CHAPTER 11

Multilevel and Multivariate
Models in Survey Analysis

H. Goldstein and R. Silver

11.1 INTRODUCTION

Recent developments in the theory of linear model estimation (Aitkin and
Longford, 1986; Goldstein, 1986a) have made possible the specification, efficient
estimation and testing of models fitted to data obtained from nested or
hierarchical structures. A good example of a hierarchical structure is an
educational system where students are ‘clustered’ or grouped within classes,
classes are grouped within schools, schools within local boards or authorities
and so forth. Other kinds of data too can be viewed in this manner, most notably
repeated measurement longitudinal data, which are an example of two-level
data with the first or lower level comprising the measurement occasions ‘within’

individual subjects, and the second or higher level comprising the subjects,

themselves (see Goldstein, 1986b). Of course, the individual subjects may
themselves be grouped within classes, schools, etc., so giving rise to a three-level
or higher-level structure. It is important to emphasize that these hierarchies are
intrinsic properties of the systems being studied, and that the use of statistical

models to describe these structures is motivated by the structures themselves, ,

independently of any sampling procedure which generates the data. Thus, a
sample may be drawn [rom a school population by a simple random procedure,
but it will still generally need to be modelled with due attention paid to the
structure of the population itself.

From this viewpoint a multi-stage sampling procedure may be important for

providing a valid and efficient analysis, not merely to reduce costs. Thus, if we

wish to obtain stable estimates of within-school variation we need sufficiently
large numbers of children within individual schools. A simple random sample
which produced, say, just one child per school on average would be unsuitable.
Further discussion of this point is given in Chapter 12.

The same considerations apply to most social data. Societies tend to have



222 MULTILEVEL AND MULTIVARIATE MODELS IN SURVEY ANALYSIS

inbuilt hierarchies, for example, individuals within households which are
grouped within localities and so on. In this chapter our concern is with a
model-based approach with inferences to an assumed superpopulation, and our
models are devised explicitly to incorporate the hierarchical structure of the
population. In particular, these models can incorporate measurements made,
say, at the level of the cluster, and if clusters are geographical areas, we can
think of using variables such as the average social composition of the area or
its general amenities. Thus the emphasis is on describing the between-unit
variability at each level of hierarchical aggregation. This contrasts with the
more usual emphasis in survey analysis where this variation is regarded as
constituting a ‘nuisance’ since interest centres on relationships amongst the
lowest level units—typically individual subjects.

Because so-called ‘multilevel’ models have been applied most extensively to
educational data, the principal exposition will be in terms of educational
variables. Nevertheless, as our second example illustrates, the methods of
analysis will apply to data collected from other hierarchical systems, and to
social surveys in particular. To introduce the basic idea of multilevel models,
consider a simple two-level structure with students grouped within classrooms.
Suppose there is a response variable, say a mathematics achievement test score
(y) measured on each student, which we wish to relate to the gender (x,) and
social background (x;) of each student, and to the average social background
of all the students in each class (a,) and years of mathematics teaching experience
of the classroom teacher (a,). Note that there are two explanatory variables
measured at the student level, and two at the classroom level, one of which is
a characteristic of the teacher and one is a so-called ‘contextual’ variable, based
on an aggregated characteristic of all the students in the class. Note that the
values of the aggregated variables may be available even though the sample
itsell does not include all the children in the class.

The next section deals with the basic statistical model. The approach is
informal, rather than statistically rigorous, and uses a simple notation and
terminology. The full statistical details of how to obtain generalized least squares
and maximum likelihood estimates can be found in Goldstein (1986a). We deal
first with the case of a continuously distributed response variable, and in the
following section with discrete response variables.

1.2 THE TWO-LEVEL MODEL

The ‘fixed’ part of the model mentioned above can be written as
Ya=Boxo + Bi1X1at B2X2e + Y10d1e T V200200 (11.1)

where the ¢ subscript indexes classes and the t subscript indexes students within
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classes. The coeflicients B¢, f8,,8:.710 and 3,0 are those which we want to
estimate. In this example, the variables x; and x, are categorical and are defined
using ‘indicator’ variables to denote the levels or categories, and the variables
a, and a, are basically continuous so that y,, and y,, can be interpreted in
the usual way as regression coefficients. The variable x, is in fact a constant
which is set to 1.0 so that f; becomes the ‘overall constant’ or ‘intercept’ term
in the model.

Turning to the ‘residual’ terms, these are random variables with an assumed
mean of zero. We start by defining two of them, motivated as follows. Suppose
Bo varies randomly across individuals and classrooms. That is, for a fixed set
of values for x,,x,,a,,a,, assuming we know (or that we have estimates of)
B1.81.710,720 then we rewrite it with extra subscripts as f,,, which varies from
student to student with a mean value for the cth class of ;.. We write:

Boc = Bo + no. (11.2)
and

Boa = Bo + noc + £, (11.3)

where 7, is the deviation of the cth class from the overall mean and where ¢,
is the deviation of the rth student from the mean of the cth class, with variances
o¢ and o? respectively. The 5, are mutually independent and so are the ¢, and
they are independent of cach other.

Thus, remembering that the variable x, = 1 we can write:

o = Boa + Brxia+ BaXao +710d)1c + 72042,

=foxo + Z BiXie + kz Pxodke T (oc + € (11.4)
k=1 =1

The term is brackets is the random part of the model, and we need to estimate
the two parameters associated with it, namely ¢2,0%.

It will be seen that equation (11.4) is the usual form for the lincar model, but
with the additional random term n,,. It is the presence of two random terms
that requires special estimation procedures and means that ordinary regression
techniques cannot be applied (unless of course o is zero or negligibly small).

We can extend this model to include ‘interactions’ between level | and level 2
variables by allowing, say, 8, to be a function of level 2 variables, and writing:

2
Bia= Zx Yaidee v Uyt 8. (11.5)

k=
This allows B, to vary at both level | and level 2, and in general any coefficient

can vary randomly at any level.

Asan examplc suppose the variable x,, is coded as (0, 1), so that its coefficient
measures the gcndcr difference, and let this coefficient vary randomly across
classes. This means that the gender difference is greater in some classes than
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others, which seems a reasonable assumption. In this case, if the variance of
C .

By is o with mean f,, an extra term is added to the random part of the model

and we now have the variance of y,, as

2 2.2
05+ 0iXi, + 200, X + 02, (11.6)
th:rc wc.a.llow floc and B, to be correlated with covariance oy, . Alternatively
orin afidmon, we can allow f, to vary randomly over students within classes,
and this leads to a model where the level | contribution to the variance for
males is

ol +0o}
and for females
o5 +olk
It is clear that we can accumulate a large number of random parameters
(variances and covariances) by allowing further coefficients to be random. It is
also possible to have a random coefficient whose mean value is ‘constrained’
to be zero, so that the effect of the explanatory variable is seen only in the
random part of the model. A fuller study of such possibilities can be found in
Goldstein (1986b, 1987b).
Returning to the basic two-level model of equation (11.4) we see that it implies
a positive correlation between the responses of any two students in the same
class, but a zero correlation between the responses of any two students chosen
from different classes. Thus, the covariance of Yo and y_. is the covariance
between (no. +¢,) and (n,, + ¢,,-) and since &, and ¢, are assumed to be

independent, this covariance then becomes simply o5. The variance of y,, or

Yer conditional on the fixed part of the model, is 62 + o7 and so the correlation
between the responses is

t=o0k(02+a%)". (1.7

This correlation is the usual ‘intraclass’ correlation and measures the degree
of similarity of students within classrooms, or alternatively how well the response
variable y,, is ‘clustered’ by classrooms. The larger the value of this correlation
thg greater the clustering and the more important it is to use a fully efficient
estimation procedure. In general this correlation will be referred to as the
‘intra-unit’ correlation since we can determine correlations for each higher level
of a model.

One particular feature which gives these models a considerable flexibility is
that we can extend the idea of repeated measurements as part of a two-level
structure to a specification of multivariate data. This is done by designating
level 2 to be that of the student denoted now by c, with the variates considered
as repeated within-student measurements at level 1, and defined by suitable
indicator variables.
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Suppose each student ¢ has four measurements y,,,..., y.o. These could be
different test scores, or alternate forms of the same test. We can write a simple
basic two-level model for this as follows:

ycl=ﬁlrxla+ Ber2ﬂ+ ﬂch3cl+ﬂlcx4rl' “ |8)
where ¢ ranges from | to 4 and where X, X3, X3, Xq, are indicator variables (e.g.,
x,o=11f t =1 and 0 otherwise).

We also suppose that the coefficients are random variables at the student
level with variances and covariances which are to be estimated. In equation
(11.8) this yields ten random parameters. The result of such an analysis will be
an estimate of the 4 x 4 covariance matrix together with the means of the four
measurements. These are simply the estimates of the coefficient means. Of course,
if every student had all four measurements, these estimates would be the same
as those obtained by the usual procedure for calculating the means and
covariance matrix for a set of variables. The flexibility arises because the
two-level model provides efficient estimates where some of the measurements
are missing, and also allows nesting of students within higher levels of a
hierarchy. In particular, we can see that ‘multiple matrix sampling’ or ‘rotated
form’ designs, where not every student responds to the same combination of
tests of forms, are special cases of data which are ‘missing’ by design. All such
designs can in principle be regarded as special cases of the general multilevel
model, and hence analysed by a suitable procedure. Any mixture of rotated
designs, longitudinal repeated measurements and multiple levels of institutional
organization, can be analysed within the same model structure in an integrated
and efficient manner. In Section 11.5 we illustrate some of these possibilities
with an example.

11.3 ESTIMATION IN THE MULTILEVEL MODEL

There are several methods available for estimating the fixed and random
parameters in a multilevel model. The iterative generalized least squares (IGLS)
approach used in the examples in this chapter, is outlined in Chapter 12. Under
the assumption of multivariate normality the resulting estimates are also
maximum likelihood. Goldstein (1986a, 1987a) shows how efficient computer
algorithms can be constructed for the general case by making use of the known
structure of the data, and how significance tests and confidence intervals can
be derived. A trial version of a program is available from the authors.

A further useful extension of the purely hierarchical model is given in
Goldstein (1987b, Chapter 7). This allows units to be cross-classified by two or
more random factors. Thus the level 2 units could be the cells of a cross-
classification of schools by neighbourhoods, with each student belonging to one
cell. In sample surveys individuals could be classified by geographical area and
workplace. In longitudinal surveys, where migration takes place between
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measuring occasions, individuals can be described by a cross-classification of
their residence neighbourhood at the different occasions.

An important aspect of any analysis is a study of model adequacy. Procedures
for the hierarchical fitting of parameters in both the fixed and random parts
are available, analogously to those for ordinary linear models. At each level we
can also construct residual plots. In the ordinary linear model there is only a
single (level 1) residual, but in the models considered here we may have several
(correlated) residuals at any level and bivariate residual plots are very useful.
In the case of the basic model of equation (11.4) we obtain estimates of the
residuals, namely:

Aerbar

which are typically referred to as ‘shrunken’ estimates. Very often these are
themselves the focus of interest, as estimates of level 2 (school) ‘eflects’ and from
a Bayestan viewpoint would be termed ‘posterior’ means (Aitkin and Longford,
1986). A detailed discussion of the estimation and interpretation of such residuals
is given by Goldstein (1987b, Chapters 2,°3).

11.4 LOGLINEAR MULTILEVEL MODELS FOR PROPORTIONS

In this section we describe the analysis of multilevel models where the response
variable is a proportion with a logit transformation. We show how this provides
a generalization of the usual single-level loglinear model to the multilevel case.
Further details are given in Goldstein {1987b).

Consider a two-level model where, within each level 2 unit (cluster), the level |
units are classified into I response categories. These may themselves have a
structure, for example a two-way cross-classification corresponding to a
contingency table, which then could be further modelled in terms of constants
fitted to the table margins. For simplicity we shall suppose that we have a
one-way classification of categories.

Since the response proportions for each cluster add to one we consider only
I — 1 of them. As in Section 11.2, we define a set of I — 1 dummy variables (x)
corresponding to the I — | response proportions. Thus we have a multivariate
model with a response vector of length [/ — 1. As in equation (11.8), the dummy
varniable cocfficients are assumed to vary between clusters, that is, they are
random at level 2. For a given cluster the [ — 1 responses themselves have a
covariance matrix, constituting the level [ variation, which if the proportions
have a multinomial distribution s given by

var(pl o) = pall — pen ',
COV(Peir Pejic) = — Hitten ' (11.9)

where ¢ refers to cluster, i and j to response categories, p,; is the expected
proportion and n_ is the cluster size. In general, however, the g, are unknown,
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and although we could obtain estimates based on the samples for each cluster.
these will tend to be unstable unless cluster sizes are very large. Hence we
replace y; in effect by an average value by writting:

2

cov(pepelc)=ayn ", (11.10)

var(pgle)=ain_",

where the 67, and o,; are to be estimated.

An alternative procedure is outlined in Chapter 13, This assumes a
multinomial distribution within each cluster and replaces the unknown
parameters in equation (11.10) by the corresponding linear or loglinear functions
of the (estimated) proportions. As in equation (11.10) the same values are
assumed for each cluster. An estimate of the between-cluster (level 2) covariance
matrix is then obtained by differencing. We note that where the distribution is
not strictly multinomial the variances and covariances will still be propor-
tional to n”! and this suggests that equation (11.10) provides a robust
procedure.

In the simple model where the pu,; have the same level 2 variance, we have:
var(p)=a’+aln " (retn

We can specify the covariance structure as follows. For the level | variation

we define a set of dummy variables taking the values 0 or, n”%* analogously

to the dummy variables described above. The coefficients of these dummy

variables are random at level 2 so giving the covariance structure (11.10). For

the between-cluster variation we have a single constant term with a coeflicient

random at level 2. In the next section we provide an example of this model.
For the logit and loglinear cases we define a multivariate logit as:

log(p.i/pes) (11.12)

which reduces to the ordinary logit when I =2. Wong and Mason (1985) give
a maximum likelihood procedure for the ordinary logit two-level model. In the
general case the choice of denominator as the last proportion is made for
convenience,

For the multivariate logit transformation the variances and covariances are
also inversely proportional to n, and so the same procedures for specifying the
covariance structures can be used as in the untransformed case. This multivariate
logit model is equivalent, in the case of a single-level model, to the corresponding
loglinear model based on the underlying frequencies, and so gives us the
corresponding loglincar multilevel model for frequency tables.

One difficulty with the use of logit functions occurs when some of the observed
proportions are zero or one. In this case we could adopt the common procedure
of adding or subtracting 0.25 as appropriate to the relevant frequencies. An
iterative version of this can be based upon the EM algorithm (Dempster. et al..
1977), whereby the parameter estimates obtained are used to predict the (0, 1)
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frequencies and these predicted values treated as if they were observed values
for the next cycle of iterations. The process would be repeated until convergence.
An alternative is to collapse relevant cells across clusters as described in
Chapter 13.

It is clear that even where the number of response categories is small, there
are, potentially, a large number of random parameters at level 2. In the example
in Chapter 13 the full set of variances and covariances are fitted and the structure
of the resulting level 2 correlation matrix is examined. The model formulation
in this section allows a hierarchically structured design for the level 2 random
parameters, since the level 2 and level 1 random parameters are separately
specified. Thus, we might first allow the coefficients for each of the (one-way)
main effects to vary randomly at level 2, then see whether adding interactions
improved the model fit, and so forth. In this way one may be able 1o arrive at
a parsimonious model which can be interpreted and which describes the data
adequately.

1.5 EXAMPLES

The data for the first example are taken from the sccond International
Educational Achievement (IEA) survey test score results at the eighth grade or
year of compulsory schooling. Two populations are used, one from Japan and
one from British Columbia in Canada. In each case all the students within one
class in each study school were measured. There are 187 and 47 schools
respectively. For each student there is a core ‘post-test’ of geometry items taken
towards the end of the school year. In addition each student responded to an
‘alternative form’ post-test. In fact there were four alternative forms of post-test
of which each student took only one. Preliminary analyses revealed no significant
differences between the alternative forms and we make no distinction in the
analyses presented here. We treat the data as if every student answered the core
post-test and the alternative form. Further discussion of this point and an
cxtended model structure to allow for alternative forms of the post-test is given
in Goldstein (1987b).

Two classroom-level variables: (ay) the years of experience of the class
mathematics teacher and (u,) the cumulative pereentage of the post-test items
covered in the curriculum were measured. This second variable is often referred
to as ‘opportunity to learn’ (OTL). In addition each student achieved a pretest
score taken at the start of the school year.

The fact that only one class of students is measured within each school means
that the school and class effects are confounded. We shall refer to this level of
clustering as the school effect although the two explanatory variables a, and
day actually relate to the particular class sampled.

Il we were to analyse only the core post-test scores (putting to one side the
alternative form) then a two-level model would suffice where level 2 was the
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school and level 1 the individual student. To model overall ability the pretest
score would not be used and thus we could write:

2
Ya = Z Yo ke + [;cl!
k=1

iBrl=B+"0c+€cH “113)

where k= 1,2 refers to the two explanatory variables, ¢ refers to school and :
to the student. Here var(y,,) = ¢ and var(e,,) = 6. 4

If we introduce into equation (11.13) the individual pretest score x,, wnh a
corresponding regression parameter then the emphasis is altered to modelling
the change in performance for each child with the pretest score treated as a
student level covariate. The results to be presented will cover both cases of
including and excluding the pretest score. '

The existence of an alternative form post-test introduces an added complgxny
which may be incorporated by extending the model to three levels. An uddmonul
subscript j = 1,2 identifies the core post-test (j=1) and the alternative form
(j=2). The three-level model becomes

Yeai = 2 Yk0j8kc + Becjy (11.14)
k
where
Brlj = ﬂj + "0: + Cuj
with
Var('?o:) = a(z)v
Var(enl) = Gz,la
Var(erlz ) = a¢2,29
and

2
COV(GM 128 2) =0,12

As in equation (11.13), the pretest score x, may be included if the change in
attainment is the objective.

The formulation allows for the variances of ¢,; to be unequal for j =1,2 and
for the two terms to be correlated. Thus the intra-school correlutlon for the
two forms of the post-test may be different since although a2 is common, the
individual level components of variance 62, and 62, may differ. .

The scores are standardized on a scale which gives the percentage of items
correctly answered. The results of the analysis are givenin Tables | l'.l and 11.2.

We consider first the case when the pretest score is included in the model.
As might be expected, in both countries there is a fairly strong relu.tionship with
the pretest, as judged by the coeflicient of the pretest score. There is a difference
between the core and alternate form tests for British Columbia which appears
as an interaction with the pretest score. The only other variable showing any
relationship with progress between pre- and post-tests is OTL in the case of
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Table 11.1 Summary statistics for British Columbia and Japan:
Grade 8 geometry

Variable Pretest Post-test Yrs exp. OTL
British Columbia

Mean 88.1 54.0 8.2 50.1

SD 433 243 5.9 19.6
Japan

Mean 106.9 64.2 6.2 50.6

SD 37.2 21.6 4.6 14.1

N.B Number of students = 253 (B. Columbia), 671 (Japan),
Number of schools = 47 (B. Columbia), 187 (Japan).

British Columbia. The coefficients for OTL are fairly similar in both countries
(0.07 and 0.11) but the standard error for the Japanese coefflicient is no smaller
despite being based on a larger number of schools. The reason is seen in
Table I'1.1 where the standard deviation for OTL is larger in British Columbia.
Since the OTL values are more dispersed the standard error of the regression
coefficient will be smaller and this compensates for fewer schools in the sample.
Turning to the fixed-effect terms when the pretest is omitted (i.e. for a purely
cross-sectional analysis) the contribution of the alternate form score is less
than that of the core in both countries. There is also a suggestion in British
Columbia that the years of teaching experience is negatively related to test score.

A persistent problem in cross-cultural studies of educational achievement is
to obtain consistent and comparable interpretations of common test scores
when the curricula, examination systems and so forth differ. This difficulty
applies particularly to the fixed-effect parameters. When we look at the random
parameters, however, we are studying how the variation is distributed over the
different levels of the educational system and it may be that such comparisons
between systems will be more meaningful. This will not remove the difficulty
that a common test may be more relevant to some educational systems than
to others, so that it seems generally preferable to design and use different
assessment measures, each appropriate to its own system. The same argument
would apply to studies of a single system subject to curriculum change where
comparisons across long time periods were required.

Bearing in mind these caveats, we see that the intra-school correlations for
Japan are much smaller than those for British Columbia. After accounting for
the pretest, the intra-school correlations in Japan become zero, whereas those
for British Columbia are still substantial. Thus Japanese schools appear to have
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Table 11.2 Grade 8 geometry for British Columbia and Japan

British Columbia Japan
Post-test related to class-level variables
Fixed
Constant 50.8 58.2
Alt. minus core —12.5(1.4) —5.1(0.7)
Years exp. maths —0.61(0.28) 0.16(0.17)
OTL 0.17(0.09) 0.10(0.06)
Random
Between schools 70.0(13.9) 15.7(8.2)
V-ariance {core) 550.7(30.3) 437.7(24.0)
Variance (alt.) 353.9(24.0) 443.0(20.9)
Covariance 203.9(23.2) 265.9(17.3)
Correlation 0.46 0.60
Intra-school (core) 0.11 0.04
Intra-school (alt.) 0.17 0.03

Post-test related to class-level variables and pretest

Fixed
Constant 16.0 34.1
Alt. minus core - 1.7(3.1) —3.8(2.5)
Pretest 0.40(0.03) 0.24(0.02)
Pretest x

(alt. minus core) —0.12(0.03) —-0.01(0.02)
Years exp. maths —-0.27(0.17) 0.19(0.19)
OTL 0.11(0.05) 0.07(0.06)
Random
Between schools 21.1(10.5) 0.0
Variance (core) 319.8(29.8) 532.3(21.2)
Variance (alt.) 257.1(23.2) 378.0(20.6)
Covariance 55.9(18.9) 223.3(16.8)
Correlation 0.20 0.50
Intra-school (core) 0.09 0.0
Intra-school (alt.) 0.08 0.0

greater homogeneity of achievement than those in British Columbia. It is also
interesting to note that the correlation between core and alternate forms is only
moderate and appears to be stronger in Japan. The variances o}, are generally
smaller than the corresponding terms o2, for the core pretest which suggests
that the alternative form may be preferred in terms of reliability. It should be
remembered, however, that we have.made no adjustment for measurement error
in the pretest score, and this might alter the inferences we make if measurement
error were taken into account (see Goldstein, 1986a). In general, a major aim
of these kinds of analysis will be to see how far the between-school variation
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Table 11.3 Support for law on racial discri-

mination
Numbers of individuals
responding
(row percentages in
parentheses)
1984
Yes No Total
1983 Yes 253 67 320
(79.1)  (20.9) (100)
No 71 79 150

47.3)  (52.7) (100)

Total 324 146 470

can be reduced by the further fitting of explanatory variables, at either the
school or student level.

The data for the second example are taken from a survey of social attitudes
(Jowell and Airey, 1985). The response is the proportion of individuals in 1984
who said that they supported the law in the United Kingdom which outlawed
racial discrimination in housing, employment, etc. There is one dichotomous
explanatory variable, namely the (two-category) response to the same question
asked of the same individuals one year previously in 1983.

Table 11.3 shows the overall numbers responding in each category. The data
is based on a sample of 49 randomly selected clusters, and in one sense this
example, too, could be regarded as a three-level structure. There are two
responses for each individual who are in turn nested within the 49 clusters.
However, for data of this kind we may consider the observed proportions within
each cluster as the random variables to be analysed rather than the
individual-level responses. We formulate a two-level model involving clusters
(level 2) and the categories for the contingency table within each cluster are
level 1. Thus for each cluster there are four categories defined by the responses
in 1983 and 1984. In each cluster we observe the proportions falling into each
cell of the table. We analyse three of these proportions directly or calculate a
set of three logits by using one cell as a baseline response. In either case we
refer to this variable as y, for the 1th proportion (or logit) in the cth cluster.

Table 11.4 contains a set of dummy variables which are used in various model
formulations for the fixed and random parts of models for these data. We [irst
consider the mode! reported under (A) in Table [1.5, which is an analysis of
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Table 11.4 Explanatory design variables for the cth
level 2 unit

1983 = yes
1984 = yes

1983 = yes 1983 = no

1984 = no 1984 =

yes

Xy
X2
X3
X4
Xs

X1
Xg
Xg

_—— O —

"
o
w

—_— o O

SO =O —O

|
—OO
.
-.=
OO —O—~0O

7

Table 11.5 A two-level multivariate analysis of proportions. Social attitudes data

Analysis

Explanatory
variable A B C D
Fixed
X, — 1.77(0.23) — 0.54(0.03)
X — — — 0.14(0.02)
Xy — — — 0.15(0.02)
X4 0.63(0.12) —-0.27(0.17) 0.20(0.01) -—
X 0.67(0.12) —0.23(0.17) 0.21(0.01) —
Random
Level |
(IZ 2.15 3.09 0.51 0.34
o§ 13.1 6.49 0.16 0.13
ag 13.2 6.94 0.19 0.16
o, -2.57 —1.69 -0.19 -0.13
. —2.18 1.23 -0.20 —-0.13
Tog —4.41 -1.99 0.008 -0.02
Level 2
ag 0.77 0.66 0.0001 0.0001

(0.56) (0.47) {0.007) (0.007)

Note: Analyses A and B use the logits as responses: analyses C and D use the proportions.

233
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the logits of the proportions.

Ya= /jOrt + /Lx-zu + /}SXSctv
Boc = Bo + Mo Xoe + Mo Xeer + 17 X700 + Mg Xgers

var(n;) = o} i=6...9, (11.15)
covin. ;) =0y ii'=6,7,8,
cov(n,ne)=0 i=6,78.

In the fixed part of the model the dummy variables x, and x4 represent the
two main cffects for responses in 1983 and 1984. In the random part of the
mode! the dummy variable x, is the explanatory variable defining the
between-cluster variance and x,, x; and xg define the level | variances and
covariances. Note that the variables xg, x, and x4 include the factor n” %% to
reflect the fact that observed proportions are based on a sample of size n, in
the cth cluster.

In this description we have taken the four cell proportions together and used
dummy variables to define the model structure of main effects and interactions,
An alternative approach would have been to analyse the conditional proportions
of responses in 1983. A comparison between this approach and that described
above is analagous to the use of logistic or loglinear models for contingency
tables. The conditional approach could be adopted using the same sorts of
models as described above and a discusston of this is given in Goldstein (1987b).

In column B of Table 1.4 an extra dummy variables x,, is included in the
fixed part of the model to allow for interaction between the responses in 1983
and 1984.

A comparison of columns A and B shows, as we would expect, that the
interaction term is very important with standard error much smaller than the
coefficient. In the random part of the model we observe that the components
of variance reduce with the introduction of the extra explanatory variable. This
is often the case.

Columns C and D of Table 11.4 contain the corresponding analyses for the
cell proportions rather than the logits. In column D, for illustrative purposes
a different parametrization of the three fixed terms has been used but still
accounts for all three available degrees of freedom. The results in columns C
and D give the same general picture as those in columns A and B, although
because of the change in scale from the logistic to the ordinary proportions the
actual numerical values are diflerent. As before, the interaction term is needed
in the fixed part of the model and the random components are generally smaller
in column D.

The variances and covariances between xg, x, and x4 generally take the signs
and approximate values that we would expect under the within-cluster
multinomial sampling assumption. This approach is described in Chapter 3.
Ths cluster component o2 is very small. In this analysis the level | random
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parameter estimates have little substantive interest.atta‘che.d to.them, apart from
acting as a check on the adequacy of a mu]t.inomlal distribution. They may be
regarded as nuisance parameters. Also, their standard errors are complicated
and have not been calculated. ‘

For more complex models we can obtain an approximate‘ chi-squared
goodness-of-fit test based on the observed and predicted frequencies, the latter
being derived from the predicted proportions. For degrees of frecedom we would
use the total number of frequencies less the number of fitted model parameters.

11.6 DISCUSSION

In our examples we have shown how multilevel modelli.ng can explore the
contribution of measurements made at different levels of a hierarchical system to
both the fixed and random parts of the model. In many cases, primary interest
will centre on the random variation rather than the fixed coefficients. Thn_s offers
researchers a new range of techniques for exploring and undcrs.landmg t.he
effects of hierarchical systems in terms of the relative heterogencity of units.
The introduction of variables measured on higher level units allows us to attcrnpt‘
to ‘explain’ such variation. In social surveys we can introguce ‘.ec.o.lqglcal
variables at the cluster level, and this opens up many new analysis possibilities.
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