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Multilevel Models in Psychometrics

Fiona Steele and Harvey Goldstein

1. Introduction

Before describing the basic multilevel model, it is useful to reflect on why such mod-
els are useful. For many years, social researchers, especially in education, discussed
the ‘units of analysis’ problem, one version of which has also been called the ‘ecolog-
ical fallacy’ (see Robinson, 1951). At one extreme, it is possible to study relationships
among variables ignoring group structures. At the other extreme we can work solely
with group, say school, averages in exploring relationships. Aitkin and Longford (1986)
set out the statistical issues associated with various procedures. In an earlier analy-
sis Aitkin et al. (1981) reworked a well-known study on teaching styles which used
student level data but ignored school membership (Bennett, 1976). They showed that
formerly ‘significant’ results became non-significant when a multilevel model was used.
Woodhouse and Goldstein (1989) showed how the use solely of aggregate level data
based upon school means could lead to unstable and misleading conclusions. In addi-
tion to the problem of making misleading inferences, failure to model both students and
schools simultaneously makes it impossible to study the extent to which school and stu-
dent characteristics interact to influence the response measurement or measurements.
A useful compilation of some early work in the area of psychometrics is the volume
edited by Bock (1989).

Multilevel models overcome these problems wherever we have any kind of hierar-
chical structure, such as individuals grouped within households, themselves grouped
within areas (a three-level model). Repeated measures data are an example of a two-
level hierarchy with measurement occasions (level 1 units) grouped within individuals
(level 2 units). We can readily incorporate multivariate data within this framework. In
the simple case of a set of responses on a sample of individuals we think of the set of re-
sponse variables as forming the lowest level of the data hierarchy; that is, measurements
are nested within individuals. Further levels, such as school, can then be added above
that of individual. Models for repeated measures and multivariate data are discussed in
Sections 3 and 4 and structural equation models are introduced in Section 6.

While the ability to fit models to hierarchically structured data is important, there
are many applications where the data structures are more complex. Suppose a student is
classified as belonging sequentially to a particular combination of primary (elementary)
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school and secondary (high) school and we have followed a sample of such students
through each school and wish to relate measurements made at the end of secondary
school to those made earlier in the primary schools. The students will be identified by a
cross classification of primary schools and secondary schools. Note that even if we did
not have prior measurements, but did have identification of the primary and secondary
schools we could still carry out a cross classified analysis. Another example is where
students are simultaneously classified by the school they attend and the area where they
live, both classifications affecting the value of a response variable. Models for such
cross classifications will be discussed in Section 5.

A further complication occurs when we cannot assign a lower level unit to a single
higher level unit. Suppose that, during secondary schooling many pupils move between
schools. If our response is, say, a test score at the end of secondary school, then for such
a student we will need to share out the school ‘effect’ among all the schools attended,
using a suitable weighting function. Another example occurs with spatial data where
the affect of area will be shared among the area where someone resides and surround-
ing areas, with weights a function of geographical or other distance. Such models find
considerable use in epidemiological studies. These multiple membership models will
also be discussed in Section 5.

2. Basic Models for Two-level Hierarchical Data Structures

We begin with a description of simple multilevel models for data from populations
with a two-level hierarchical structure. More detailed accounts of these and more gen-
eral models can be found in Bryk and Raudenbush (2002), Goldstein (2003), Longford
(1993) and Snijders and Bosker (1999). )

2.1. Random intercept model

For simplicity consider a simple data structure where a response y;; is measured on in-
dividual i inschool j (i =1,...,nj; j = 1,..., J), together with a single explanatory
variable x;;. For example, the response might be an examination score measured on
students at age 16 years and the explanatory variable a test score measured on the same
students five years earlier at age 11. Instead of schools we could think of any grouping
of individuals, such as households or areas. We wish to model a relationship between
the individual response and the explanatory variable, taking into account the effect of
school on the mean response. We shall assume in what follows that we are dealing with
a continuously distributed response, and for simplicity that this has.a Normal distribu-
tion. Our data have a simple two-level structure with the schools as higher level units
and students as lower level units. The simplest multilevel model that we can fit to such
a structure can be written as follows

yij = Boj + Bixij + eij,
.1)
Boj = Po + uo;,

where var(e;;) = aez and var(ugj) = auzo.
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The model may also be written as a single equation

yij = Bo + Bixij + uo; + eij,

where o + B1x;; is referred to as the fixed part of the model, and ug; + ¢;; is the
random part. The random variable uo; represents the departure of the jth school’s in-
tercept from the overall population intercept term Bg. The slope coefficient B; is for
the present assumed to be the same for all the schools. As mentioned we shall de-
velop the model initially assuming that the random variables have a Normal distribution:
eij ~ N(0,02),up; ~ N(0,52). This model is sometimes called a variance compo-
nents model, owing to the fact that the residual variance is partitioned into components
corresponding to each level in the hlerarchy The variance between schools is o2 w0 and
the variance between students within a given school is 02

The similarity between individuals in the same school is measured by the intra-class
correlation (where, here, ‘classes’ are schools):

2
%40

oruzo +02
The intra-class correlation (ICC) measures the extent to which the y-values of students
in the same school resemble each other as compared to those from individuals in dif-
ferent schools. The ICC may also be interpreted as the proportion of the total residual
variation that is due to differences between schools, and is referred to as the variance
partition coefficient (VPC) as this is the more usual interpretation (see Goldstein, 2003,
pp- 16-17).

Having fitted (2.1) we can obtain estimates for the residuals (uo;, e;;) by estlmatlng
their expected values, given the data and estimates of the parameters (8o, f1, 0, 0)
Of particular interest in our example are estimates of the level 2 residuals uoj, whlch
represent school effects on attainment at age 16, adjusted for prior attainment x;;. In
ordinary least squares (OLS) regression residual estimates are obtained simply by sub-
tracting the predicted values of y;; from their observed values, i.e., r;j = y;; — 9i;. In
multilevel models, with residuals at more than one level, a more complex procedure is
needed. Estimates of uo; are obtained by taking the average of the raw residuals r;; for
each school j and multiplying the result by a shrinkage factor. This shrinkage factor
pulls the estimate of ug; towards zero when the between-school variance oruzo is small
relative to the within-school variance orez, or when the number of students sampled in a
school 7 ; is small.

2.2. Fixed versus random effects

An alternative way of allowing for school effects would be to use an analysis of vari-
ance (ANOVA) or fixed effects model, which would involve including as explanatory
variables a set of dummy variables that indicate the school to which a student belongs.
While ANOVA can also be used to compare any number of schools, the random effects
approach has a number of advantages over fixed effects models. First, if there are J
schools to be compared, then J — 1 parameters are required to capture school effects and,
therefore, if J is large, a large number of parameters need to be estimated. In contrast, in
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arandom effects model only one additional parameter, the between-school variance %20’
is estimated regardless of the number of schools.

Second, the origins of ANOVA lie in experimental design where there are typically a
small number of groups under comparison and all groups of interest are sampled. Often
we have only a sample of groups (e.g., a sample of schools) and it is the population
of groups from which our sample was drawn which is of interest. The ANOVA model
does not allow inferences to be made beyond the groups in the sample. The key point
about the random variable ug; in the random effects model is that it allows us to treat
the samples of units as coming from a universe or population of such units. Thus, the
schools (and students) chosen are not typically the principal focus of interest; they are
regarded as a random sample from a population of schools and we are concerned with
making statements about that population, for éxample in terms of its mean and variance.

Finally, in a fixed effects model the effects of level 2 explanatory variables cannot
be separately estimated. Such variables are confounded with the level 2 effects because
any level 2 variable can be expressed as a linear combination of the dummy variables
for higher level units. This is a serious drawback of the ANOVA approach as one is
often interested in exploring the extent to which the level 2 variation can be explained
by observed level 2 characteristics. In the random effects model level 2 variables are not
confounded with the level 2 effects ug;, and therefore their effects may be estimated
while simultaneously accounting for level 2 variance due to unobserved factors.

2.3. Random slope model
We can elaborate (2.1) by allowing the coefficient 81 to vary across schools:

yij = Poj + Bijxij +eij,  Boj = Po+uoj, Pij = p1+uij, 2.2)
where

eij ~ N(0,072) 0j ) ~ N (O, 24) 2,= (%0

Ly} sYe ) ujj y Ray /)y U G401 o_uzl .

Model (2.2) is often referred to as a random coefficient model by virtue of the fact
that the coefficients Bp; and B1; in the first equation of (2.2) are random quantities, each
having a variance with a covariance between them. Now the slope for school j, f1;, is
given by f, the average slope across all schools, plus a random departure u;;. The
terms uo; and u;; are random departures from So and B, or residuals at the school
level. As more explanatory variables are introduced into the model, so we can choose to
make their coefficients random at the school level thereby introducing further variances
and covariances, and this will lead to models with complex covariance structures. One
of the aims of multilevel modelling is o explore such potential structures and also to
attempt to explain them in terms of further variables.

When coefficients of explanatory variables are permitted to vary randomly across
level 2 units, the level 2 variance is no longer constant but depends on those variables
with random coefficients. For example, in model (2.2) the school-level variance is

var(uoj + u1j%ij) = 0% + 20,01%;j + o457, 23)

i.e., a quadratic function of x;;.
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2.4. Complex level 1 variation

We have seen how in a random coefficient model, the level 2 variance is a function
of explanatory variables (Eq. (2.3)). We can also allow the level 1 variance to depend
on explanatory variables. This leads to a model with complex level 1 variation or het-
eroskedasticity at level 1.

Suppose, for example, that we wish to explore whether the between-student variation
within schools differs for boys and girls. We introduce a second explanatory variable
x2;ij which indicates a student’s gender (coded 1 for girls and O for boys). We then spec-
ify a model in which both the mean and variance of y;; depend on gender by including
x2ij in the fixed part of the model and allowing separate level 1 residuals for girls and
boys. The random intercept version of this model can be written

Yij = Boj + B1xuij + Baxaij + eoij (1 — x2i) + eijxaij,
(2.4)
Boj = Bo + uo;.

From (2.4) the student-level variance is o 220(1 —x2ij) + 0221 x2ij which reduces to 030 for
boys and %21 for girls.

2.5. Example

We now give examples of applications of the models described above using educational
data on 4059 London school children from 65 schools (see Rasbash et al., 2005, for
further details). The dependent variable is a normalised exam score at age 16. We con-
sider two explanatory variables: a standardised reading test score at age 11 and gender
(coded 1 for girls and O for boys). Table 1 shows the results from fitting three two-level
models to these data. Also presented are the —2 log-likelihood values for the fitted mod-
els, which may be used to carry out likelihood ratio tests to compare the fit of nested
models.

We begin by considering a simple random intercept model. From this model the ICC
(or VPC) is estimated as 0.088/(0.088 + 0.562) = 0.135. Thus, after accounting for
the effects of prior attainment and gender, 13.5% of the remaining variance in age 16
scores is due to differences between schools.

The next model fitted is an elaboration of the random intercept model in which the
effect of the age 11 reading test score on attainment at age 16 is allowed to vary across
schools, a random slope (or coefficient) model. The difference in —2 log-likelihood
value (i.e., deviance change) between this and the random intercept model is 42.6, on
2 degrees of freedom. We therefore conclude that the random slope model is a signif-
icantly better fit to the data. In this model, the individual school slopes vary about a
mean of 0.553 with estimated variance 0.019. There is a positive covariance between
the intercepts and slopes, estimated as 0.015, suggesting that schools with higher inter-
cepts tend to have steeper slopes; on average the effect of prior attainment is stronger
in schools with a high mean age 16 score. We note that this conclusion is not invariant
under shifts in the values of predictors with random coefficients. In this example, the
intercept for a given school is that school’s mean attainment at age 16 for boys with a
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Table 1
Results from fitting two-level models to educational attainment at age 16

Random intercept Random slope for Complex level 1
age 11 score variance

Parameter Est. (SE) Est. (SE) Est. (SE)
Fixed
Bo (Intercept) —0.095 (0.043) -0.112 (0.043) ~0.112 (0.043)
B1 (Age 11 score) 0.560 (0.012) 0.553 (0.020) 0.553 (0.020)
B2 (Girl) 0.171 (0.033) 0.176 (0.032) 0.175 (0.032)
Random: Between-school
auzo (Intercept) . R 0.088 (0.617) ° 0.086 (0.017) 0.086 . (0.017)
auzl (Age 11 score) - - 0.015 (0.004) 0.015 (0.004)
0,01 (Intercept/slope covariance) - - 0.019 (0.007) 0.019 (0.007)
Random: Within-school
aez (Total) 0.562 (0.013) 0.550 (0.012) - -
o % (Boys) - - - - 0587  (0.021)
o (Girls) - - - - 0525  (0.015)
—2log-likelihood 9330.0 : 9287.4 9281.4

mean age 11 score. A different estimate would be obtained for the intercept-slope co-
variance if age 11 scores were not centred. The positive covariance also implies that the
between-school variance increases with prior attainment (see Eq. (2.3)).

The final model allows the within-school between-student residual variance to de-
pend on gender. A likelihood ratio test statistic for a comparison of this model with
the constant level 1 variance model is 6 on 1 d.f., so there is strong evidence of het-
eroskedasticity at the student level. The estimated within-school variance is 0.587 for
boys and 0.525 for girls. Thus while on average boys have a lower age 16 score than
girls, their scores have greater dispersion than the girls’.

3. Models for repeated measures

The models described in the previous section can also be applied in the analysis of re-
peated measures where observations over time are the level 1 units and individuals are
at level 2. We illustrate multilevel modelling of longitudinal data using a dataset con-
sisting of nine measurements made on 26 boys between the ages of 11 and 13.5 years,
approximately three months apart (Goldstein, 1989). Figure 1 shows the mean heights
by the mean age at each measurement occasion.

We assume that growth can be represented by a polynomial function with coefficients
varying randomly across individuals. Other functions are possible, including fractional
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Mean heights of 26 boys

180

1561 A

180+ A

Height (cm)

145+ A

140 ; } } t t f J
1.0 -08 -05 -03 0.0 03 05 08 10

Age - 12.25 years

Fig. 1. Mean height by mean age at nine measurement occasions.

polynomials or nonlinear functions, but for simplicity we confine ourselves to examin-
ing a fourth order polynomial centred at an origin of 12.25 years. The model we fit can
be written as follows:

4
h
yij = Z.thtij + eij,
h=0

Boj = Po + uoj, B1j = B1 +uyj, B2j = Ba + uzj, (3.1
Bsj = Bs, Baj = Ba

where
2

uoj 9u0 )
uij | ~ N(, 2.), 2, =|ouw1 oy »
u2j 0u2 Oul2 OF

€ij ™~ N(O, O’ez).

Eq. (3.1) defines a two-level model with level 1 being ‘measurement occasion’ and
level 2 ‘individual boy’. Note that we allow only the coefficients up to the second or-
der to vary across individuals; in the present case this provides an acceptable fit. The
level 1 residual term ¢;; represents the unexplained variation within individuals about
each individual’s growth trajectory. Table 2 shows the maximum likelihood parameter
estimates for this model.

For each boy we can also estimate their random effects or ‘residuals’ (ug;, u1;, uz;),
and use these to predict their growth curve at each age. Figure 2 shows these predicted
curves. Growth over this period exhibits a seasonal pattern with growth in the summer
being about 0.5 cm greater than growth in the winter. Since the period of the growth
cycle is a year this is modelled by including a simple cosine term, which could also
have a random coefficient.
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Height modelled as a fourth degree polynomial on age

Fixed effects Estimate Standard error
Bo (Intercept) 149.0 1.54
B (® 6.17 0.35
B2 (¢ 1.13 0.35
B3 (%) 045 0.16
Ba tH —0.38 0.30

Random effects
Level 2 (individual) correlation matrix: variances on diagonal

" ug; (Intercept) B '-‘U ) uzj )
ugp; (Intercept) 61.6
uyj (1) 0.61 2.8
uzj (t%) 0.22 0.66 0.64

Level 1 (occasion) variance = 0.22

—2log-likelihood = 625.4

Predicted growth curves for 26 boys

Height (cm)

1.0 08 05 03 00 03 05 08 10

Age -12.25 years

Fig. 2. Predicted growth curves from model with random coefficients for linear and quadratic terms.

In our example we have a set of individuals all of whom have nine measurements.
This restriction, however, is not necessary and (3.1) does not require either the same
number of occasions per individual nor that measurements are made at equal intervals,
since time is modelled as a continuous function. In other words we can combine data
from individuals with very different measurement patterns, some of whom may only
have been measured once and some who have been measured several times at irregular
intervals. This flexibility, first noted by Laird and Ware (1982), means that the multi-
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level approach to fitting repeated measures data is to be preferred to previous methods
based upon a traditional multivariate formulation assuming a common set of fixed oc-
casions.

In these models it is assumed that the level 1 residual terms (e;;) are independently
distributed. We may relax this assumption, however, and in the case of repeated mea-
sures data this may be necessary, for example where measurements are taken very close
together in time. Goldstein et al. (1994) show how to model quite general nonlinear
covariance functions and in particular of the form cov(e;, ;—s) = ore2 exp(—g(a, 5)),
where s is the time difference between occasions. This allows the correlation between
occasions to vary smoothly as a function of their (continuous) time difference. A simple
example is where g = as, which in discrete time produces a first-order autoregression,
AR(1), model. ~ : B '

For further discussion of multilevel modeling of longitudinal data see Singer and
Willett (2003) and Muthén (1997).

4. Models for multivariate response data

Repeated measures data consist of multiple observations on individuals over time. Sup-
pose again that we have more than one observation per individual, but that the observa-
tions are for different variables, e.g., responses to a set of items in a questionnaire. In the
examples given below we have multivariate responses on students within schools, where
yrij denotes the rth response (r = 1, ..., R) on individual i in school j. In this section
we consider two types of multilevel model for multivariate response data. We begin with
a multivariate model, which is appropriate when the focus is on estimating the effects
of explanatory variables on each response, while accounting for the correlation between
responses at the student and school level. We then consider a multilevel factor model
which assumes that the pairwise correlations between responses are explained by their
mutual dependency on one or more latent variables (factors).

4.1. Multivariate models

A two-level random intercept model for multivariate response data may be written

yrij = Bor + B1rxij + Uorj + €rij, 4.1

where ug; = {uorj} ~ Ngr(0, £2,) and ¢;; = {e;;j} ~ Nr(0, 2.). .

Eq. (4.1) can be viewed as a 3-level model where the level 1 units are the within-
student measurements. The explanatory variables are a set of R dummy variables that
indicate the responses (with coefficients By,), and their interactions with the covariate
x;j (with coefficients B;,). The coefficients of the dummy variables are assumed to vary
randomly across students (at level 2) and schools (level 3) to obtain the student and
school residuals, e,;; and 1o, ;.

There are two main advantages to fitting a multivariate model rather than carry-
ing out a separate analysis for each response. First, we can obtain estimates of the
pairwise correlations between responses at each level adjusting for the effects of x;;.
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Table 3
Results from fitting a bivariate multilevel model to written paper and coursework
exam scores

Written Coursework

Estimate (SE) Estimate (SE)
Intercept 49.4 69.7
Female -2.5 (0.6) 6.8 ©.7)
School-level
Variance 46.8 9.2) 75.2 (14.6)
Covariance ‘ 24.9 8.9 .- -
(Correlation) ~ -+ 0.4 - -
Student-level 124.6 “4.4) 180.1 6.2)
Variance
Covariance 73.0 “4.2) - -
(Correlation) 0.5) -

Second, individuals with missing data on one or more response can be retained in the
analysis; under a ‘missing at random’ assumption efficient estimates of coefficients
and covariance structures at each level are obtained. This relaxation of the require-
ment for balanced multivariate data is particularly useful for the analysis of data from
rotation designs where each respondent answers a random subset from a pool of ques-
tions.

We illustrate the use of multivariate models in an analysis of students’ scores on
two components of a science examination taken by 1905 students in 73 English schools
(see Rasbash et al., 2005, for details). The first component is a traditional written paper,
and the second is a piece of coursework. A total of 382 responses were missing, but
students with only one missing score remain in the analysis sample. The scores on both
components have been rescaled so that their maximum is 100, thus enabling comparison
of covariate effects across responses. We consider one covariate, the student’s gender
(coded 1 for female and O for male). The results from fitting model (4.1) to these data are
presented in Table 3. From the fixed part estimates we conclude that while girls perform
worse than boys on the written paper, they do better on the coursework. Turning to the
random part of the model, we see that there is greater variation in coursework scores at
both the student and school level. The correlations between the coursework and written
scores at the student and school level are, respectively, 0.4 and 0.5.

4.2. Multilevel factor models

In a multilevel factor model, the student and school level correlations between pairs
of responses are assumed to be explained by one or more factors at each level. For
simplicity, we assume that there is a single factor at each level. The factor model is an
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extension of (4.1) and can be written

1
Yrij = Bor + Birxij + )\,(-2)7752) + Aﬁl)nfj) + uorj + erij, 4.2)

where nfjl ) 3.2)
and )#2) are the factor loadings. The factors are assumed to be normally distributed.
Conditional on the factors and x;;, the responses are assumed to be independent. Thus
the residuals ug,; and e,;; (ofteh referred to as ‘uniquenesses’) are now assumed to
be uncorrelated across responses. See Goldstein and Browne (2002), Muthén (1994),
Skrondal and Rabe-Hesketh (2004) and Steele (2005) for further discussion of multi-
level factor analysis.

We illustrate.the application of multilevel factor analysis using a dataset of science
scores for 2439 students in Hungarian schools (Goldstein, 2003, Chapter 6). The data
consist of scores on four test booklets: a core booklet with components in earth science,
physics and biology, two biology booklets and one in physics. There are therefore six
possible test scores (one earth science, three biology, and two physics). Each student
responds to a maximum of five tests, the three tests in the core booklet plus a randomly
selected pair of tests from the other booklets. The analysis presented below is based on
standardised test scores.

The results from a two-level factor model, with a single factor at each level, are pre-
sented in Table 4. The factor variances at the student and school level are estimated
as 0.127 (SE = 0.016) and 0.057 (SE = 0.024), respectively. For ease of inter-
pretation, standardised leadings are calculated for each factor as (omitting subscripts)
A _ @ Vvar(n®), k = 1, 2. Because, at each level, the standardised loadings have
the same sign across responses, we interpret the factors as student- and school-level
measures of overall attainment in science. Biology R3 has the lowest loading. The poor
fit for this test is reflected in a relatively high residual variance estimate at both levels.
Thus only a small amount of the variance in the scores for this biology test is explained
by the student and school level factors, i.e., the test has a low communality.

and n;” are the factors at the student and school level respectively, and Aﬁl)

Table 4
Estimates from two-level factor model with one factor at each level

Student-level School-level

MV (SE) M 62 (sE) 12 (SE) 2 6L (B
E. Sc. core 1t 0.36 0.712.(0.023) 1t 0.24 0.098 (0.021)
Biol. core 1.546 (0.113)  0.55 0.484(0.022)  2.093(0.593)  0.50 0.015 (0.011)
Biol. R3 0.583(0.103) 021 0.892(0.039)  0.886(0.304)  0.21 0.033 (0.017)
Biol. R4 1.110 (0.115) 040 0.615 (0.030) 1.498 (0.466)  0.36 0.129 (0.029)
Phys. core 1.665(0.128)  0.59 0.422(0.022)  2.054(0.600)  0.49 0.036 (0.013)
Phys. R2 1.558 (0.133)  0.56 0.526 (0.030) 1.508 (0.453)  0.36 0.057 (0.018)

T Parameter constrained for model identification.
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5. Models for non-hierarchical structures

5.1. Cross classified models

In the example of children moving from primary to secondary school we have a cross
classified structure which can be modelled as follows:

Yitiijn = XBiGjo) +ujy +uj, +€igji ) 5.

(r=1,...., 1 2a=1,..., Jp;i = 1,...,n), in which the score of student i, belong-
ing to the combination of primary school j; and secondary school jj, is predicted by
a linear ‘regression’ function denoted by (XB8)(j,, j,). The random part of the model is
given by two level 2 residual terms, one for the primary school attended by the student
(u,) and one for the secondary school attended (u j,), together with the usual level 1
residual term for each student. We note that the latter may be further modelled to pro-
duce complex level 1 variation (see Section 2.4), allowing for example for separate
variances for males and females.

As an example consider the analysis carried out by Goldstein (2003, Chapter 11)
who fitted cross classified models to 3435 students who attended 148 primary schools
and 19 secondary schools in Fife, Scotland. The dependent variable is the overall exam
attainment at age 16 and a verbal reasoning score measured on entry to secondary school
is included as an explanatory variable. The principal aim was to separate the effect of
primary school attended from that of secondary school. Table 5 shows results from
two alternative model specifications: a two-level hierarchical model, which ignores the
information on primary schools, and the cross classified model.

From the two-level model, the type of model typically used in school effectiveness
studies, we would estimate that secondary schools explain 0.28/(0.28 4+ 4.26) x 100 =
6.2% of the residual variance in age 16 scores (after accounting for age 12 verbal reason-
ing). The cross classified model takes into account both secondary and primary school

Table 5
Estimates from analysis of examination scores using hierarchical and cross classified
models
2-level model Cross classified model
Estimate (SE) Estimate (SE)
Fixed
Intercept 5.99 5.98 i
Verbal reasoning 0.16 (0.003) 0.16 (0.003)
Random
o2, (primary) - - 0.27 (0.06)
a2, (secondary) 0.28 (0.06) 0.011 0.021)
o2 (student) 4.26 (0.10) 4.25 (0.10)

—2log-likelihood 17172.0 14845.6
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effects on age 16 attainment, and is clearly a much better fit to the data than the two-
level hierarchical model (LR statistic = 2326.4, 1 d.f.). From the cross classified model
we would conclude that it is primary schools rather than secondary schools that have the
strongest effect on attainment; the proportion of variance due to secondary schools is
now only 0.24%, compared to 6.0% due to primary schools. The substantive importance
of this finding for studies of schooling is that it becomes necessary to take account of
achievement during periods of schooling prior to the one immediately being considered
(secondary here). However, Goldstein (2003) notes that one reason for the substantially
larger primary school variance may be that secondary schools are generally larger than
primary schools, so that the sampling variance is smaller.

5.2. Multiple membership models

Turning to multiple membership models we consider just the secondary schools from
the above example and suppose that we know, for each individual, the weight w;;, as-
sociated with the j>th secondary school attended by student i with ZJJ;:l wij, = L
These weights, for example, may be proportional to the length of time a student is in
a particular school during the course of the longitudinal study. Note that we allow the
possibility that for some (perhaps most) students only one school is involved, so that
one of these weights is one and the remainder are zero. Note that when all level 1 units
have a single non-zero weight of 1 we obtain the usual purely hierarchical model. We
can write the following model for the case of membership of just two schools (1,2):

yia,2) = (XB)iq,2) + witu + wizuz + €i1,2), 5.2)

where w;; + w2 = 1.
A more general model is

Yiyj} = (XBigy + Z Wikkh + €ifj), (5.3)
helj}

where Zhe{j} wip = 1, var(up) = auz, and var(zhe{j} Wipy) = 32,,6{“ wizh. (The
notation & € {j} means for any school & that belong to the set of schools {j}.) In
the particular case of membership of just two schools with equal weights we have
wip = wiz = 0.5, var(Q_, wipup) = 03/2. In other words the contribution to the
level 2 variation is just half that for a student who remains in one school, since in the
former case the level 2 contribution is averaged over two (random) schools. Note that
if we ignore the multiple membership of schools and simply assign students, say, to the
final school that they attend, we will underestimate the true extent of between-school
variation. This is because, for those students who do attend more than one school, the
true level 2 variation is less than that for students who attend a single school. In the
model, however, we assume that the level 2 variation for these students is the same as
that for those attending a single school, with the result that the overall level 2 variation
is underestimated.

A slightly different notation to describe membership relationships is used by Browne
et al. (2001). This is particularly useful when we have very complex structures involving
mixtures of hierarchical, crossed and multiple membership classifications. Essentially it
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works by requiring just a single uniqué identification for each lowest level observation,
in the present case a student. Each student then has a relationship with every other type
of unit, here primary and secondary schools. The model specifies which classifications
are involved and the data structure specifies precisely which schools are involved for
each student. Thus our cross classified model would be written as follows

2 .
= (XB); + ugego,,da,y(,) + up,m,y(,) +e (=1,...,n), (5.4)

where primary(i) and secondary(i) refer respectively to the primary and secondary
schools attended by student i. The superscripts for the random variables identify the
classification; where this is absent, and if there is no ambiguity, it is assumed to be
the lowest level, classification (1). Using this notation the multiple membership model
would be wntten as.

— Py + Z wi e + e, (5.5)
heschool(i)

2
where 3, nooi) Wik = 1, and var(u}, ) =l

We can have mixtures of cross classifications and multiple memberships. Thus, for
example, pupils may move between schools and also between areas for the cross clas-
sification of schools by areas. Such a model can be written in the form

Yitidt) = XBitj)ja) + 9 Winkih+ Y Wykkzk + €ifj)(p)  (5-6)
helji} helj}

where ), wiip = Wi, ), wain = Wa, var(uis) = a , and var(uap) = 022

There are now two sets of higher-level units (schools and areas) which influence the
response, each set having a multiple membership structure. Another application of such
a model is for household data where individuals move among households and among
addresses.

5.3. Representing complex data structures

When we have complex mixtures of hierarchies, cross classifications and multiple mem-
berships, a straightforward way of representing these becomes important. Browne et al.
(2001) use simple diagrams for representing such complex structures. Figure 3 repre-
sents the cross classified structure described in the example of Section 5.1. The single
directional lines indicate a membership relation, and here students are members of just
one secondary school and one primary school. Where multiple membership is involved,
two parallel lines are used (see Figure 4).

To illustrate the flexibility of these models and their representatlon using classifica-
tion diagrams, consider the example of modelling learning groups where the response is
modelled at the group level and we have data where each student moves among groups.
We can formulate this as a multiple membership model where groups (level 1) ‘be-
long’ to individuals (level 2). Suppose, in addition to measuring outcomes at the group
level (y1;) we also have a measure of achievement or attitude at the student level (y2:).
Recalling that the groups are defined as level 1 units, the group response will have an in-
dividual component and this will generally be correlated with the response at the student
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Primary school Secondary school

Student

Fig. 3. Classification diagram showing students nested within a cross-classification or primary and secondary
. o schools.” -

Child, Child,

Group

Fig. 4. Classification diagram for a bivariate response with multiple membership structure.

level. We could therefore write such a model as

2 1
yu = (X181)i + Z wi,juij) +el, Z wi,; =1,
Jjegroup(i) Jjegroup(i)

v2j = (X2B2)j + us), 5.7
2 2
cov(ugj), uéj)) # 0.

Eq. (5.7) defines a bivariate response model with one response at each level. The first
equation refers to a group response and, given suitable data with individuals belonging
to different groups, can be used to estimate individual and group effects. The second
equation models an individual student response, and from the complete model we can
directly estimate the correlation between a student’s contribution to the group response
and their individual response. Figure 4 shows the relationships using a double arrow for
the multiple membership of groups within children and a dotted line joining the two
child ‘effects’ to indicate a bivariate response model.
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We can also identify those individuals who may be discrepant, say with low contri-
butions to the group response but high individual effects, and this might be an important
diagnostic for learning potential. An alternative formulation for some purposes would
be to incorporate the individual level measure as a covariate in the model for the group
response. If, however, we had sequential measures on individuals then we might wish
to fit trend terms with random coefficients and then the full bivariate response formula-
tion becomes necessary (see Goldstein, 2003, Chapter 5, for such a model in the purely
hierarchical case). Further elaborations can be introduced, for example by modelling
classes of students (containing learning groups) within teachers and/or schools and so
forth.

6. Further extensions

6.1. Further levels

In Sections 2—4 above, models for two-level hierarchical structures were described. All
models can be extended to handle further levels of clustering. For example, sampling
classes within schools would lead to a three-level structure. If we denote by y;;x the
response for student i in class j in school k, the random intercept model in (2.1) gener-
alises to

Yijk = Bojk + Bixijx + €ijk,  Bojx = Po + uojk + vo, 6.1)

where ugj; is the random effect for class j in school k, and vo is the random effect
for school k, both of which are assumed to follow normal distributions. The variance of
ug ji represents the between-class within-school variation. Eq. (6.1) may be extended to
allow the coefficient of x;j; to vary randomly across classes and/or schools.

6.2. Categorical responses

In the above sections we have described models for continuous responses. These models
may be generalised to handle different types of response, including binary, ordered and
unordered categorical, count and duration data. For example, a two-level logit model
for binary responses may be written

108(1 Ll ) = Boj + B1xij, Boj = Po + uo; (6.2)
— 7ij
where 7;; = Pr(y;; = 1). Models for non-normal responses are described in Goldstein
(2003, Chapter 4), and further applications are given in Rasbash et al. (2005).

It is also possible to handle mixtures of different response types in a multivariate
model. For example, Goldstein (2003, pp. 105-107) describes an application where
a binary response indicating whether an individual smokes, is modelled jointly with a
continuous response (defined only for smokers) for the number of cigarettes smoked per
day. More recently, multilevel factor models have been developed for mixtures of binary,
ordinal and continuous items (Goldstein et al., 2006; Skrondal and Rabe-Hesketh, 2004;
Steele and Goldstein, 2006).

»
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6.3. Structural equation and item response models

Multilevel factor models may be generalised to structural equation models (SEM).
Eq. (4.2) defines the measurement component of a SEM, which describes the relation-
ship between the observed responses and the latent variables, possibly conditional on
covariates. In a SEM, a structural component is added in which the latent variables
at each level may depend on covariates and other latent variables. Detailed accounts of
multilevel SEM include Muthén (1994) and Skrondal and Rabe-Hesketh (2004). A sum-
mary is given by Steele (2005).

The traditional (two parameter) item response model (Lord, 1980) is essentially a
one-factor model with binary responses which can be written as

logit(myi) = By + Armi +€ri, Wi =Pr(yni = 1) 6.3)

for a set of binary responses (r) for each individual (i). This is a special case of (4.2)
but with a logit rather than an identity link function; we can also use a probit link
function. In its original formulation each individual’s score (or ‘latent trait’ value), n;,
was treated as a fixed effect but now would generally be formulated as a random effect
in (6.3). Model (6.3) is readily extended to the multilevel case, as in (4.2), and to cross
classified and multiple membership structures. It can also be extended to handle ordered
categorical responses as in ‘partial credit’ models and a discussion of such models and
estimation procedures is given by Fox (2005).

7. Estimation procedures and software

Estimation procedures can conveniently be divided into those based upon maximum
likelihood, or approximations such as quasi-likelihood, and those based upon Bayesian
Markov Chain Monte Carlo (MCMC) methods. We first look at likelihood-based pro-
cedures.

In the case of normally-distributed responses, the two most common procedures are
the EM algorithm and the iterative generalized least squares (IGLS) or the related Fisher
scoring algorithm. Goldstein (2003, Chapter 2 appendices) gives details of these. These
methods are iterative and implemented in major statistics packages including SAS (SAS
Institute, 1999), SPlus (Insightful, 2001), SPSS (SPSS, 2003), and Stata (StataCorp,
2005) as well as specialist multilevel modelling packages such as HLM (Raudenbush et
al., 2001) and MLwiN (Rasbash et al., 2005). For non-hierarchically structured Normal
responses, cross-classified models can be fitted using SAS, SPSS and MLwiN, and the
Stata program GLLAMM (Rabe-Hesketh and Skrondal, 2005) while multiple member-
ship models are implemented in MLwiN.

Where responses are discrete, for example binary or count data, we have generalized
linear models and estimation tends to become more complicated. Maximum likelihood
estimation is commonly carried out using a search procedure whereby the parameter
space is explored in a search for the maximum of the likelihood. The computation of the
likelihood for a given set of parameter values is commonly carried out using ‘quadra-
ture’ but this can be very time consuming when there are many random parameters.
Thus, for example, Ng et al. (2006) use a simulation-based procedure (see Goldstein,
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2003, Appendix 4.3) to compute the likelihood and show that for a large number of
parameters this has important timing advantages. Because of this, several approximate
procedures are in use. One set of these uses quasi-likelihood estimation based on a Tay-
lor series linearization. Known as marginal or penalized (predictive) quasi-likelihood
(MQL, PQL) these will often provide satisfactory estimates but are known to be biased
in cases where data are sparse or variances are large. Another procedure that has good
properties is a Laplace integral transformation (Raudenbush et al., 2000). Any of these
procedures can be used to provide starting values for either full maximum likelihood or
MCMC estimation (see below). Another approach is to use an iterated bootstrap which
will converge to unbiased estimates but has the disadvantages that it is time-consuming
and does not directly provide standard error estimates. We shall not go into details of
MCMC estimation procedures here but refer the reader to Browne et al. (2001) and
Browne (2004). Multilevel models for discrete response data can be estimated using
SAS, Stata or GLLAMM (all of which use quadrature), HLM (PQL and Laplace) and
MLwiN (MQL/PQL and MCMC). Very general multilevel models, including those con-
sidered in this review, can be fitted using MCMC methods in WinBUGS (Spiegelhalter
et al., 2000).

Multilevel factor analysis is implemented in Mplus (Muthén and Muthén, 2004; us-
ing two-stage weighted least squares), GLLAMM (adaptive quadrature), and MLwiN
(using MCMC). Mplus and GLLAMM can also be used to fit more general structural
equation models to any mixture of normal and discrete responses.

Recently published reviews of some of the packages mentioned above are those of De
Leeuw and Kreft (2001), Zhou et al. (1999) and Fein and Lissitz (2000). Full reviews
of the multilevel modelling capabilities of most mainstream statistical and specialist
packages are maintained by the Centre for Multilevel Modelling (http://www.mlwin.
com/softrev).

8. Resources

The methodological literature on multilevel modelling is growing rapidly as is the lit-
erature on applications. The Centre for Multilevel Modelling endeavours to maintain a
selection of the methodological literature and links to other resources such as web sites
and training materials. A collection of data sets together with training materials and a
version of the MLwiN package that will work with these data sets, is freely available
at http://tramss.data-archive.ac.uk. Another useful resource for multllevel modelling is
http://www.ats.ucla.edu/stat/mlm/default.htm.

There is a very active email discussion group that can be accessed and joined at http:
/Iwww.jiscmail.ac.uk/lists/multilevel.html. The group serves as a means of exchanging
information and suggestions about data analysis.
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