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SUMMARY

In this paper we explore the potential of multilevel models for meta-analysis of trials with binary outcomes
for both summary data, such as log-odds ratios, and individual patient data. Conventional �xed e�ect and
random e�ects models are put into a multilevel model framework, which provides maximum likelihood or
restricted maximum likelihood estimation. To exemplify the methods, we use the results from 22 trials to
prevent respiratory tract infections; we also make comparisons with a second example data set comprising
fewer trials. Within summary data methods, con�dence intervals for the overall treatment e�ect and for the
between-trial variance may be derived from likelihood based methods or a parametric bootstrap as well as
from Wald methods; the bootstrap intervals are preferred because they relax the assumptions required by
the other two methods. When modelling individual patient data, a bias corrected bootstrap may be used to
provide unbiased estimation and correctly located con�dence intervals; this method is particularly valuable
for the between-trial variance. The trial e�ects may be modelled as either �xed or random within individual
data models, and we discuss the corresponding assumptions and implications. If random trial e�ects are used,
the covariance between these and the random treatment e�ects should be included; the resulting model is
equivalent to a bivariate approach to meta-analysis. Having implemented these techniques, the 
exibility of
multilevel modelling may be exploited in facilitating extensions to standard meta-analysis methods. Copyright
? 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Meta-analysis of a set of clinical trials involves a series of choices. The decisions at each stage are
similar whether the meta-analyst has only summary data from published results or full individual
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patient data. The �rst choice is between �xed e�ect and random e�ects models [1], and in either
case the method of estimation must be selected from a number of alternatives [2]. If �tting a
random e�ects model, more decisions arise: how to allow for uncertainty in estimation of the
between-trial variance when constructing a con�dence interval for the treatment e�ect [3; 4]; how
to obtain con�dence intervals for the between-trial variance [3]; how to incorporate trial-level
covariates [5–8], and how to investigate sources of between-trial heterogeneity [9–12]. Having
selected appropriate methods from those available, the meta-analyst may require extensions to these
to deal with more complex data sets, for example survival data [13] or multivariate outcomes [14].
Many approaches have been proposed to address particular issues, but these may not always extend
easily to other situations. Bayesian methods [6; 15] serve as one possible approach to the issues
mentioned above, and facilitate many extensions besides. Here we discuss multilevel modelling in
a frequentist framework which provides a uni�ed approach to meta-analysis, and which may be
carried out within widely available software.
Multilevel modelling is now an accepted statistical analysis tool for hierarchical data [16]. In this

paper we put existing methods for meta-analysis of two-arm clinical trials with binary outcomes
into the general framework of multilevel modelling. At present, the majority of meta-analyses are
performed with access only to published treatment e�ects expressed as summary data, such as
log-odds ratios, an approach referred to as meta-analysis of the literature [17]. Meta-analyses of
individual patient data are however likely to become more common in the future. We therefore
demonstrate the use of multilevel models in meta-analysis of both summary data and of individual
binary data. The 
exibility of the multilevel model framework may then be exploited in providing
extensions to standard methods [18].
The meta-analysis data sets used to exemplify the multilevel modelling methods are described

brie
y in Section 2. Methods for meta-analysis of summary data are discussed in Section 3, as
applied to the main example data set. Section 4 examines the application of individual data methods
to the same example. A second example data set is of a di�erent size and structure to the �rst;
the results from meta-analysis of these data are presented for comparison in Section 5. When
performing a meta-analysis using individual patient data, the trial e�ects on the outcome may be
regarded as either �xed or random. Since the latter approach raises di�erent issues, we consider
this separately in Section 6.

2. EXAMPLES

The main data set used in exemplifying the methods consists of 22 trials performed to investigate
the e�ect of selective decontamination of the digestive tract on the risk of respiratory tract infection;
patients in intensive care units were randomized to receive treatment by a combination of non-
absorbable antibiotics or to receive no treatment [6]. The numbers of patients on each treatment in
each outcome category are available (Table I), as well as the summary log-odds ratios with their
variances. In order to examine the modelling issues associated with relatively small meta-analyses
and to provide some comparison between data sets, we also use a second example comprising
fewer trials. This example involves nine clinical trials examining the e�ect of taking diuretics
during pregnancy on the risk of pre-eclampsia (Table II) [19]. A third example is used in Section
6 to enable comparison with the bivariate approach proposed by van Houwelingen et al. [20],
where the raw data are tabulated; this involves 25 trials for the treatment of upper gastrointestinal
bleeding by a histamine H2 antagonist.
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Table I. Respiratory tract infections in treated and control groups of 22 trials for selective decontamination
of the digestive tract.

Trial Infections=total Odds ratio Log OR Variance (log OR)
Treated Control

1 7=47 25=54 0:20 −1:59 0:24
2 4=38 24=41 0:08 −2:48 0:38
3 20=96 37=95 0:41 −0:89 0:11
4 1=14 11=17 0:04 −3:17 1:33
5 10=48 26=49 0:23 −1:46 0:21
6 2=101 13=84 0:11 −2:20 0:60
7 12=161 38=170 0:28 −1:27 0:12
8 1=28 29=60 0:04 −3:23 1:10
9 1=19 9=20 0:07 −2:69 1:26
10 22=49 44=47 0:06 −2:89 0:44
11 25=162 30=160 0:79 −0:23 0:09
12 31=200 40=185 0:66 −0:41 0:07
13 9=39 10=41 0:93 −0:07 0:28
14 22=193 40=185 0:47 −0:76 0:08
15∗ 0=45 4=46 0:10 −2:27 2:27
16 31=131 60=140 0:41 −0:88 0:07
17 4=75 12=75 0:30 −1:22 0:36
18 31=220 42=225 0:71 −0:34 0:07
19 7=55 26=57 0:17 −1:75 0:23
20 3=91 17=92 0:15 −1:89 0:42
21∗ 14=25 23=23 0:03 −3:62 2:20
22 3=65 6=68 0:50 −0:69 0:53

∗ 0.5 added to all cells of the 2× 2 table in calculation of the log odds ratio and its variance, to avoid degeneracy.

Table II. Cases of pre-eclampsia in treated and control groups of nine diuretics trials.

Trial Cases of pre-eclampsia=total Odds ratio Log OR Variance (log OR)
Treated Control

1 14=131 14=136 1:04 0:04 0:16
2 21=385 17=134 0:40 −0:92 0:12
3 14=57 24=48 0:33 −1:12 0:18
4 6=38 18=40 0:23 −1:47 0:30
5 12=1011 35=760 0:25 −1:39 0:11
6 138=1370 175=1336 0:74 −0:30 0:01
7 15=506 20=524 0:77 −0:26 0:12
8 6=108 2=103 2:97 1:09 0:69
9 65=153 40=102 1:14 0:14 0:07

3. SUMMARY DATA METHODS

3.1. Standard methods

A �xed e�ect model for meta-analysis assumes the true treatment e�ects to be homogeneous across
trials, and accordingly estimates the common treatment e�ect � by a weighted average of the

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:3417–3432



3420 R. M. TURNER ET AL.

Table III. Estimates from meta-analysis of respiratory tract infections data, using summary data methods
and individual data methods with �xed trial e�ects.

Log OR (�) (95% CI) Between-trial (95% CI)
variance (�2)

Summary data methods
Conventional
Fixed e�ect −0:94 (−1:12;−0:77) 0 −
Random e�ects −1:27 (−1:61;−0:92) 0:36 −

Multilevel modelling
ML: (Wald) −1:29 (−1:65;−0:92) 0:42 (0:01; 0:83)

(Pro�le likelihood) (−1:73;−0:92) (0:12; 1:19)
(Bootstrap) (−1:63;−0:92) (0:06; 0:86)

REML: (Wald) −1:30 (−1:67;−0:93) 0:47 (0:02; 0:91)
(Bootstrap) (−1:66;−0:93) (0:10; 1:01)

Individual data methods with �xed trial e�ects
Fixed e�ect −1:06 (−1:24;−0:89) 0 −
Random e�ects
ML: (Wald) −1:43 (−1:80;−1:07) 0:46 (0:08; 0:84)
REML: (Wald) −1:49 (−1:90;−1:07) 0:64 (0:14; 1:14)

(Bootstrap with bias correction) −1:66 (−2:26;−1:05) 0:71 [0:00; 1:13)

trial-speci�c estimates, with weights equal to the reciprocals of their within-trial variances [2]. The
traditional random e�ects model [21] assumes the true treatment e�ects to vary randomly between
trials. This model includes a between-trial component of variance �2 which is usually estimated
non-iteratively by a method of moments estimator. Assuming normality of the observed and true
treatment e�ects, the random e�ects model can be written

yi ∼N(�+ vi; �2i )
vi ∼N(0; �2) (1)

where �2i is the variance of the observed treatment e�ect yi in the ith trial, usually assumed to
be known. Under the assumption of normality for the yi, a con�dence interval may be calculated
for the average treatment e�ect �. A commonly used measure of treatment e�ect in binary event
data is the log-odds ratio; the normality assumption required is more easily satis�ed for this than
for alternative measures such as risk di�erence. The �xed e�ect model (�2 = 0) and the random
e�ects model with a moment estimator of �2 have been �tted to the summary log-odds ratios from
the respiratory tract infections data set; the results are given in Table III.
There is evidence of heterogeneity (�221 = 60:1; P¡0:001) across trials, so the random e�ects

estimate of � is not equal to the �xed e�ect estimate, and has a wider con�dence interval. The
extent and direction of the di�erence between the �xed e�ect and random e�ects estimates is
explained by the likely presence of publication bias (P¡0:001 from a regression asymmetry test
[22]). The smallest trials in the infections data set tend to have the more extreme estimates of
treatment e�ect (Table I), and smaller trials are given greater relative weight in calculation of
the random e�ects estimate compared with the �xed e�ect estimate [2]. Some of the approaches
for addressing publication bias are cited in Section 7; this issue is separate from the aims of the
current paper and so is not addressed here.

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:3417–3432



MULTILEVEL MODEL FRAMEWORK FOR META-ANALYSIS 3421

3.2. Multilevel modelling methods

The random e�ects method for summary data may be expressed as a multilevel model [23]. In
this approach, the model speci�ed by (1) is regarded as a random e�ects regression model, with
the observed log-odds ratios considered as a continuous outcome. Maximum likelihood (ML)
and restricted maximum likelihood (REML) estimates may then be obtained easily using mul-
tilevel modelling software. We use the MLn=MLwiN software [24; 25] to �t this model to the
respiratory tract infections data; ML and REML estimates are found via the iteratively general-
ized least squares (IGLS) and restricted iteratively generalized least squares (RIGLS) algorithms,
respectively [16].
The three random e�ects approaches of ML, REML and conventional non-iterative method

of moments estimation [21] all lead to similar estimates of � (Table III). ML estimates of
variance components such as �2 do not take into account the use of the same data in estima-
tion of the �xed e�ects, so are biased downwards in general; in REML estimation a modi�ed
likelihood is used to produce unbiased estimates [26]. The ML estimate is about 10 per cent
smaller than the REML estimate in our example, and the moment estimate of �2 is smaller
than both ML and REML estimates. The moment estimator is also unbiased for �2 and dif-
ferences between moment and REML estimates are generally small [21]. The ML and REML
estimates presented here agree with those calculated using the corresponding iterative formulae
directly [5].

3.3. Calculation of con�dence intervals

When using the multilevel models framework, it is possible to calculate likelihood based and
bootstrap con�dence intervals for both � and �2, as well as Wald intervals using asymptotic
standard errors. In the calculation of Wald con�dence intervals for �; �2 is assumed to be known
rather than estimated and the resulting intervals are too narrow [4]. When obtaining con�dence
intervals for �2, the normality assumption required by the Wald approach is almost certainly invalid
unless the number of trials is very large [16].
Likelihood based intervals for � are preferable to Wald intervals [3] since they allow for the

imprecision in estimation of �2; intervals based on likelihood are also preferable when the log-
likelihood of a parameter is highly skewed or irregularly shaped [27]. However, the likelihood
approach does require normality if the range of values obtained is to be interpreted as a con�-
dence interval in a strict sense [28], so problems remain in constructing con�dence intervals for
�2. The likelihood based method requires computation of the pro�le log-likelihood l(�) for a range
of values of the parameter � of interest; this can be implemented within the multilevel models
framework. Likelihood ratio test statistics computed from REML log-likelihood may not be strictly
valid so require modi�cation before use in testing of �xed e�ects [29]; REML pro�le likelihood
con�dence intervals may not therefore be constructed in the usual way for �. However, REML
likelihood ratio test statistics may be used directly for testing of variance components such as �2

[30]. Since the method for constructing REML likelihood based intervals for �xed e�ects is not
currently implemented within most multilevel software, we present pro�le likelihood con�dence
intervals based on ML only.
The parametric bootstrap [31] can be employed to provide con�dence intervals for � and �2.

This method requires no normality assumption for the estimate about which the con�dence interval
is constructed and is therefore useful when sample sizes are small, in particular for �2. A series
of data sets are simulated under the distributional assumptions of the initial model and a bootstrap
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set of parameter estimates is generated from each. We may then base con�dence intervals on the
bootstrap replications of each parameter of interest, using the smoothed percentiles of the boot-
strap distributions. Parametric bootstrapping is directly available in the MLwiN software [25]. The
bootstrap con�dence intervals presented for � and �2 are based on smoothed bootstrap percentiles
from 1000 replications.
Di�erences between the widths of the three Wald con�dence intervals for � using conven-

tional random e�ects, ML and REML estimation re
ect the di�erences in the estimates of �2.
The method of pro�le likelihood produced the widest con�dence intervals for both � and �2.
The likelihood based interval for � is somewhat wider than the ML Wald interval, and slightly
asymmetric about the estimate; the ML and REML bootstrap intervals are slightly narrower than
the corresponding Wald intervals. The increase in the width of the con�dence interval from us-
ing likelihood rather than Wald methods is more substantial for �2 than for �. The bootstrap
intervals for �2 are of similar width to the Wald intervals, but both bootstrap and likelihood in-
tervals cover ranges of values further from zero than those covered by the two Wald intervals.
The Wald method has not performed badly for � in this data set, but for �2 the forced symme-
try about the estimate is inappropriate. Bootstrap intervals are preferred over likelihood intervals
because the bootstrap method relaxes the normality assumption required for interpretation of like-
lihood support intervals as approximate con�dence intervals. Since this assumption is less sound
for �2 than for �, a greater discrepancy is seen between bootstrap and likelihood intervals for the
former.

4. INDIVIDUAL DATA METHODS

4.1. Description of model

One approach to meta-analysis of individual binary data is to �t logistic regression models,
with �xed trial e�ects allowing the log-odds to vary across the n trials. A �xed e�ect analy-
sis may be performed by means of a model containing as explanatory variables treatment group
together with n dummy variables representing trial e�ects. To carry out a random e�ects meta-
analysis comparable with the DerSimonian and Laird model [21], we require in addition terms
vi representing the deviation of each trial’s true treatment e�ect (log-odds ratio) from the
average:

logit(�ij) = (�+ vi)xij + �i
vi ∼N(0; �2) (2)

where �ij is the true response probability for the jth individual in the ith trial, xij =0=1 indicates
their control=treatment group, and the set of �xed parameters �i indicates their trial member-
ship.
An alternative approach in which trial e�ects on the log-odds scale are regarded as random

rather than �xed is discussed in Section 6, but the appropriateness of either approach should be
considered carefully. When regarding trial e�ects as �xed we estimate a nuisance parameter for
every trial included, so reducing the information available for estimating any one model param-
eter; inconsistent estimates could result if sample sizes in the trials are small [32]. It has also
been argued that modelling trial e�ects as random is inappropriate since the true treatment e�ects
from a set of trials may not be assumed drawn at random from an underlying population. An
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alternative approach of conditioning on the marginals of the 2×2 tables [20] is not currently easy
to implement within standard software.

4.2. Estimation of parameters

A �xed e�ect meta-analysis model for individual data requires only standard logistic regression,
while a model incorporating random treatment e�ects requires specialist software. Within the
MLn=MLwiN software [24; 25], the iterative estimation procedure for a random e�ects logistic
regression model involves use of either marginal quasi-likelihood [33] (MQL) or penalized quasi-
likelihood [34] (PQL), and either �rst-order or second-order Taylor expansion approximations.
PQL produces improved estimates of variance components in mixed models, in general, while
model convergence is more easily achieved with MQL [16]. However, even the optimal estima-
tion procedure of PQL with second-order approximations may give downwardly biased estimates
of the between-trial variance when the number of trials is small [35; 36] or when the probabilities
of events are extreme.
To remove bias from the estimate of �2, the bias corrected parametric bootstrap procedure may be

used [37; 38]. As a �rst step, a set of bootstrap replications is generated to provide estimates of the
bias present in the initial estimators. Since these estimates are themselves biased [39], the bootstrap
bias estimation process is repeated, using as a basis the new bias corrected estimates. The second
process produces a better estimate of bias than the �rst, on average; the initial estimates are again
corrected using the second bias estimates, and the bootstrap is applied again. Iteration between
bias estimation and bias correction continues until convergence [37], at which time the parameter
estimates provided are asymptotically consistent and unbiased [38]. The bias corrected parametric
bootstrap procedure is directly available in the MLwiN software [25]. It is however computationally
intensive and should therefore be used only in the �nal analyses to provide unbiased estimates.
The published summary outcome data from the respiratory tract infections example may be

converted to an individual binary data format, represented as a series of zeros and ones. We
thus �tted model (2) to the infections example, using ML and REML estimation; the results are
presented in Table III. Identical results may be obtained by �tting model (2) to the grouped
binomial data, since no individual level covariates are included. We applied the bias correction
procedure within the individual data model with random treatment e�ects and REML estimation,
using 15 sets of 800 replications.
The bias corrected estimate of �2 is larger than the standard REML estimate (Table III), showing

that the latter was indeed downwardly biased. The ML and REML estimates of �2 obtained from
individual data methods are larger than the corresponding estimates resulting from summary data
methods. When using summary data methods, the quantities �2i (model (1)) are assumed to be
known and consequently di�erent estimates of between-trial variance �2 may be expected. The �xed
e�ect and random e�ects estimates of � from individual data methods all di�er noticeably from
the corresponding summary data estimates; each of the latter indicates a smaller treatment e�ect
than its counterpart. The summary data methods appear to perform badly in this data set, possibly
because of the correction for zero cells required [40], or the extreme response probabilities in
some trials. The individual data model (2) assumes normality for the random treatment e�ects vi.
To gain some insight regarding the validity of this we examine the normal plot Figure 1(a) of
empirical Bayes estimates [16] of vi. We interpret Figure 1(a) with caution since the predicted
residuals shown are estimated with di�ering precision and are therefore subject to varying degrees
of shrinkage towards the mean [41]. The plot however shows no strong evidence against normality.
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Figure 1. Between-trial residuals for treatment e�ect (a) from the respiratory tract infections data; (b) from
the pre-eclampsia data. Area of circle inversely proportional to variance of log-odds ratio estimate.

4.3. Calculation of con�dence intervals

It is not yet possible using MLn=MLwiN to obtain reliable log-likelihood values for multilevel
models �tted to binary data [16], so pro�le likelihood based intervals are not presented when
applying individual data methods. We can however construct 95 per cent con�dence intervals
for both � and �2 using quantiles of the bootstrap distributions obtained from the parametric
bootstrap with bias correction. The intervals are computed using a procedure suggested by Kuk
[38] involving a scaling parameter to adjust the empirical quantiles. The bias corrected bootstrap
interval for �2 is wider than the corresponding REML Wald con�dence interval (Table III), and
the proportional increase in width is greater for �. As explained in Section 3.3, Wald intervals
for � may be too narrow and those for �2 are likely to be invalid. The discrepancy between the
bootstrap and Wald intervals is greater here than when using summary data methods. The summary

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:3417–3432



MULTILEVEL MODEL FRAMEWORK FOR META-ANALYSIS 3425

Table IV. Estimates from meta-analysis of pre-eclampsia data, using summary data methods and individual
data methods with �xed trial e�ects.

Log OR (�) (95% CI) Between-trial (95% CI)
variance (�2)

Summary data methods
Conventional
Fixed e�ect −0:40 (−0:58;−0:22) 0 −
Random e�ects −0:52 (−0:91;−0:13) 0:23 −

Multilevel modelling
ML: (Wald) −0:52 (−0:93;−0:11) 0:24 [0:00; 0:70)

(Pro�le likelihood) (−0:98;−0:05) (0:03; 1:13)
(Bootstrap) (−0:89;−0:11) (0:00; 0:62)

REML: (Wald) −0:52 (−0:98;−0:08) 0:30 [0:00; 0:71)
(Bootstrap) (−0:92;−0:07) (0:00; 0:83)

Individual data methods with �xed trial e�ects
Fixed e�ect −0:41 (−0:59;−0:23) 0 −
Random e�ects
ML: (Wald) −0:54 (−0:91;−0:17) 0:18 [0:00; 0:42)
REML: (Wald) −0:56 (−1:01;−0:11) 0:32 [0:00; 0:70)

(Bootstrap with bias correction) −0:66 (−1:39; 0:06) 0:37 (0:00; 0:63)

data con�dence intervals for � are narrower than the corresponding intervals from individual data
methods, re
ecting the respective estimates of �2. For �2 also, the bootstrap interval from summary
data is narrower than the bias corrected bootstrap interval from individual binary data. In this data
set, the summary data results do not fully represent the uncertainty surrounding the estimates.

5. RESULTS FOR PRE-ECLAMPSIA DATA

Here we apply the methods discussed above to the pre-eclampsia data set (Table II), which
comprises fewer trials (nine rather than 22); the results are given in Table IV. The di�erence
between the conventional random e�ects and �xed e�ect estimates of � is smaller in this data set
than in the respiratory tract infections example; here the test for heterogeneity gives �28 = 27:3,
with P¡0:001. The regression asymmetry test [22] gives no evidence (P=0:41) of publication
bias for the pre-eclampsia example. When using summary data methods, the di�erences between
ML, REML and conventional random e�ects estimates of � and of �2 are similar to those found
in analysis of the respiratory tract infections data. The three estimates of � are very similar here
and, as in the infections data, the method of moments estimate of �2 is lower than the REML
estimate.
Within summary data analyses, the method of pro�le likelihood again produces the widest

con�dence intervals for both � and �2. The bootstrap con�dence intervals for � are again narrower
than the corresponding Wald intervals, but the di�erences in width are greater here than in the
respiratory tract infections data set. The di�erence in width between the likelihood based and
bootstrap intervals for �2 is also greater in this data set. The shape of the likelihood curve for
�2 is less symmetric when the number of trials is smaller, so more caution is necessary when
interpreting likelihood support intervals as con�dence intervals. In the pre-eclampsia data, both ML
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and REML Wald con�dence intervals for �2 had negative lower limits and so required truncation
at zero. Given the necessity for truncation in Wald intervals and the interpretation di�culties
involved with the likelihood interval, the bootstrap con�dence interval for �2 should be regarded
as the most reliable summary data interval in the pre-eclampsia data set.
In analysis of the individual binary data, the bias corrected estimate of �2 is again larger than

the standard REML estimate. In this data set, the bias corrected bootstrap con�dence interval for
�2 is narrower than the corresponding REML Wald interval. Since both Wald intervals required
truncation at zero, as in the analysis of summary data, the bias corrected bootstrap interval is
preferred. Di�erences between summary data and individual binary data estimates of � and of �2

are generally smaller here than in the infections example. The better performance of summary data
methods in the pre-eclampsia example may be explained by the larger trial sizes and the lack of
extreme probabilities of events; also this data set required no correction for zero cells. There may
be some evidence against the assumption of normality for the random treatment e�ects, as shown
in Figure 1(b).

6. INDIVIDUAL DATA METHODS WITH RANDOM TRIAL EFFECTS

6.1. Description of model

In the previous section, �xed trial e�ects were used to allow the log-odds to vary across trials in
the meta-analysis of individual binary data. An alternative approach is to �t random trial e�ects,
thereby assuming the log-odds to be drawn from a random distribution [20]. The random e�ects
meta-analysis model with random trial e�ects includes the e�ects ui of trial on the log-odds as
well as the e�ects vi of trial on treatment e�ect:

logit(�ij)= �+ ui + (�+ vi)xij

ui ∼ N(0; �2); vi ∼ N(0; �2); cov(ui; vi)= ���
(3)

As before, we initially code xij =0=1 to indicate control=treatment group. It is important to include
the covariance between the ui and the vi. When modelling random treatment and trial e�ects,
we are implicitly modelling the variance-covariance matrix associated with the bivariate log-odds
parameter. If cov(ui; vi) is assumed to be zero, the between-trial variance of the log-odds across
control groups is modelled by �2, while that across intervention groups is modelled by �2 + �2

(Table V). The variation across trials for control groups is thereby forced to be less than or equal
to the variation across trials for intervention groups; this assumption may well be inappropriate.
Furthermore, the covariance between control group and intervention group log-odds is assumed
to be equal to the between-trial variance of the log-odds in the control groups (Table V). When
cov(ui; vi) is estimated rather than assumed to be zero, the variance-covariance matrix of the
bivariate log-odds parameter estimates is modelled freely by combinations of the three parameters
�; � and � (Table V).
Using second-order PQL methods in MLwiN for the respiratory tract infections example, the

estimated variance-covariance matrix changes markedly when cov(ui; vi) is �tted (Table VI). With
the constraints removed, the variation across trials for control groups is estimated as substantially
larger than the variation across trials for intervention groups. This example illustrates the dangers
of the zero cov(ui; vi) model, in which estimates of � and �2 may be based on invalid assumptions.
The zero and non-zero cov(ui; vi) models give di�erent estimates of � and �2.
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Table V. Variance-covariance matrices for the bivariate log-odds parameter, corresponding to codings of
0=1 or ±1=2 combined with zero or non-zero covariance terms.

x = 0=1 x = ±1=2
Treatment A Treatment B Treatment A Treatment B

Zero covariance
Treatment A (or control) �2 �2 �2 + �2=4 �2 − �2=4
Treatment B (or active) �2 �2 + �2 �2 − �2=4 �2 + �2=4

Non-zero covariance
Treatment A (or control) �2 �2 + ��� �2 − ���+ �2=4 �2 − �2=4
Treatment B (or active) �2 + ��� �2 + 2���+ �2 �2 − �2=4 �2 + ���+ �2=4

Table VI. Estimates from individual data random e�ects meta-analysis of respiratory tract
infections data, with random trial e�ects.

Zero covariance, Zero covariance, Non-zero covariance
with 0=1 coding with ±1=2 coding

Log OR −1:40 −1:40 −1:36
Variance of log OR 0:48 0:56 0:56
Bivariate log-odds (−2:05;−0:65) (−2:03;−0:63) (−1:97;−0:61)
Variance of bivariate log-odds

(
1:376 1:376
1:376 1:858

) (
1:301 1:021
1:021 1:301

) (
1:753 1:022
1:022 0:848

)

6.2. Bivariate approach

Estimation of model (3) involves use of the full likelihood for binomial data, and the set of control
group and intervention group log-odds are assumed to follow a bivariate normal distribution. This
model is a multilevel representation of the bivariate approach proposed by van Houwelingen et al.
[20], in which maximum likelihood estimates were obtained using exact likelihood and two approx-
imate procedures (of which the second was advocated). Here we use penalized quasi-likelihood
and second-order Taylor approximations within the MLn=MLwiN software. To demonstrate the
similarity between results from our approach and the exact likelihood approach, we present es-
timates (Table VII) from the upper gastrointestinal bleeding data set used by van Houwelingen
et al. The estimates obtained from multilevel modelling and exact likelihood are very similar; the
di�erences are of like magnitude to those observed between the exact likelihood approach and the
recommended approximate approach [20].

6.3. Coding of treatment covariate

Treatment covariates are usually in practice coded as 0=1. The coding of ±1=2 may however be
advantageous when �tting a random e�ects meta-analysis model with random trial e�ects in data
sets with few degrees of freedom, where estimation of a covariance between two random e�ects
is problematic or impossible. When assuming cov(ui; vi) to be zero and using ±1=2 coding, the
variance of the log-odds in control group patients is modelled as equal to that in intervention group
patients, and the covariance between control group and intervention group log-odds is modelled
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Table VII. Estimates from bivariate random e�ects meta-analysis of upper gastrointestinal bleeding data,
comparing a multilevel approach to those of van Houwelingen (VH) et al. [20].

Multilevel VH exact VH approximate

Log OR −0:17 −0:17 −0:17
Variance of log OR 0:11 0:12 0:11
Bivariate log-odds (−1:36;−1:19) (−1:35;−1:19) (−1:34;−1:17)
Variance of bivariate log-odds

(
0:123 0:068
0:068 0:127

) (
0:126 0:067
0:067 0:129

) (
0:122 0:067
0:067 0:122

)

separately (Table V). In the respiratory tract infections example, it can be seen that the di�erence
between the estimated variance-covariance matrices from models with zero and non-zero cov(ui; vi)
is smaller when the ±1=2 coding is used (Table VI). In the pre-eclampsia data it was not possible
to achieve convergence when cov(ui; vi) was included, owing to the small number of trials. In
such situations, the most appropriate model has to be simpli�ed, and a zero cov(ui; vi) model with
±1=2 coding may be preferable to a zero cov(ui; vi) model with the usual 0=1 coding.

6.4. Model checking

In addition to the assumption of normality for the random treatment e�ects vi as required by model
(2), model (3) assumes the random trial e�ects ui to be normally distributed. In Figure 2(a) we see
some evidence against this latter assumption for the infections example; two trials have particularly
large residuals. When non-normality occurs, the individual data model (2) with �xed trial e�ects
would be more appropriate than model (3). Figure 2(b) gives us some insight into the relationship
between the ui and the vi; we see that more negative treatment e�ects were observed in trials
with higher than average risk of respiratory tract infection. This further demonstrates the need for
including the (ui; vi) covariance in model (3), and represents a relationship between underlying
risk and the extent of treatment bene�t [10; 42].

7. DISCUSSION

In this paper we have focused on the application of a multilevel model framework to meta-analysis
of binary outcomes, but corresponding methods exist for other outcomes. Multilevel modelling tech-
niques for meta-analysis of continuous outcomes are now well developed; these include methods
for combining individual patient data and summary data [18]. The models presented for meta-
analysis of binary outcomes can be adapted for application to ordinal outcomes, again for either
summary data or individual patient data. It is also possible to perform meta-analysis of survival
outcomes using multilevel models [16]. Models for random e�ects meta-analysis of multiple corre-
lated continuous outcomes were described recently [14]. Maximum likelihood or REML estimates
for such models could be obtained within the multilevel modelling framework [43], with the pos-
sibility of analysing multiple non-continuous outcomes or even mixed outcomes, for example, one
binary and one continuous outcome.
Multilevel modelling methods extend naturally to include both individual-level and trial-level

covariates. The meta-regression approach described by Berkey et al. [5] may be implemented,

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:3417–3432



MULTILEVEL MODEL FRAMEWORK FOR META-ANALYSIS 3429

Figure 2. Between-trial residuals (a) for log-odds of respiratory tract infection; (b) for treatment e�ect plotted
against residuals for log-odds. Area of circle inversely proportional to variance of log-odds ratio estimate.

allowing the investigation of sources of between-trial heterogeneity with the aid of trial-level
covariates [44]. In this paper we describe models with only two levels, corresponding to individuals
within trials. The three-level model is an obvious extension of these. Three-level models would
be a valuable tool for meta-analysis of multi-centre trials, meta-analysis of cluster randomized
trials or meta-analysis of trials with repeated measures. A variation on the three-level model is the
cross-classi�ed multilevel model; this would be of use if, for example, the trials under analysis had
drawn subjects from multiple centres, while some centres had also contributed subjects to several
trials. In such situations the between-trial variation is crossed with centres; this can be modelled
using the MLwiN software [25].
The methods described in the paper should be possible within any specialized multilevel soft-

ware, together with the extensions mentioned above, although the bias corrected parametric boot-
strap may not yet be widely available. Non-Bayesian approaches to estimation of hierarchical
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models for meta-analysis have been proposed previously [7; 8; 45]; in this paper we have con-
centrated on methods which are easily implemented in multilevel software. The models for both
summary data and individual data have been based around the log-odds ratio scale throughout;
analyses may in principle be carried out on other scales such as log relative risk or absolute risk
di�erence, though this would be computationally less straightforward.
Bayesian hierarchical modelling provides an alternative framework for meta-analysis. Carlin [46]

considered a semi-Bayesian random e�ects model for summary data analysis, which uses numerical
integration to allow for the uncertainty in estimation of �2 but regards the �2i as known quantities.
Smith et al. [6] later described a fully Bayesian approach, in which Gibbs sampling is used to
perform random e�ects meta-analysis of individual binary data. This method enables 
exibility
in modelling, for example, allowing the inclusion of trial- and individual-level covariates. Pauler
and Wake�eld [15] give a thorough description of the Bayesian framework for meta-analysis
and its implementation. Classical multilevel modelling and Bayesian hierarchical modelling o�er
similar possibilities to the meta-analyst; one advantage of the latter is its natural ability to utilize
information from previous studies and thus improve precision in estimation of �2 [47].
Our main example, the respiratory tract infections data set, showed evidence of publication bias

but we have not considered correction for this within the multilevel modelling techniques presented.
Models proposed to correct for publication bias in estimates of treatment e�ect generally assign to
each study a weight which is a function of the selection probability for that study [48]. Such models
require assumptions about the speci�c form taken by the selection probabilities, and may involve
rather arbitrary decisions to which robustness is lacking [49]. Copas [50] has recently recommended
a sensitivity approach to the problem of publication bias, as an alternative to obtaining corrected
estimates. The proposed method involves examination of the extent to which the estimation of
� depends on parameters describing the selection probabilities. This procedure yields a range of
plausible estimates of � rather than a single corrected estimate.
The multilevel models approach to meta-analysis encompasses standard methods, while its 
ex-

ibility o�ers a wealth of extensions. In this paper we have demonstrated the essential techniques
for meta-analysis of binary data using multilevel modelling. Having once performed these meth-
ods in a multilevel software package, the implementation of many of the extensions mentioned is
straightforward. Further work is required, however, to investigate the full potential of multilevel
models for more complex extensions such as, for example, mixed multivariate outcomes.
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