (/<, /) element
ptk*I1o|, and we can write, omitting the subscript for level 1,
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where the (k, /)th element of R(,,), is defined as

( 0  i f  k :  I
R ( n , ) ( k , / )  : i  , , , . _ ," r ' \  

[ p | , ( - / t - l )  t f  k + l

The vectors vech(o? Ra,) and vech(/1nr;) can be included as explanatory variable vectors in X**,
with the additional coefficients p, o! to be estimated.

The estimation typically proceeds as follows. We first obtain a solution which excludes the
autoregressive component, then using a suitable starting value for p calculate R1nr1; in many cases
zero can be used. Updated estimates of p, ol are obtained and after each iteration R1nr, is
recalculated and the procedure repeated until convergence. Care is needed over numerical
precision to avoid rounding errors in the calculation of V. For prediction of future level I
residuals we can use the estimated autocovariances, with the set of past estimated level 1 residuals
as explanatory variables in a l inear predictor.

The above discussion has assumed complete data, but the extension where observations at
some occasions are missing is straightforward. The only modification involves noting that some
subdiagonals of Rlnr; will contain lags of different degree.

3.1. The second-order autoregressive model

The model for a second-order autoregressive sequence in discrete time can be written as

(4)

(s)

(6)€ t :  P t € r - t  *  P z € t - z  *  t ,
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whence we obtain the following relationships

cov(e,e,-  r )  :  Pr\  -  Pz)- t  o? :  cto?

t647

cov(e,e, - r ) :  (prc f  + p)o!  :  c toS

cov(e,e,-o) :  bt ct- r  * pzct-)ol :  ctoS

We therefore extend (5) and the associated estimating procedure by defining two explanatory
variables p(1), p(2) for the parametets, pr, p2 based upon (7). The values cf; are calculated
recursively, based upon current values of the parameters. The extension to higher order processes
follows similar lines.

To obtain starting values we can fit an AR(l) model and then add the extra explanatory
variable R(2) to the model with a starting value for p2 of zero.

4. CONTINUOUS TIME MODELS

The restriction of the models in the previous section to discrete equally spaced time points, even
with possibly missing data, may be unwelcome. Even in studies which plan to collect data at fixed
intervals, there is often variation in the observed intervals, and failure to recognize this may lead
to inefficiency and biased estimates of the autocorrelation parameters.

We first consider a generalisation of the models of Diggle6 and Jones and Boadi-BoatengT for
the autocorrelation structure. Dropping the subscript for level 2, we assume that the level I
residuals have a covariance structure given by

cov(e,€,- , )  :  o?f(a,  s) :  o|exp( -  g(4,  s))  (8)

where g(a, s) is any positive increasing function of s, not necessarily linear, and a is a vector of
p parameters

u  :  { a o } ,  k  :  l ,  . . .  , p .

Estimation is described in Appendix II.
The choice for g needs to recognize that it should be positive and increasing and contain as few

parameters as necessary to be flexible enough to describe real data. It will also be convenient to
restrict g to a linear function of parameters to avoid computational complexities. There seems to
be little substantive guidance on choice, and it is likely that different functional forms will be
appropriate for different kinds of data.

An obvious first choice is the analogue of the discrete time AR(1) model

g(4, s) :  as

and the estimation is described in Appendix II.
Another possible choice for g is the polynomial 11d1se, constrained to be positive. A difficulty

with this model is that successive powers will tend to be highly correlated and this causes
estimation difficulties. Alternatively, we may add an inverse polynomial term to give

g ( a ,  s ) :  d 1  s  *  a 2  s -  I

which is linear in the parameters and avoids the high correlations associated with the ordinary
polynomial. Equation (10) can be modified easily for particular data sets, for example by choosing

(7)

(e)

(10)
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s2 and s-2 instead of s and s-l to change the rate of serial decay. Other choices for g might
involve the addition of the logarithm or non-integer powers of s.

5.  MORE COMPLEX LEVEL I  STRUCTURES

The model is readily extended to incorporate further structure at level l, that is between
measurement occasions. In some applications the autocorrelation parameter may be a function of
time, with the level I variance remaining constant. Group difference s in o! can be incorporated by
specifying suitable dummy variables. In continuous time models the parameters d1 can be
functions of further explanatory variables which can be incorporated directly into the model
using the formula in Appendix II. Thus we can write a more general version of (9) as

g ( u , s l :  ( a o  *  a 1 z r ,  *  u 2 z 2 i i ) s

where zyiis defined at level 2 and might refer, for example, to group membership. The variable z2;i
is defined at level 1 and so allows the autocorrelation parameter to vary over time, for example
according to season of year or age of subject. A special case of this model is where some
measurements are replicated. In growth studies, for example, some subjects may be measured
twice on some occasions. In this case we can extend (9) as follows

no replicate

replicate

which gives an estimate of measurement reliabil i ty exp( - a).
Another useful extension is where the simple level I variance term o! is made a function of time

or age, by specifying that one or more of the polynomial coefficients vary randomly at level 1. To
specify the level 1 variance as a quadratic function of time for the basic model given by (9) we write

U:  i l s  *  [ ] r ( t ,  *  t )  +  f i z { t i  +  t i l

where rt and 12, respectively, refer to the two time points, and as s -+ 0 this implies that the
variance is a quadratic function of t ime

var (1 , , )  :  o "2exp{  -  2 (0r t  +  p2P) )

corr( j/, -ln, * r) : o(s

and we have the same interpretation for a as before"
We can define the level I variation as a function of other covariates in a similar fashion. If such

a covariate is measured at level 1, for example a characteristic of a measurer or rater, then it
should be a syrnmetric function of the two time points, r, and r2. If measured at level2, or above, it
can be quite general, for example referring to group differences.

6.  APPLICATION TO HEIGHT MEASUREMENTS

The data for the following examples consist of height measurements on a sample of 26 boys each
measured on nine occasions between the ages of l1 and 14 years. They were obtained from
a residential school in Oxfordshire.rl The measurements were taken on the same days for all
children, approximately three months apart. Although this dataset is relatively small, and the
measurements are only moderately close together in time, it suffices to demonstrate the proced-
ures we have developed. All the computations have been carried out using the ML3 software
package. l 2

fo ,s  i f
g(a,s)  :  

to ,  i f
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Table I. Height as a fourth degree polynomial on age
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Parameter Estimate (SE)
(A)

Estimate (SE)
(B)

Fixed
Intercept
age
agez
age3
age4

Random: leuel2 couariance matrix with

149.0
6 .17  (0 .41)
r .13  (0 .34)
0.46 (0.1e)

- 0.38 (0.29)

hrackets

Intercept age age2
6 l ' 6

(16 .5)

8.0 2.8
(2.e) (0.7)

1.4 0.9 0.6
(1.4) (0.3) (0.2)

0.20 (0.02)

148.9
6.18 (0.35)
1 '10  (0 .3s)
0.42 (0.16)

- 0.33 (0.30)

standard errors in

agez agesIntercept
61.7

(  I  7 . 1 )

9.3
(3'7)

1 . 3
( l '4 )

-  l ' 7
( l ' 5 )

age
Intercept

age

agez

age3

Random: letel I
o'�"

4.0
(r-2)
l '0  0.7

(0.4) (0.2)
- 0.9 - 0.1 0.3

(0.5) (0.2) (0.:1

0.21 (0.02)

Age is measured about an origin of l2'25 years
Height is measured in cm
Model A fits random coefficients at level 2 up to and including the cubic term. and model B fits random
coefficients up to and including the quadratic term

The first model fitted ignores the presence of autocorrelation. A fourth degree polynomial is
fitted to describe the mean growth and coefficients up to the cubic are assumed to vary across
subjects, that is, at level 2. This is necessary in principle to allow for the fact that the maximum
velocity in height growth is expected to occur in the age range of the data, at different ages for
different boys. Other studies suggest that a quartic curve adequately describes the mean growth
over this age range.l3 TableI shows the results of f itt ing this model and the simpler model in
which only coefficients up to the quadratic are random. The omission of the random cubic
coefficient does not appreciably alter the fixed coefficient estimates or the other random para-
meters substantially.

Table II shows the results of fitting a first-order autoregressive model at level 1. For this
purpose the observations are assumed equally spaced in time, although the actual ages are still
used to describe the polynomial structure.

For the model with coefficients up to the quadratic random the fixed part of the model remains
substantially unchanged. Making the cubic coefficient random decreases the estimate of the
autocorrelation between successive observations somewhat, but the likelihood ratio chi-squared
test statistic for the random cubic coefficient parameters is 7'0 with 4 degrees of freedom
(P:0.14). We shall retain the model with coefficients up to the quadratic random in the
remaining analyses.

If we fit a second-order model, the fixed part estimates and the random parameters at level 2 for
analysis B in Table II remain virtually unchanged and the estimates (standard error)for o!, p1
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Table II. Height as a fourth degree polynomial on age with autoregressive level I residuals

Parameter Estimate (SE)
(A)

Estimate (SE)
(B)

Fixed
Intercept 149.0 149.0
ase 6.18 (0.41) 6.19 (0.35)
a9e2 1.20 (0.36) 1.23 (0.37)
ase: 0.44 (0.1e) 0.43 (0.18i
age4 - 0.45 (0.31) - 0.49 (0.32)

Random: leuel2 couariance matrix with standard errors in brackets

lntercept age age2 age3 Intercept age agez
Intercept 61.5 61.5

(  r  7 .  1)  ( r7  . r )
age 9-3 3.9 7.9 2.7

(3.7) (r.2) (3.0) (0.8)
age2 l,-4 t.o 0.6 1.5 0.9 0.6

(r.4) (0.4) (0.2) (1.4) (0.3) (0.2)
age3 -  t '8 -  0.8 -  0.1 0.1

(1.5) (0.5) (0.2) (0.3)

Random: Ieuel I
ol 0.24 (o-05) 0.26 (0.04)
pt 0.16 (0.15) 0.23 (0.14)

Age is measured about an origin of 12.25 years
Height is measured in cm
Equally spaced observations are assumed for the levell autoregressive component
Model A fits random coefficients at level 2 up to and including the cubic term, and model B fits random
coef;frcients up to and including the quadratic term

and p2 are, respectively, 0'21 (0'04), 0'06 (0'19) and -0.16 (0.12). The correlogram for the
autocorrelation is a function of the roots of the 'auxiliary' or characteristic equation for the model
(see for example, Fuller,la Chapter 2) namely

m 2  -  p r m  -  p z  :  0 .  ( 1 1 )

In our example the roots are 0'03 + 0'40t. The existence of complex roots implies a declining
cyclical function with a period of

2n(cos- t  e ) - t ,  0  :  0 .5pr (  -  p r ) -o ' t ;

here an apparent period of 1'04 years, suggesting a seasonal effect (see below). The predicted
autocorrelations for periods up to a year apart are given in Table III, with coefficients up to the
quadratic random.

For the second-order model the declining cyclical pattern is clear. The predicted autocorrela-
tions are rather different for the two models, but it should be noted that the estimated standard
errors for the second-order model are relatively large. In fact a wide range of values for the
correlations is compatible with a period of about one year.
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Table III. Predicted autocorrelations for model (B) in Table II
and second-order autoregressive model

Period (yr) Model (B) Second-order model

1651

0.25
0.50
0.75
1.0

0.23
0.05
0.01
0.003

0'05
-  0 . 1 5
- 0'02

0.02

It is assumed that the measurements are spaced exactly 0'25 years apart

Table IV. Height as a fourth degree polynomial on age with a seasonal component

Parameter Estimate (SE)
(A)

Estimate (SE)
(B)

Fixed
Intercept 148'9 148'9
ase^ 6 '19 (0 '35) 6 '19 (0 '35)
age' 2'16 (0'45) 2'15 (0'45)
ager 0.39 (0.17) 0.39 (0.17)
ageo - 1"54 (0'43) - r'54 (0'43)
cos(r) - 0'23 (0'07) - Un (0'07)

Random: Ieuel 2 cotariance matrix with standard errors in brackets

Intercept age agez Intercept age age2
Intercept 6l '5 61'5

( 1 7 ' 1 )  ( 1 7 ' 1 )
age 7'9 2'7 7'9 2'7

(3'0) (0.8) (3"0) (0.8)
age2 1.5 0.9 0.6 1.5 0.9 0.6

(14) (0.3) (0.2) ( t .4)  {0.3) (0.2)

Random: leuel I
oj 0'24 (0'04) 0'23 (0'05)
pr 0'23 (0'14) 0'20 (0'22)
pz -  0 '03 (0 '13)

Age is measured about an origin of 12 25 years
Height  is  measured in cm. Model  A is  AR(l ) .  Model(B) is  AR(2)

6.1. Seasonal effects

The existence of a small seasonal effect in height growth is well established.l s Assuming a one
year period we can fit a seasonal component directly to the data since the times of measurement
are known.

With time measured from the start of the calendar year, let a be the amplitude and y the phase
with a seasonal component given by

acos(r  *  I )  :  at  cos(r)  -  a2 s in(r) .  (12)

Columns A and B in Table IV show the results of f itt ing this model. The estimate of a2 is very
small and has been set to zero. The second-order model now has a very small estimate for p2. The
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Table V. Height as a fourth degree polynomial on age with an autoregressive model
ln contlnuous tlme

Parameter Estimate (SE)
(A)

Estimate (SE)
(B)

Fixed
Intercept
age
age2
age3
age4
cos(t)

148.9
6.19 (0.3s)
2-16 (0.4s)
0.3e (0.17)

- 1.55 (0.43)
- 0.24 (0.07)

148.9
6.le (0.35)
2.16 (0.45)
0.3e (0.18)

- t.s4 (0.46)
- 0.23 (0.06)

Random: leuel2 couariance matrix with standard errors in brackets

Intercept

age

a$ez

Random: leuel I
ol
ar  (s)

.  _  t .

f lz (s ')

lntercept age
6 1 . 5

(  r  7 .1 )

7.9 2'7
(3.0) (0.8)

1.5 0.9
(r.4) (0.3)

0.23 (0.04)
6.e0 (2.07)

Intercept age
6r -4

(  1  7 .1 )
7-9 2.6

(3.0) (0'8)

1.5 0.8
(1.4) (0.3)

0.28 (0.11)
3.61 (1.70)
0-013 (0.011)

age2 age2

0.5
(0'2)

0.6
(0'2)

Age is measured about an origin of l2'25 years
Height is measured in cm.
(A) fits model of equation (10); (B) fits model of equation (12)

seasonal component itself indicates that the winter is when growth is slowest, with an average
height difference about an individual growth curve between summer and winter of about 0.5 cm.

The seasonal coefficient might vary further across individuals, some showing more seasonal
variation than others. When this coefficient is allowed to vary randomly at level 2, however, its
variance is estimated as zero. A considerably larger sample of individuals would be needed to
provide an accurate estimate of this variance.

6.2. Continuous time models

The discrete time models have assumed that the children are measured exactly 0.25 years apart.
This is not precisely true, however, and there is some variation with a maximum discrepancy of
0'06 years (22 days). The results of fitting the models (9), (10) together with the seasonal
component are given in columns A and B of Table V.

The model (10) using s- I failed to converge. This appears to be because s-1 does not increase
fast enough as s decreases and hence g does not decrease fast enough. To overcome this a model
using s-2 has been fitted. As with the discrete time model the second parameter (az) is not
significant.

For comparison with the discrete time model, the serial correlation in model A for two
measurements 0'25 years apart is calculated from the estimated parameters to be 0.19. This is
somewhat less than the value of 0'23 obtained from model A in Table IV since the correlation is
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Table V where the
values of the other

an exponentially decreasing function of the time interval in the model of

intervals differing from 0'25 years are modelled at their actual values. The

parameters are virtually unchanged.

7. DISCUSSION

The formulation of the repeated measures model as a two-level random coemcients model2 was

important in that it allowed efficient and flexible modelling in continuous time with unbalanced

data. That model, however, assumed independent level 1 residuals. The present paper extends the

model by showing how flexible dependency structures can be modelled, also in continuous time.

Once dependent level 1 residual terms are permitted, the choice of model for representing

repeated measurement data needs careful consideration. One source of autocorrelation is simple

misfit in the rest of the model, such as fitting a straight line to quadratic response data. While it is

possible to model this situation using the methods of this paper, it would seem preferable to

incorporate as much as possible of an individual-specific structure before introducing an autocor-

relation structure into the level I residuals. This is important for interpreting parameter values

and characterizing individuals, for example by posterior estimates of their polynomial coeffi-

cients, average growth rates etc. On the other hand, experience suggests that in circumstances

where serial correlations are high because measurement occasions are closely spaced and the data

are unbalanced, it is often not possible to fit a repeated measures polynomial rnodel with

high-order coefficients varying randomly, unless an autocorrelation structure is allowed for.

In principle we can write any time series model in terms of the autocovariances for every

possible lag, at least in discrete time. With moving average models or mixed models these

autocovariances involve non-linear functions of the underlying parameters and extensions to

such models of the procedures described in the present paper are currently being studied.

While the discrete time autoregressive model may be useful in certain applications, in general

the continuous time model has considerably more flexibil i ty. Many data sets do not have equally

spaced occasion intervals, and even where equal intervals are part of the study design, it is often

diff icult to achieve this. Furthermore, the level I variance and the autocorrelation structure itself

can be modelled as functions of further variables at level I or level 2 so that in particular the

variance and the autocorrelation can be made to depend on time or age. One difficulty is that for

moderate size data sets the likelihood surface can be rather flat and this may lead to numerical

convergence problems. Care is needed also in choosing starting values. In addition, research

needs to be carried out to determine suitable forms for g1@) in a range of applications.

The two-level model can also be extended to incorporate further levels of nesting in a straight-

forward fashion. For example, individual students measured repeatedly may be grouped into

schools. We can also consider time series structures among units at level 2 or above. For example,

we may have educational examination data where successive cohorts of a given age are measured

within schools, leading to a repeated measures structure at level 2 of a three level hierarchy, with

schools at level 3. In such a case the autocorrelation model wil l apply to the level 2 structure with

the standard, independence, assumption at level L

Multivariate response data can be incorporated by specifying a further level below that of

occasion (see Goldstein,l Chapter 5) so that multivariate time series models can be formulated

and parameters estimated by straightforward extensions of the procedures described here. In this

case model (9) can be extended for the cross-variable correlations by writing

g :  o t o z e x p (  -  d r z s ) .
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In some circumstances, non-linear growth curve models are appropriate, for example where the
growth curve approaches an upper asymptote. Goldsteinl6 discusses such models and these can
be extended readily to incorporate the time series structures described in the present paper.

Finally, the procedures described here provide a general framework for efficient estimation
from collections of short t ime series.17 If we assume that each short series is sampled randomly
from a population of such series, then the methods of this paper can be used.

APPENDIX I :  ESTIMATION IN THE MULTILEVEL LINEAR MODEL

Conditional on V the generahzed least squares estimator of B is given by

6 : 6 , V - 1 X ) - t x t V - t y .

An init ial estirnate of Z based on an ordinary least squares analysis is used.
Conditional on l l we obtain an updated estirnate of Z as follows. The estimation of the

variances and covariances, which are referred to as 'randorn parameters', and which define the
elements of  V,  involves caiculat ing A: i i ' *here the residual  vector i :  Y -  X| .The vector
vech(,4) is formed by stacking the columns of the lower triangle of the symmetric matrix .4 under
one another. This is treated as a response vector and is regressed, using generalized least squares,
upon the columns of a matrix X**, which is derived from X and plays the role of a design matrix
for the random parameters (Goldstein,e Appendix 1). In the variance cclmponents model each
block of X** corresponding to a level 2 unit has two columns vech(/) and vech(J)corresponding
to o!1 and of;2, respectively, where J is a matrix of ones.

APPENDIX I I :  ESTIMATION FOR CONTINUOUS TIME MODELS

To obtain an updating formula for the pararneters, we expand the right hand side of (8) as
a Taylor series about the value d. : dH at the current iteration, so that ignoring higher order terms
we have

f(a, s) : .fs(u, s)*o!,,ou -cx*,)(X),

: {' * ot,oo,(#),\t,- -!, .r(H),t"
where a1" is the current

Together with (8) this

where we set

value of ae.
expresses the elementsof each V, in the linear form

Z l ra l rT&)o! 7to) a

T(ot

7{x)

This provides an updating procedure for estimating o?, dr,...,an similar to that described in
Section 3, and at convergence we obtain the maximum likelihood estimates.

: 
{t* ot,oo.(o),\^

-.!,(H).'.
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When g(a,s): ds we can estimate a by a direct generalization of the discrete time model.
Consider the first-order model given by (5). The (k/)th element of Rn- now becomes

where s is the time interval between occasions / and /<, and p : exp( - a). Given a suitable starting
value, for example using procedures similar to those of Section 3, estimation proceeds as for the
discrete time model. In addition, of course, we can fit the full level 2 structure as in the discrete
time case.
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