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MODELS FOR MULTILEVEL
RESPONSE VARIABLES WITH
AN APPLICATION TO
GROWTH CURVES

Harvey Goldstein
Institute of Education
University of London

1 Introduction

In the majority of applications of multilevel models, one or more response
variables are assumed to be measured at the lowest level (1) of the hierarchy.
In general, however, we can model simultaneously sets of response variables
measured at different levels. Thus, in a 2-level model for students grouped
within classrooms, we could have achievement test scores measured on stu-
dents together with an attitude measure for teachers or even the between-
student standard deviation of test scores as a measure of class heterogeneity,
where the variables at both levels are responses regarded as functions of, say,
previous achievements and attitudes. Likewise, in the 2-level repeated mea-
sures model. which we consider in detail below, we have successive height
measurements on individuals (at level 1) together with the individual’s final
adult height (at level 2). Simultaneous modeling of these response variables
will allow us to estimate, among other things, the relationship between adult
height and the parameters of pre-adult growth.

The use of height growth data provides a convenient illustration of the
usefulness of the multilevel responses model. Much is already known about
modeling such data, and systems for predicting adult height have been in
use for some time, thus allowing a comparative evaluation. Nevertheless, the
same models can be applied to educational data, and this is taken up in the
discussion section.

Next we specify the model and illustrate it with a numerical example.
The present paper describes the results of work in progress, and as will be
evident from what follows, there still remains a number of important issues
to be resolved.
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2 The 2-Level Multivariate Model

As pointed out by Goldstein (1986a), a convenient characterization of the
multivariate multilevel model is obtained by adding a further level below
that of the lowest level actual unit, where dummy explanatory variables
specify the response variables and the coefficients of these dummy variables
are random at one or more higher levels. Thus. in the simple case of a single.
level multivariate model with p possible measurements on each subject, we
can write:

Yij =Ss»3is-rijs s=1,....p (1)

Jij =8+ v

var(vi;) = (7,_2,‘]

cov(vij, Vik) = Oy jk

where r;;5 isa (0.1) dummy variable which is one if s = j, and zero otherwise.
The subscript j indexes a set of p different measurements on a subject. The
3; are the means of the measurements and the o2 and o, ;¢ are simply the
between-subject variances and covariances of the p measurements. If we add

a set of further explanatory variables, z, at the subject level we obtain
¥ij = Ssgmams:mi]l'ija + Ssﬁzsrija (2)

This is one way of writing the multivariate linear model. We see that
it allows each of the p measurements to have its own set of coefficients for
the variable z, and that the subscript 7, added to the z variables, allows
measurement-specific explanatory variables. When, either by design or ac-
cident, not all the p response variables are measured on every subject, we
can still obtain efficient estimates for the parameters in (2).

The basic 2-level repeated measures growth curve model can be written
as:

Vii = SmamImij +E,,3t,-]1'fj t=0,....q (3)
Oeij = Ot + un + ey t=0.....q9
where z;; is time or age. In the simplest case there is a single random

variable at level 1 (occasions), namely e,;, representing a constant within-
subject variance about the growth curve. e assume

cov{ugi, e5) = cov(eyij.enk) =0

The independence of the level 1 residuals is a strong assumption in some
applications. For example, growth in height has a seasonal component, so
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that where two or more measurements during a year are made this compo-
nent will be superimposed on the underlying growth curve. Failure to model
this effect will result in dependencies among the level 1 residuals. Although
work on such models is currently being pursued, in the present paper we
shall attempt to avoid this problem by using only yearly measurements on
the subjects. Nevertleless. as we show below, we can still model, in a simple
fashion. the level 1 variance as a function of age or other variables.

The uy; are random variables at level 2 (subjects), giving rise to ¢ + 1
variances and q(q+1)/2 covariances. The zn,, are covariates which may vary
from occasion to occasion. The coefficients a,, may be fixed or random.
This model is discussed in detail, for example, by Strenio et al. (1983)
and Goldstein (1986b). In general. the u, for large values of ¢t will be set
to zero, so that random Letween-subject variation is described by the low
order polvnomial coefficients.

Models (2) and (3) can be combined into a new class of very general
models in which each of the response measurements has a separate polyno-
mial regression on age with its own set of covariates, and where the random
coefficients are correlated across the measurements at each level. Thus. for
example. if height and weight are repeatedly measured in growing children.
the intercept, linear etc. growth curve coefficients of height, at the subject
level, will be correlated among themselves and with those for weight. An
advantage of such a multivariate model is that. via these intercorrelations.
it can provide efficient estimates for measurements with large numbers of
randomly missing measurements. \ simple bivariate example is given in
Goldstein (1986b).

In the present paper we consider an example which is a bivariate spe-
cialization of the general model. The first variate is height, modeled as a
function of age and certain covariates. and the second is adult height mod-
eled simply as a function of the overall mean. There are two populations of
subjects which have been sampled.

The model is written as follows:

- Do - . 3, ot
Y = a115u~lz+0‘216ij~‘~2u+(5U(Stdtz]17;‘_,‘)

+ (L=8&))vi + {1 = &;)azin, t=20,...,3, (4

where z;; is a dummy (0, 1) variable indicating whether the subject belongs
to group 1 or 2, and is thus a measurement made at the subject level. The
variable zy;, is the subject’s bone age, estimated from a wrist radiograph
according to Tanner et al. (1983). The variable §;; is 1 if the response is
made during the growth period and 0 if adult height is measured. and z;;
is age, measured about a suitable origin. The coefficients ay;, @i, and as;
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are assumed to be fixed, and the remaining coefficients are assumed tg 1,
random as follows:

3oij = o + upr + eoij t=0.1

S = dit v tew;

Gaj = Brtouy

Jai; = 33+ ua

3oy = 3, t=1,...,3
vio= Yot u

At the subject level. the random variables uqi, u1i, u2i, and us;, vy, have
a 5-variate distribution with a zero mean vector and dispersion matrix Q.
At level 1, eq;j and eq,, have a bivariate distribution with a zero mean vecto,
and dispersion matrix ;. Thus, at any given age during the growth period.
the variance of y;; is given by:

xTox, + X7,

where
-T 2 3
X, = (l,l‘,‘j,l‘”,ru)

X' = (Lz).

The age range of growth considered in the example is 10 years to 18 vears
together with measurements of adult height in a sample of girls. During this
period it is well known that there is a maximum of the velocity of growth at
puberty and a minimum velocity approached as growth slows down at the
approach to adulthood. There is also a pre-pubertal minimum of the velocity
but for nearly all girls this occurs before the age of 10 years {Golds:ein,
1086b). It is also well known that the ages of occurrence of these zero
“acceleration” points vary between subjects.

To capture these growth features we require at least that growth co.
efficients up to the cubic vary randomly between subjects, since the age of
zero acceleration is estimated by setting the second differential of the growth
curve with respect to age, to zero. In fact, because the sample size in the ex-
ample is relatively small (93 subjects), it has not been possible to fit random
coefficients higher than the quadratic. A possible solution to this problem is
to restrict the age range of the measurements so that the older ages which
help to define the second stationary value of the velocity are excluded. A
difficulty with this approach is in deciding where to truncate the age range.
A further difficulty occurs where we wish to predict using values beyond the
truncation point. We return to this in the example below.

h
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3 Estimation and Prediction

The estimation procedure used is that described in Goldstein (1986a) and
Goldstein {10%7), namely iterative generalized least squares {IGLS), which is
maximum likelihood when the random variables have a multivariate Gaus-
sian distribution. Software written at the London Institute of Education was
used (see Appendix).

Our interest is primarily in predicting +;, the adult height for individuals
not in the sample. The mean <q is obtained from the model estimates and
we can form a posterior estimate of v; in the usual manner. As is typically
done when using such procedures. we ignore the sampling error of the random
parameter estimates when calculating the standard errors of the predictions.
In fact, the sample size of 93 cases appears to be large enough to justify this.
Explicit formulae for the prediction equations and the standard errors of the
predicted values are given in Goldstein (1987).

4 Data Analysis

The data for this example are measurements on two samples of girls mea-
sured from just after birth to adulthood. The first sample, known as the
International Children’s Centre London sample (ICC) consists of 52 girls
born in the early 1950's in an area of central London. The second sample
(NCH) consists of 11 girls in a children’s home in Hertfordshire measured
from entry to the home until adulthood. In both samples the children were
measured close to their birthdays, and more frequently during periods of
rapid growth. e have selected the yearly measurements from the 10th
birthday onwards. Further details of the samples are given in Tanner et
al. {1983). At each measuring occasion height was measured and bone age
assessed according to the Tanner-Whitehouse scale (Tanner et al., 1983).

Table 1 gives the parameter estimates from fitting the model (4). The
term for study difference during growth was very small and has been omitted;
the degree 5 polynomial term has been omitted for the same reason. Also,
there is only a very small relationship between the level 1 variance and age,
and so only a simple level 1 variance term has been fitted.

The ages of maximum height velocity are obtained by solving the follow-
ing equation:

30i; + 33z + 63,22 = 0 (3)

[f we use the estimate for the variance of 3;;; in Table 1 and assume that
3a:; has a Gaussian distribution, then we can estimate the distribution of z.
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TABLE 1 )
Height Related to Age, Bone Age, and Group: Girls Aged 10-18 Years

A B

Fixed Coefficients Estimate S.E. Estimate SE.
Adult height 162.0 0.59 162.1 0.59
Growth curve intpt 154.6 0.69 154.7 0.73
Bone age 0.59 0.11 - -
Group (adult) 0.47 0.40 0.28 0.42
Age 4.68 0.17 5.20 0.14
Age? 0.84 0.05 ~0.87 0.08
Aged ~0.142 0.008 ~0.144 0.008
Age? -0.012 0.002 0.011 0.002
Random Coefficients
Model A:
Level 2 Covariance Matrix (Correlations)

Adult Height  Growth Intpt Age Age?
Adult height 29.2
Growth intpt 274 (0.77) 43.7
Age 0.70 (0.10) —38.75(-0.40) 1.53
Age? 0.0084(0.00)  —1.69(-0.60) 0.45(0.86) 0.18

Level 1 variance = 0.63, s.e. = 0.06

Model B:
Level 2 Covariance Matrix (Correlations)
Adult Height  Growth Intpt Age Age?
Adult height 29.3
Growth intpt 27.7 (0.74) 48.3
Age 0.63(0.09) —4.35(-0.50) 1.56
Age? —0.01(0.00) —1.96(-0.83) 0.46(0.84) 0.195

Level 1 variance = 0.61, s.e. = 0.06

Group is coded 1 if in ICC sample, 0 if in NCH sample.
Age is measured about an origin of 13.0 years.

Number of subjects = 93.

Number of measurements = 524.

. — -
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This is done conveniently by using simulation, and Table 2 gives estimates
for some percentiles of this distribution.

The mean age of 11.5 years is about 0.4 years lower than that found
by Tanner et al. (1976) using a sample of the NCH children, including the
measurements made every three months, by a method based upon smoothing
each individual subject’s height with a logistic curve.

As a further check on the model, standardized (shrunken) residuals at
level 1 and level 2 are displayed in Figures 1-4.

As can be seen from Figure 1, the level 1 standardized residuals, plotted
against the predicted height, are well behaved. Figures 2-4 are a selection
of plots of the standardized level 2 residuals plotted against each other. It
appears that the distribution of the slope residuals is negatively skewed,
which may be a consequence of the absence of a random cubic coefficient.

Turning to the prediction of adult height, we first study the performance
of the prediction on the 93 sample individuals, all of whom had an adult
height measurement, by using the set of growth period measurements with-
out adult height to predict the latter. These predicted heights are plotted
against the actual adult heights in Figure 3, which shows no sign of any
departure from linearity.

In this case we have used several repeated measures on each individual.
In practice, however, a prediction is required from just one or two measure-
ments. In Figure 6 we plot the predictions against adult height using the
subsample of 62 girls who have a measurement within 0.1 years of their 12th
birthday.

TABLE 2

Estimated Percentiles of the Age
of Maximum Height Velocity

Percentile Age
5 10.4

10 10.6
50 11.4
90 12.4
95 13.7

Mean age = 11.5 years
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We see a linear relationship as before but with, as would be expecteq_,
larger scatter of the observed residuals about their predictions. At thig agn
the estimated standard error of the prediction is 3.7 cm. If two measuremep;,
are taken a yvear apart. centered at 12.0 vears. the standard error becomes 30
cm. If six vearly measurements are used from 10 to 13 years, the standagq
error falls to 1.6 cm.

As already mentioned, one solution to the problem of being unable 1,
fit a high enough order polynomial is to restrict the age range so that gpj,
one stationary value of the velocity occurs. We have therefore rerup thve
analyses excluding all ages greater than 135 years. The estimated parametap
are shown in Table 3, and we obtain a mean age for the maximum heighy
velocity of 11.5 vears: however, it is possible to fit a random cubic coefficien,
in the model. and from that analysis we obtain a mean age of maximup
height velocity of 11.7 years. It appears, however, that the individuals yseq
in the present analysis (Professor J. M. Tanner, personal communication)
may tend to have earlier-than-average pubertal growth. Children who [ef;
the study without adult height measures were not included in the presep
analysis and would tend to be late-maturing individuals, and this seems 3
plausible explanation for the relatively early ages of maximum height velocity
in the present analyses. '

5 Discussion

The analyses in this paper have demonstrated the feasibility of using a 2-leve|
model for predicting adult height from serial measurements, taken during the
growth period. Clearly, the method can be extended to other measurements,
and we can also consider the multivariate case where several measurements
are modeled jointly. In addition. the adult measurements to be predicted
need not be those measured during growth, and this provides a flexible ap-
proach to the modeling of general repeated measures data. For routine use,
a program can be written to make predictions with associated interval est;-
mates, and the prediction can be updated as further measurements become
available. It should be noted that the adult height predictions are generally
population dependent. In the present analysis the group difference is small
(0.5 cm.), but we cannot necessarily assume in general that all population
differences will have been taken into account by conditioning on growth mea-
surements. This will be a matter for empirical study. Likewise, it will often
be necessary to adjust for a “secular trend” in adult height which has oc-
curred between tle time period when the data were collected and the period
the results are in use.

-~- .
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TABLE 3
Height Related to Age, Bone Age, and Group: Girls Aged 10-15 Years

119

w2
R

A B

Fixed Ceefficients Estimate S.E. Estimate .E.
Adult height 162.0 0.538 162.1 0.58
Growth curve intpt 154.7 0.69 134.8 0.72
Bone age 0.64 0.12 - -
Group (aduit) 0.56 0.33 0.28 0.33 h
Age 4.31 0.20 5.26 0.18 (
Age? —-0.79 0.08 -0.87 0.08 !
Aged -0.19 0.03 —-0.16 0.03 -
Aget —-0.003 0.01 0.008 0.01
Random Coefficients
Model A: .
Level 2 Covariance Matrix(Correlations)

Adult Height  Growth Intpt Age Age”
Adult height 29.2
Growth intpt 27.7 (0.73) 42.9
Age 0.96(0.13) —4.20({—0.46) 1.95
Age? 0.02(0.01) -1.92(-0.60) 0.59(0.86) 0.24
Level 1 variance = 0.49, s.e. = 0.06
Model B:
Level 2 Covariance Matrix(Correlations) .

Adult Height ~ Growth Intpt Age Age”
Adult height 203
Growth intpt 27.7 (0.78) 42.9
Age 1.12(0.13)  —4.70(-0.51) 1.96 ]
Age? 0.11(0.04) —2.12(-0.63) 0.60(0.86) 0.25

Level 1 variance = 0.50, s.e. = 0.06

Group is coded 1 if in ICC sample, 0 if in NCH sample.
Age is measured about an origin of 13.0 years.

Number of subjects = 93.

Number of measurements = 446,
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The models in this paper can be used with longitudinal educational daty
where interest lies in the prediction of an outcome such as an examina.
tion score. In this case, serial measurements may be age- and population.
standardized, so that the means of the growth coefficients are zero. Where
different serial measurements are made, these can be treated as separate
response variables with coefficients correlated at level 2. Multiple outcome
variables can be handled by direct extension. In such models, covariates and
group differences are often of interest in their own right. Furthermore, a
third level, that of the school, will generally be needed and the model coef-
ficients in general may vary across schools. In this case, where predictions
are required for individual students, estimates of school level (shrunken)
residuals should be incorporated where the student’s school is known.

We have assumed simple multivariate distributions among the measure-
ments and the random parameters. In fact, in the case of height data there
are some constraints which ought to be included in the model, namely that,
for any individual, the adult height cannot be less than any of the growth
measurements. Thus, using the models in this paper it would be possible
to predict an adult measurement less than the most recent growth measure-
ment. This especially will be the case for growth measures taken towards
the end of the growth period, and provides another reason for restricting
prediction to ages up to 13 years only. The problem is one which affects all
height prediction methods and needs further study.

Two other methods are in use for prediction of adult height. The one
by Tanner et al. (1983) is based upon separate regression predictions of
height at each age, or pair of ages. While this procedure can in principle
produce efficient predictions, it is not very flexible. Thus, the accuracy of the
prediction equation is limited by the actual number of subjects at the age
being used, whereas the 2-level model procedure can use efficiently all the
data available, including those cases without an adult height measurement.
Also the fixed-age prediction method cannot realistically handle more than
two serial measures, whereas the 2-level procedure can include as many as
are available.

The other procedure (Bock, 1986) is similar to the present one but instead
uses a non-linear model fitted to the whole growth age range with parameters
varying between subjects.

Detailed comparisons of these procedures have not yet been carried out.
The 2-level polynomial model, however, would seem to be the most flexible
and potentially the most efficient of these methods. It can easily handle
multiple measurements, it can model within individual changes in variation,
it can make use of data from individuals with only very few measurements,
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and it can handle measurements other than height, for which simple non-
linear growth models are unavailable.

A further development would be to extend the number of covariates in
the model. Thus, Tanner et al. (1983) effectively include the occurrence of
menarche as a covariate by presenting separate predictions for those girls who
have and who have not yet experienced that event. Likewise, other stages of
pubertal development could be included. The inclusion of subject-level vari-
ables such as parental height and birth order might also be useful. In some
cases, it may be preferable to treat a continuous, occasion-related covariate
as a response. Thus, we could fit a bivariate growth model to height and
bone age, where in a simple model bone age might be a quadratic function
of age with all the coefficients random at the subject level, the intercept and
quadratic coefficients having a mean value of zero and the linear coefficient
having a mean value of 1.0. The predictor of adult height would then be
a function of the set of height and bone age residuals. An important ad-
vantage of this model is that even where bone age is not measured at all
occasions. all the available bone age measurements can be used in the pre-
diction. This contrasts with the present models where we use either all the
occasions without bone age or just those that contain bone age.

Finally, it should be stressed that large samples are important to secure
stable estimates and to enable higher-order fixed and random coefficients
to be included so that the model can be properly specified. It would be
convenient, for example, to be able to model a much wider age range than
that considered here, in order to avoid the problem discussed at the end of
Section 4. That would require further higher-order random coefficients to
cope with at least two more stationary values of height growth in the pre-
pubertal period. The optimum combination of overlapping age ranges is a
matter for further empirical study. Further work is also needed on the mod-
eling of measurements made close together in time where serial correlations
will be present at level 1.

6 APPENDIX

MULTILEVEL: A Model-fitting Program using Iterative Gen-
eralized Least Squares

This brief overview describes the data input structure, the facilities for
specifying a model, and the form of output. Running specifications can
be obtained from the author and a copy of the current version, written in
FORTRAN 77, is available.
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6.1 Data Structure

The basic data record is a level-1 unit. These are nested within each leve]-9
unit and level-2 units are nested within level-3 units. The sequence of dat,
records thus corresponds to the hierarchical structure. The facilities for dat,
transformation within the program currently are somewhat limited. It is,
however, possible to form the square of any explanatory variable, compute
the mean value of any explanatory variable for all the level-2 or level-3 unijts
to form new aggregated variables, and to calculate the standard deviatiop
of a level-1 explanatory variable for each level-2 unit. In addition, one can
specify whether or not an explanatory variable is to be measured from its
overall mean.

6.2 Model Specification

The fixed and random parts of the model are specified separately. For the
fixed part. any selection of the input explanatory variables can be made. For
the random part, the parameters are specified separately at each level. At
each level there are potentially n{n + 1)/2 variances and covariances, where
n is the number of input explanatory variables (including the constant term
if required) and thus also the number of potential random coefficients. Any
coefficient can be defined as random at any level. There is also a facility for
allowing a non-zero covariance to be estimated when one of the corresponding
variances is zero (see Goldstein, 1987, for a justification of this).

The program also allows for the specification of no random variables at
level 1 in order to fit multivariate models. Starting values can be input, with
the default being OLS values.

6.3 Output

Output is flexible. It allows printing of estimated covariance matrices of es-
timated parameters during iterations. [t allows printing of raw data. It will
calculate and print shrunken level-2 and level-3 residuals together with condi-
tional and unconditional standard error estimates. [terations are controlled
by a relative accuracy convergence criterion on the random parameters.

6.4 General

The program is written in FORTRAN 77, to be as general as possible and
handle a wide class of standard models including loglinear discrete response
multilevel models (Goldstein, 1987). The raw data need to be stored for use

-
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at each iteration in order to allow flexibility in specifying the level-1 covari-
ance structure. The standard version of the current program allows 2500
level-1 records, 120 level-2 and 120 level-3 units, up to 53 random parame-
ters at each level and up to 20 explanatory variables. The major deficiency
lies in its heavy demand on CPU time. A new version which will be available
in 1988 will be both faster and more economical in use of storage.
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