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Summary 

This paper addresses some of the theoretical and methodological problems of modelling the 
distribution of diseases, such as cancer, in discrete geographical areas. Theoretically, it is 
necessary to examine in detail the various processes, both artefactual and causative, which 
may affect the number of cases occurring within a certain area, and the distribution of relative 
risks between areas. A methodological framework based on multilevel modelling is 
developed, with spatial and nonspatial relationships being considered as random effects 
occurring at different levels within a population data structure. Examples of exploratory and 
inferential analyses are given, and discussion focuses on the issues raised by complex spatial 
modelling of geographically distributed health data. 
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1. Introduction 

 Geographical epidemiologists are increasingly using more complex methods of 
statistical analysis to investigate the distribution of diseases such as cancers and other diseases 
which are aggregated into small areas such as postcode sectors (Elliott et al., 1992;1995). The 
analysis of geographically distributed disease data tends to fall into one of two broad 
categories which reflect different motivations and goals: 

 (a) exploratory analysis: maps of disease distribution are produced to provide health 
researchers with a visual display which can suggest, via patterns and spatial trends, useful 
avenues of research into causal processes. Atlases containing collections of such maps attempt 
to reflect the distribution of a range of diseases over a large geographical area (e.g. Kemp et 
al., 1985; Statistics Canada, 1991). The main aim in this type of analysis is to provide a 
picture which, in some respects at least, reflects the true distribution of cases of disease over 
the area depicted. However, if one simply uses the relative risk of a disease (defined as the 
number of observed cases divided by number of expected cases for each area) for this 
purpose, then problems may occur as areas with small populations, usually in rural locations, 
will tend to have extreme relative risks as the number of expected cases in the denominator is 
low. Conversely, if one maps probability values, say p < 0.05 for a particular relative risk 
being equal to unity, then these will tend to occur in areas with large populations, usually in 
urban areas, as the probability value is related to sample size. A more complete discussion is 
given in Clayton and Kaldor (1987) and Langford (1994), but here we try to achieve a 
compromise by relating the relative risk in each area to the global distribution of relative risks 
for all the areas in our sample, and/or the local distribution of relative risks in areas 
geographically close to each other. The example given in section 3.1 gives a simple example 
of how this technique can be implemented as part of a multilevel modelling analysis using 
data collected on deaths from all causes in Greater Glasgow. Section 3.3 then uses the 
flexibility of the multilevel model to develop a multivariate spatial analysis, where deaths 
from two different causes, namely cancer and circulatory diseases are modelled together. We 
discuss in section 2, and also section 4 how residuals may be extracted to provide information 
for mapping the distributions of these diseases; 

 (b) inferential analysis: in this case, a number of explanatory variables, some of which 
may have a spatial component are used to explain variation in a particular disease of interest. 
The emphasis here is on the testing of specific hypotheses, or prior beliefs about the 
distribution of the disease and associated, potentially causal, factors (Langford, 1995; 
Langford and Bentham, 1996). Accounting for spatial correlation between allows for more 
reliable inferences to be made, although we demonstrate that choosing between different 
spatial models is not always straightforward using data collected on prostate cancer incidence 
in the 56 counties of Scotland. The aim of this analysis is to investigate whether more rural 
districts, defined as having higher proportions of the male workforce employed in agriculture, 
forestry and fishing have higher incidence of prostate cancer.  

 In this paper, we concentrate on investigating data which consist of observed and 
expected counts of disease occurring in discrete spatial units. Hence, for a population of 
geographical areas, we have a number of cases occurring within a distinct population at risk in 
each area. Whether we are embarking on an exploratory or inferential analysis, it is useful to 
break down the likely effects on the distribution of a disease into three separate categories: 

 (a) within-area effects, such as population at risk, individual characteristics, and so on; 
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 (b) hierarchical effects. These are due to the fact that small areas are grouped into 
larger areas, for administrative purposes, or for cultural and geographical reasons. For 
example, a number of small areas, such as local authority districts, may be grouped into 
Health Boards which have different methods of treatment or classification of a disease; 

 (c) neighbourhood effects. Areas which are close to each other in geographical space 
may share common environmental or demographic factors which influence the incidence or 
outcome of disease. In addition, as areas are usually formed from geopolitical boundaries 
which have nothing to do with the disease we are interested in, we may wish to spatially 
smooth the distribution or relative risks to remove any artefactual variation brought into the 
data by the method of aggregating the data. 

 The use of empirical Bayes and fully Bayesian techniques has allowed for alternative 
models of spatial and environmental processes affecting the distribution of a disease which 
rely on different underlying beliefs or assumptions about aetiology (Bernardinelli et al., 1995; 
Bernardinelli and Montomoli, 1992; Cisaglhi et al., 1995; Clayton and Kaldor, 1987; 
Langford et al., in press; Langford, 1994; 1995; Lawson, 1994; Lawson and Williams, 1994; 
Mollie and Richardson, 1991; Schlattmann and Bohning, 1993). Two main statistical 
methodologies have been used to model geographically distributed health data in this way. 
The first are Markov chain Monte Carlo (MCMC) methods, using Gibbs sampling (Gilks et 
al., 1993) often fitted using the BUGS software (Spiegelhalter et al., 1995). The second set of 
methods are multilevel modelling techniques based on iterative generalised least squares 
procedures (IGLS: Goldstein, 1995) and are the focus of this paper. These methods can be 
described as using the Bayesian and empirical Bayesian models respectively, and we discuss 
the differences between the two approaches in the discussion. In the following section, we 
detail the methodology and computational algorithms necessary to model the three types of 
effect described above within the IGLS framework. We then present three brief examples of 
analyses of geographical health data, and the discussion focuses on issues surrounding both 
the theory and methodology of building complex spatial models, and provides pointers for 
future research. The models were all fitted using the multilevel modelling software, MLn 
(Rasbash and Woodhouse, 1995). 

 

2. Methods 

2.1 The linear random coefficients model 
 The basic model of fixed and random effects described by Goldstein (1995) and 
Breslow and Clayton (1993) is: 

    Y  =   Xβ  +  Zθ     (1) 

with a vector of observations Y being modelled by explanatory variables X and associated 
fixed parameters β, and  explanatory variables Z with random coefficients Zθ. The fixed and 
random part design matrices X and Z need not be the same. Goldstein (1995) describes a two-
stage process for estimating the fixed and random parameters (the variances and covariances 
of the random coefficients) in successive iterations using IGLS. A summary of this process 
follows. First, we estimate the fixed parameters in an initial ordinary  least squares regression, 
assuming the variance at higher levels on the model to be zero. From the vector of residuals 
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from this model we can construct initial values for V. Then, we iterate the following 
procedure, first estimating fixed parameters in a generalised least squares regression as: 

   � ( )β = − − −X V X X V YT T1 1 1      (2) 

and again calculating residuals ~ �Y Y X= − β . By forming the matrix product of these residuals, 
and stacking them into a vector, i.e. Y vec YY T* ( ~~ )= we can estimate the random parameters θ 
as:  

   � ( )* * * * * *θ = − − −Z V Z Z V Y
T T1 1 1     (3) 

where V*  is the Kronecker product of V , namely V V V* = ⊗ , and noting that V E YY T= ( ~ � ) . 
The matrix Z*  is the design matrix for the random parameters θ . Assuming multivariate 
Normality, the estimated covariance matrix for the fixed parameters is: 

   cov( � ) ( )β = − −X V XT 1 1
     (4) 

and for the random parameters, Goldstein and Rasbash (1992) show that: 

   cov( �θ )  = 2  ( ZT V *-1 Z )-1     (5) 

 

2.2 The Poisson model 
 In order to model the distribution of rare diseases, we use a model developed for the 
distribution of relative risks of a disease by Besag et al. (1991). If we consider a population of 
areas with Oi observed cases and Ei expected cases, where Ei may be calculated from the 
incidence in the population Ni for each area as: 

   E N
O
Ni i

i

i
= �

�
.       (6) 

and may be additionally divided into different age and sex bands. We can write the basic 
Poisson model as: 

   
O Poisson

E X u v
i i

i i i i i

~ ( ),
log( ) log( )

µ
µ α β= + + + +

   (7) 

where log(Ei) is treated as an offset, and α is a constant. We take account of the distribution of 
cases within each area by assuming the cases have a Poisson distribution. In contrast, the ui 
represent heterogeneity effects between areas (Clayton and Kaldor, 1987; Langford, 1994), 
which may be viewed as constituting extra-Poisson variation caused by the variation among 
underlying populations at risk in the areas considered. The vi are spatially dependent random 
effects, and may have any one of a number of structures describing adjacency or nearness in 
space. However, before discussing the structure of these spatial effects, we must first account 
for the fact that we have a nonlinear (logarithmic) relationship between the outcome variable 
and the predictor part of the model. There are two options: 

 (a) if the cases in each area sufficiently large, say Oi > 10, then it may be reasonable to 
model the logarithm of the relative risks directly (Clayton and Hills, 1993), assuming these 
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follow a Normal distribution. In this case, heterogeneity effects can be accommodated by 
weighting the random part of the model by some function of the population at risk in each 
area; 

 (b) in cases of very rare diseases, we can make a linearising approximation for 
estimating the random parameters. If we take the case of having heterogeneity effects only for 
the sake of simplicity, we can estimate residuals  �ui   from the model using penalized quasi-

likelihood (PQL) estimation with a second order Taylor series approximation (Breslow and 
Clayton, 1993; Goldstein, 1995; Goldstein and Rasbash, 1996). After each iteration, t, we 
make predictions Ht from the model, where H X i t uit = +� �β ,and use these to calculate new 
predictions for iteration t+1, so that: 

  
f Ht f Ht Xi t t f Ht

u ui f Ht u ui f Hti i

( ) ( ) ( � � ) ( )

( � ) ( ) ( � ) ( ) /

+ = + + − ′

+ − ′ + − ′′

1 1

22

β β
  (8) 

with the first two terms on the right hand side of (8) provides the updating function for the 
fixed part of the model. The third term comprises a linear random component created by 
multiplying the first differential of the predictions by the random part of the model, and the 
fourth term is the next term in the Taylor expansion about Ht. For the Poisson distribution:
        
 f H f H f H X i t ui( ) ( ) ( ) exp( � � )= ′ = ′′ = + β     (9) 

Hence, at each iteration we estimate about the fixed part of the model plus the residuals. A full 
description of this procedure can be found in Goldstein (1995) and Goldstein and Rasbash 
(1996). This can lead to problems with convergence, or with the model “blowing up” if some 
of the residuals are particularly large. In these cases, the second order term in (8) can be 
omitted, or, in extreme cases, estimates can be based on the fixed part of the model only. This 
latter case is called marginal quasi-likelihood (MQL: Breslow and Clayton, 1993; Goldstein, 
1995), but may lead to biased parameter estimates. However, bootstrap procedures can 
potentially be used to correct for these biases (Goldstein, 1996; Kuk, 1995).  For equation (7) 
we substitute � �ui vi+  for �ui  in (8) and (9). 

 

2.3 Defining the spatial structure 

 There are several possibilities for specifying the structure of the random effects in the 
model( see for example, Besag et al. (1991) and Bailey and Gatrell, 1995). These models 
assume two components, a random effects or 'heterogeneity' term and a term representing the 
spatial contribution of neighbouring areas as in (7) with intrinsic Gaussian distributions for 
each type of effect.  

 We adopt a somewhat different approach, which allows a more direct interpretation of 
the model parameters and can be fitted  in a computationally efficient manner within a 
multilevel model.. For the heterogeneity effects, this is not a problem, because we simply have 
a variance-covariance matrix with 1’s or other specified values on the diagonal, and the model 
is analogous to fitting an iteratively weighted least squares model (McCullagh and Nelder, 
1989). However, the case of the spatial effects is more complex, as we require off-diagonal 
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terms in the variance covariance matrix. First, we can define a set of random explanatory 
variables, Zv, one for each area, which contain the square roots of the spatial weights linking 
areas, wij. Our formulation of the spatial model is therefore altered from the basic spatial 
Poisson model given in (7) so that: 

   
O Poisson

E X u z v
i i

i i i i ij j
j i

~ ( ),

log( ) log( )

µ
µ α β= + + + +

≠
�             (14) 

We then need to form the square of the matrix containing the zij to form the spatial component 
of V in order to estimate the associated variance parameter σ v

2  (see equations (17) and (18) 
below). For example, to model (11), we require: 

Z Z
w w w w

w w w w
w w w w

w w w w
w w w w
w w w w

v v

T

/

. ./ /
/ /
/ /

/ /
/ /
/ /

=
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

+ +

+ +

+ +

+ +

+ +

+ +

0
0

0

0
0

0

12 1 13 1

21 2 23 2

31 3 32 3

0 5
12 1 13 1

21 2 23 2

31 3 32 3

0 5

 (15) 

for an adjacency matrix of three areas. For example, if: 

   Zv =

�

�

�
�
�
�
�

�

�

�
�
�
�
�

0 05 05
1 0 0
1 0 0

. . �

� �

 

 

 this becomes: 

   Z Zv v
/ =

�

�

�
�
�
�

�

�

�
�
�
�

1 0 0
0 1 1
0 1 1

�

� �

   

where area 1 is adjacent to both areas 2 and 3, and areas 2 and 3 are only adjacent to area 1. 
The structure of the variance-covariance matrix associated with the spatial effects is that each 
row represents an area, and the weights sum to 1. Of course, for the distance decay function, 
each cell will have a value equal to exp(-λdij), and zeros again on the diagonal.  

 Finally, there is the problem of specifying the random effects for heterogeneity and 
spatial effects within a generalised linear modelling framework, in this case using IGLS 
estimation within the MLn software. There are two basic options for fitting the random effects 
within MLn which demonstrate some more general issues for spatial modelling: 

 (a) a suitable set of explanatory variables may be defined with random coefficients. 
For example, for the spatial part of the model, we may define a set of variables zv1, zv2,..., zvn. 
In the case of the distance decay model, zv1 = {exp(-λdi1)}0.5 as described in (14) above, and 
so on. A similar set of variables can be defined for the heterogeneity effects, and a covariance 
term can be fitted between the two sets of effects. However, there is a problem, because we 
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only wish to estimate a single variance parameter for all areas for heterogeneity effects, one 
for spatial effects, and a single covariance term. Hence, we need to constrain the parameter 
estimates for each area to be same for each set of effects, e.g. σv

2 is constrained to be the same 
for all the zv’s. This means introducing these complex constraints into the model via a set of 
linear equations. A discussion of this procedure can be found in Goldstein (1995) but the 
important point to note is that we have to include a large number of explanatory variables in 
the model - far more than the number of data points - and a large number of constraint vectors. 
These add to the complexity of the model, the computational time required, and the stability 
of the model in terms of convergence properties. However, this formulation easily allows for 
the calculation of residuals from the model, as these can be estimated for each of the random 
explanatory variables. This is important if the focus of our investigation is upon comparison 
of relative risks between areas in the data set. It is less of an issue if we are only interested in 
the global parameters such as σu

2 and σv
2 which describe the size of the overall heterogeneity 

and spatial effects present in the model; 

 (b) in contrast to the above, we can build the weights matrices associated with the 
random effects and fit these directly into the model. Consider the variance of 

Y given Xβ from equation (1) written as: 

  Var Y X Z Z T( | )β θ= Σ                  (16) 

where Σθ is the variance of the random parameters θ.  The structure of Σθ will often lead to 
simplifications; for example, in a random effects model when θ = {ui} and Var ui u( ) = σ 2, 
Cov u ui j( , ) = 0 then Σθ σ= u I2  and so Var Y X ZZu

T( | )β σ= 2 .  Similarly, in a spatial model, if 
θ and Z are partitioned such that equation (1) may be rewritten 

  [ ]Y X Z Zu v
u

v
= +

�

�
�

�

�
�β

θ
θ                 (17) 

then, with Var
I I
I I

u

v

u uv

uv v

θ
θ

σ σ
σ σ

�

�
�

�

�
�

�

�
	




�
� =

�

�
�

�

�
�

2

2  which is equivalent to Var
u
v

i

i

u uv

uv v

�

�
�

�

�
�

�

�
	




�
� =

�

�
�
�

�

�
�
�

σ σ
σ σ

2

2 . An 

important point to note is that in our procedure, we are expressing the spatial correlation in 
terms of the explanatory variables, Zv, as described above in (14). Hence, for the residuals for 
each area we obtain from the model it is true that cov( , ) cov( , ) cov( , )u u v v u vi j i j i j= = = 0 , 
and hence we can write: 

  ( )Var Y X Z Z Z Z Z Z Z Zu u u
T

uv u v
T

v u
T

v v v
T( | )β σ σ σ= + + +2 2             (18) 

 Expressing the model in terms of these design matrices overcomes the need to place 
multiple equality constraints upon the random parameters.  This is generalisable to the non-
linear model expressed in equations (7) to (9).  A penalised quasi-likelihood (PQL) estimation 
procedure requires the estimation of the residuals and their associated variances at each 
iteration. The estimation of the residuals is described in the Appendix. 

 

3. Applications 
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 In this section, we give three examples of results from health data sets in order to 
comment on methodological issues raised in the discussion and show how substantive 
interpretations can made of spatial multilevel models. 

 

3.1 Greater Glasgow Health Board mortality data 

The data for this example refer to deaths from all causes in 143 postcode sectors within 
Greater Glasgow Health Board (GGHB) in 1993 obtained from the Registrar General for 
Scotland.  Hence, as postcode sectors are relatively small (average population ≈ 5000), and the 
data are only for one year, we formulate the model in a similar way to equation (7): 

 
O Poisson

E u z v
i i

i i i ij j
j i

~ ( ),

log( ) log( )

µ
µ α= + + +

≠
�                (19) 

where the Ei are age-sex standardised for the Greater Glasgow Health Board area. For a first 
order autocorrelation model we consider zij = 1/ni if area j is a neighbour of area i and 0 
otherwise, with area i having a total of ni neighbours.  The ui are the random effects for each 
area; the vi, by contrast, are the effects of each area upon its neighbours with the summation 
term z vij j

j i≠
�  giving the spatial effect for area i.  We can specify a joint distribution for the ui 

and vi to model a correlation between the random effect of an area and its effect upon its 
neighbours: 

 
u
v

Ni

i

u uv

uv v

�

�
�

�

�
�

�

�
�
�

�
�
�

�
�

�

�
�

�

�
		




�
��~ ,

0
0

2

2

σ σ
σ σ

                 (20) 

Then this may be expressed in the terms of equation (16) by writing 

 

{ }

{ }

X E

Z I

Z z

i

u

v ij

=

= �

�
�

�

�
�

=

=

log( ) 1

1
β

α                   (21) 

and so estimation may proceed as described in equation (18) and the Appendix.  The 
parameter estimates for this model are shown in table 1. To aid convergence, log(Ei) were 
centred around zero, and hence α ≠ 0 even though the relative risks have a mean of 1. 

  

 The spatial variance and covariance terms are highly significant with a χ2 of 13.54 
with 2 d.f. (p = 0.0011).  The correlation between the random effects and spatial effects is 
0.786, indicating that the neighbours of an area with high mortality also tend to have high 
mortality.  The total estimated variance for an area is dependent on the number of neighbours 
it has and is given by σ σu v in2 2+ / .  The mean number of neighbours for a postcode sector 
within Greater Glasgow Health Board is 5.4; this would imply a total variance of 0.0328, of 
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which 48% arises from the spatial effects.  The estimated covariance between two areas 
depends on; 

 (i) whether the two areas border each other, and; 

 (ii) the number of shared neighbours. 

  In terms of the zij used in equation (22) the covariance between areas i and j can be expressed 
as ( )

,
z z z zij ji uv ik jk v

k i j
+ +

≠
�σ σ 2 . 

 Substantively, this is the kind of basic application of spatial modelling that is required 
for preliminary exploratory analysis, or the production of maps of relative risk. In this case, 
the model shows that there are significant parameters for both heterogeneity and spatial 
autocorrelation (using a Wald test with significance level α = 0.05). This makes sense, as 
postcode sectors are quite variable in population size, and this effect is summarised by σ u

2 , the 
mean variance between areas. However, the spatial effects parameter, σ v

2 , is larger (although 
it needs to be scaled by the number of adjacent areas for comparisons to be made with σ u

2  in 
each area)  and there is a significant covariance between the two effects. This may be because 
mortality rates are similar in social areas larger than the postcode sectors analysed here. A 
further analysis could place larger units such as social neighbourhoods as a higher level in the 
model to test for this effect, and covariates such as social and housing status could be 
included. The significant covariance occurs because areas whose populations have similar 
socio-demographic characteristics (and also large populations) tend to cluster together and 
also have similar mortality rates. 

 

3.2 Prostate cancer incidence in Scottish districts 

 In this example, we examine data covering six years, from 1975-80 on the incidence of 
prostate cancer in 56 districts in Scotland (Kemp et al., 1985). As the data are collected in 
relatively large geographical units for a longer time period than the first example, the numbers 
of cases occurring in each district are sufficiently large (between 10 and 627 cases) that we 
can model the relative risks of disease incidence (based on crude rates) and assume that log 
relative risk follows an approximately Normal distribution. In this case, we wish to investigate 
the hypothesis that the relative risk of prostate cancer is higher in rural than urban areas, as 
previous research has indicated an association between agricultural employment and incidence 
of prostate cancer (Key, 1995). In this case, we use a variable measuring the percentage of the 
male workforce employed in agriculture, fishing and forestry industries as a surrogate measure 
of the rurality of an area. However, we have to look not only at the incidence of prostate 
cancer within districts, but account for a potential artefactual effect caused by differential 
diagnosis rates between Health Board areas in Scotland. Hence, we are modelling spatial 
effects caused by different processes at two different scales, namely: 

 (a) a spatial autocorrelation model at district scale, where we are accounting for the 
possibility that areas closer in geographical space have similar incidence of prostate cancer; 

 (b) a variance components model at Health Board scale, where we investigate the 
possibility that different Health Boards have different relative risks of prostate cancer, 
potentially because diagnostic criteria are variable. 
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Hence, we can extend equation (16) so that: 

  [ ]Y X Z Z Zu v
u

v
hb hb= +

�

�
�

�

�
� +β

θ
θ

θ                (22) 

In this case, we have three explanatory variables in the fixed part of the model (Xβ) in 
addition to the intercept term (CONS), namely: the proportion of the population in higher 
social classes (SC12); the estimated incidence to ultraviolet light at the earth’s surface 
(UVBI), and; the percentage of the male employment in agriculture, fishing and forestry 
(AGRI). Social class and ultraviolet light exposure have been included as these have been 
previously postulated as risk factors for prostate cancer. In this case, Zv is calculated using 
distances between district centroids, and a distance decay parameter λ is estimated from the 
spatial linkage described in equation (12). Zhb is a vector of 1’s which allows for a variance 
component for each Health Board to be estimated, and hence a measure of the variance at this 
scale, σ hb

2  . Table 2 presents the results when we take Zu is taken as a vector of 1’s, and hence 
equal weight is given to each district. Four models are shown, representing: a simple, single 
level model with no spatial effects; a model with district scale spatial effects, but no Health 
Board effects; a model with only Health Board effects; a model with both district and Health 
Board effects as given in equation (22). 

 

 The simple model presented in Table 2  seems to indicate a strong, and significant 
effect of rurality, as measured by percentage male agricultural employment (AGRI). However, 
this is weakened by fitting a spatial autocorrelation parameter, which suggests that some of the 
effect of AGRI may be due to adjacent areas having similar mortality rates, although the 
parameter for AGRI is still statistically significant. The change in deviance between the two 
models is 14.9 on two degrees of freedom (p < 0.01 : we have fitted a covariance parameter as 
well as a variance term). The third model, using Health Boards as a level with no spatial 
autocorrelation between districts, shows how ignoring autocorrelation between residuals at a 
lower level of a multilevel model (in this case districts) could lead to misleading results at 
higher levels (in this case, Health Boards). Unexplained random variation at district level can 
appear spuriously at Health Board level, although the final model, with both Health Board and 
spatial effect between districts, suggest that Health Board areas are significantly different from 
each other. The parameter estimate for AGRI becomes insignificant in the Health Boards only 
model, but becomes stronger again in the combined model. Hence, misspecification of the 
random part of a model can noticeably affect the fixed as well as the random parameters. 
Further work needs to be done on analysis of residuals in these complex models: a 
forthcoming paper by Langford and Lewis (1997) details some procedures for the general 
analysis of outliers in multilevel models.  

 

 However, the models in Table 2 have not taken into account the different populations 
at risk in each district. We can also specify Zu= n-0.5

 , where n  is the vector of population sizes 
for the districts in the study area, and the districts are hence weighted in the random part of the 
model by their population size. When this is done (results not shown here), the fixed 
parameter for AGRI becomes statistically insignificant in all models except the simple one, 
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and the Health Board effects become less important relative to spatial autocorrelation between 
districts. The substantive conclusions to be drawn from this dataset are left to elsewhere, but it 
is interesting to note that a range of potentially interesting models can be generated from what 
appears to be a simple issue, namely testing the relationship of one variable, AGRI, with 
prostate cancer incidence. 

 

3.3 Multivariate spatial analysis of mortality in GGHB postcodes 

 In the example above, we have extended the scale of spatial analysis to include Health 
Board as well as district level effects. We can extend the methods described to be applicable 
to  more than one disease within the same model. For example, we can look at multiple causes 
of death from the GGHB postcoded mortality data and assess the degree to which different 
causes of death are related. In addition, we can examine the possibility of a spatial element to 
the distribution of each cause, and assess whether these spatial elements are related for 
different causes. For example, if we take deaths from cancer (denoted by “A”) and deaths 
from circulatory diseases (indexed as “B”) we can write the model: 
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This gives a possible 16 random parameters to be estimated. However, we do estimate all 16 
because of the difficulty in interpreting some of the parameters. Specifically, the covariance 
between the spatial parts of the two causes σ v CA CIRC, ,  and between the random effect of one 
cause and the spatial part of the other cause σuv CA CIRC, ,  and σuv CIRC CA, ,  have all been set to zero. 
Hence, we estimate: 
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The results for this model are given in Table 4. As can be seen, considering only two causes of 
death, and including no covariates in the model still leads to the estimation of 10 parameters 
to account for heterogeneity and spatial effects. However, it is interesting to note that both the 
heterogeneity and spatial effects for the circulatory diseases are greater than those for cancers, 
suggesting a greater variability between areas for circulatory diseases, and more spatial 
clustering of mortality rates in adjacent postcodes. One author (AHL) is currently 
investigating the effect of entering a covariate measuring deprivation into the model. 
Computationally, there were a number of problems which needed to be overcome in the 
estimation of the multivariate model which will be dealt with in the Discussion. 
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4. Discussion 
 The Glasgow Health Board data show how a simple analysis can be achieved 
relatively quickly by setting up a partitioned variance-covariance matrix to describe extra-
Poisson variation in a log linear model. The theory behind the model is quite complex, 
requiring the calculation of residuals at each iteration, and hence a powerful computer with 
large memory is required if the number of areas is large. However, given a suitable software 
platform, in this case the MLn software (Rasbash and Woodhouse, 1995), which allows for 
flexible random coefficient modelling, and some modifications using macros, it is possible to 
make the modelling process relatively simple. A version of the spatial analysis macros 
suitable for general use are planned in the future. The second example on prostate cancer 
shows a more complex series of models, which require more computing time as an extra 
parameter for distance decay needs to be estimated where spatial autocorrelation is included. 
The models show how care must be taken when investigating geographically distributed 
health data to formulate realistic hypotheses, and then test these in a number of scenarios. The 
data set here is small, but with sufficient numbers of areas, and hence information, it is 
possible to add covariates into the random part of the model at either level. Hence, models can 
easily become very complex, and this is why we emphasize the need for hypotheses to be 
properly specified in these cases before modelling begins. However, it must also be noted that 
a single final model may not be the optimal solution to the problem, and a range of possible 
scenarios may warrant presentation, as here. This is because of the complex nature of the 
interactions between variables and geographical space. 

 

 The multivariate model introduces a further set of issues concerning the complexity of 
the model to be analysed, concerning computational requirements and problems of 
interpretation. The first set of problems concerned the size of the workspace required, as 
separate design matrices need to be stored and manipulated for each of the random terms 
estimated. For large data sets, with several causes of death, this problem becomes intractable, 
even with powerful computers using large memories with the current method of estimation. 
The second set of problems involves obtaining estimates for variances, or correlations 
between parameters which are out of range (e.g. negative variance estimates and correlations 
outside the range -1 to +1). Careful consideration of the influence of individual areas upon the 
global statistics reported here obviously needs to be made, and some adjustment for outliers 
undertaken. 

 

 The theoretical basis for the spatial multilevel models we have specified is frequentist, 
and could be labelled as an empirical Bayes procedure because we estimate our random 
parameters directly from the data. By specifying random explanatory variables to define the 
spatial effects - a diagonal matrix of 1’s for the global heterogeneity effects, and a matrix of 
weights for the local spatial effects - and estimating variance and covariance parameters 
associated with these variables, we have produced a flexible modelling strategy which can be 
used in conjunction with more conventional hierarchical models (e.g. Langford and Bentham, 
1997; Langford, Bentham and McDonald, 1997). By comparing the size of the estimated 
variance parameters associated with heterogeneity and spatial effects, we judge the relative 
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importance of these processes in explaining the variance seen in the dependent variable. This 
is similar to the method of Clayton and Kaldor (1987), where a parameter ρ is estimated to 
give the relative weight attached to heterogeneity and spatial effects in an autoregression 
model. However, the fully Bayesian approach (e.g. Bernardinelli and Montomoli, 1992) 
allows for prior distributions to be placed on the parameters in the spatial model. For example, 
whilst we estimate the heterogeneity parameter directly from the data, assuming Normality for 
the random effects, it may be reasonable to assume a gamma or t distribution as a prior for the 
relative risks. It would not be impossible to modify our procedure to allow for this, but it is 
easier to implement in the BUGS software which uses Gibbs sampling (Spiegelhalter et al., 
1995). A further avenue which we are currently exploring is the use of nonparametric 
maximum likelihood procedures for estimating the distribution of relative risks (Aitkin, 
1996).  

 

 In summary, we have demonstrated the theory behind spatial multilevel modelling 
using an iterative generalised least squares procedure, and have given a couple of brief 
examples to show the possibilities the technique may bring to analysis of geographical data. 
However, the process is far from complete, and a number of problems and further possibilities 
are currently under investigation, namely: 

 (a)  some of the models are inherently unstable, and the log-likelihood curves show 
several maxima and minima, or else bifurcate, with models oscillating between two stable 
states. This is particularly true of the distance decay models. One solution is to introduce a 
kernel around each district centroid to restrict its sphere of influence to a realistic distance. 
This will, of course, be dependent on the data and hypotheses being tested; 

 (b)  the deviance statistic for the nonlinear models cannot be easily calculated, and a 
simulation method for producing a quasi-likelihood ratio statistic is presently being 
investigated (Goldstein, 1996); 

 (c)  residuals can be taken from the model, and posterior estimates of relative risk 
calculated. Bootstrapping can be used to develop an empirical distribution of the posterior 
relative risk for each area, but is computationally intensive (Langford and Jones, submitted 
paper). Iterative bootstrapping to correct for bias may also be used with the MQL procedure, 
although this can further increase the effort required (Kuk, 1995; Goldstein, 1996); 

 (d) the nonlinear models tend to “crash” quite regularly. This is due to the PQL 
procedure, where predicted residuals (and their variances if the second order term of the 
Taylor expansion is included) for each area are added back onto the fixed part of the model. If 
one or more of these is very large, then it invokes an arithmetic overflow when exponentiated. 
This is a technical detail, but is important if a program for general users is to be developed. It 
can be avoided by using iterative bootstrapping of the MQL procedure. 

 Conceptually, the clear message is that one must take a decision prior to analysis on 
whether an exploratory or inferential analysis is being conducted. For exploratory analyses, it 
is best to keep the models simple, with a heterogeneity and spatial term included in the model, 
perhaps at more than one level is this is justified. For inferential analysis, it is important to 
have specific hypotheses to test via competing models, as spatial effects tend to be rather 
poorly determined, and interact with covariates, and other nonspatial effects in the model. 
Complex models can easily be built, but less easily interpreted, and often it is not possible to 
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judge meaningfully between competing models. However, the tools developed here provide a 
methodological and data analytic framework for the exploration of hypotheses where spatially 
distributed factors are of potential importance in understanding the aetiology of a disease. 
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Appendix 

Following Goldstein (1995), the residuals for a model with heterogeneity and spatial effects 
may be estimated by 
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and their variances are given by: 
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where: 

  M V V X X V X X VT T= −− − − −1 1 1 1[ ( ) ]               (A3) 

and: 
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T= ⊗ + + + +σ σ σ σ2 2 2            (A4) 

and σe
2 is the lower-level variance.  The estimation for non-linear models remains basically 

unchanged following the transformations described in equations (7) to (9) with the addition of 
offset terms to the V and M matrices.  Although the equations presented here are in terms of 
one random and one spatial effect for each area, they may easily be extended to include further 
random coefficients and associated parameters. 
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Table 1 Parameter estimates and standard errors for the Glasgow Health Board  
 mortality data 

 

Parameter Estimate Standard error 

α 4.198 0.0371 

σu
2 0.0172 0.00530 

σuv  0.0299 0.00841 

σv
2  0.0846 0.0328 
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Table 2 Parameter estimates and standard errors for the prostate cancer models 

 

 (A) simple model (B) spatial effects (C) Health Board effec

 estimate st. error estimate st. error estimate st. error 

Fixed part       

intercept -0.0257 0.584 -0.513 0.605 -0.0108 0.636 

SC12 -0.000645 0.00524 0.00145 0.00389 -0.00339 0.00477 

UVBI -0.0141 0.0635 0.0565 0.0704 -0.00112 0.0705 

AGRI 0.0272 0.00603 0.0163 0.00636 0.180 0.00634 

Random part       

σ hb
2      0.0327 0.0183 

σ u
2  0.0822 0.0155 0.0665 0.0141 0.0530 0.0117 

σ uv    0.000805 0.000414   

σ v
2    0.0000159 0.0000167   

λ   7.23    

residual 
deviance 

 

18.98 

  

 4.09 

  

10.93 
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Table 3 Parameter estimates and standard errors for the Glasgow Health Board  
 mortality data for cancer (CA) and circulatory (CIRC) deaths 

 

Parameter Estimate Standard error 

α CA  2.820 0.0310 

α CIRC  3.397 0.0377 

σ u CA,
2  0.00205 0.00530 

σ u CA CIRC, ,  0.00224 0.00841 

σ u CIRC,
2  0.00472 0.0328 

σ uv CA,  0.0112 0 † 

σ uv CIRC CA, ,  0 0 

σ v CA,
2  0.0606 0.0389 

σ uv CA CIRC, ,  0 0 

σ uv CIRC,  0.0237 0.0168 

σ v CA CIRC, ,  0 0 

σ v CIRC,
2  0.122 0.0439 

 

†  This parameter has been constrained so that the correlations between parameters lie in the 
range -1 to +1 : see Discussion. 
 

 

 

 

 

 


