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Summary. Meta-analysis is formulated as a special case of a multilevel (hierarchical data) model in
which the highest level is that of the study and the lowest level that of an observation on an individual
respondent. Studies can be combined within a single model where the responses occur at different
levels of the data hierarchy and efficient estimates are obtained. An example is given from studies of
class sizes and achievement in schools, where study data are available at the aggregate level in
terms of overall mean values for classes of different sizes, and also at the student level.
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1. Introduction

The effects of class size on achievement have been studied since the 1920s quantitatively and
qualitatively, and have certainly been debated for much longer. There is a large number of
existing studies, including observational surveys, matched designs and randomized controlled
trials (RCTs). Despite the number of studies, the results are often inconclusive. Glass and Smith
(1979) first applied a meta-analysis to 77 studies based on 70 years’ research in more than a
dozen countries. They concluded that there were positive effects for class sizes of less than 20,
based on 14 of these studies which were considered to be ‘well controlled’. Their quantitative
synthesis method has been followed by many more meta-analyses on the same topic (Carlberg
and Kavale, 1980; Hedges and Olkin, 1985; Slavin, 1986, 1990; McGiverin et al., 1989).

Slavin (1990) argued that Glass’s positive finding was based on only a small number of
studies and the results were largely affected by one extreme case (Verducci, 1969). On
reanalysis Slavin reported an effect that was much smaller than that of Glass. He also
conducted an analysis of nine randomized or matched studies. Among these studies some
were used by Glass and Smith in 1979 but most of them were new studies selected according
to strict inclusion criteria. The large scale Tennessee student/teacher achievement ratio
(STAR) RCT study (Word ez al., 1990) was included. Slavin suggested a moderate effect size
of 0.17 standard deviation (SD) units of achievement score comparing smaller classes of 15 or
16 with larger classes of 25-30.

The use of random-effect models in meta-analysis has been suggested by several researchers
(Hedges and Olkin, 1985; Raudenbush and Bryk, 1985; Hardy and Thompson, 1996; Erezet al.,
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1996; Cleary and Casella, 1997). The present paper focuses more on the methodology of
meta-analyses than on the substantive issue of class size per se. For a more detailed discussion
of the latter and a consideration of the role of RCTs in such studies see Goldstein and
Blatchford (1998).

In this paper we tackle the problem of how to compare data from different studies with
varying summary measures by using multilevel models (Goldstein, 1995). We also develop
multilevel models to combine study level data and individual level data. This provides a
statistically efficient method for the situation in which some studies have individual level data
but others have only summary statistics available (e.g. means and standard errors from
published papers). We first describe, in Section 2, the studies included and data available for
addressing the issue of class size effects. Section 3 introduces a multilevel model for meta-
analysis, focusing on aggregate level data, and Section 4 describes how the model can be
extended to combine both aggregate level and individual level data in the same analysis.

2. Sources of data

2.1. Criteria for inclusion in the study
We restrict ourselves to those studies which meet the following inclusion criteria.

(a) The study is an RCT or has a matched design where there is an attempt to match
smaller and larger classes initially by using school or student level criteria.

(b) The study outcomes are achievement scores, e.g. standardized test scores or rating scales.

(c) The study is longitudinal with initial and final achievement measures and at least one
school year period for both larger and smaller classes.

(d) The smaller class is not less than 15 and the larger class is not more than 40.

These inclusion criteria are similar to those that Slavin (1990) set out for his analysis and the
range of class sizes matches that found in educational systems of industrialized countries.

2.2. Scope and strategy of literature search

Several databases were searched using the keywords class size, longitudinal study, school
achievement; the ERIC database from 1961 to 1997, the British Education Index (1954-1996,
covering 300 journals of education), the Canadian Education Index (1976-1996 coverage) and
the Australian Education Index (1978-1996 coverage). Psychological Abstracts was searched
(1985-1996) using the subject titles class size, classroom, group size, academic achievement and
meta-analysis.

Nine studies met our criteria, among which seven studies were used by Slavin (1990). Two
studies used by Slavin could not be traced through our database search, or by an additional
Internet search for the authors’ names. The data on these, as presented by Slavin, are not
sufficiently detailed for use in our analysis. Two new studies that were not used by Slavin
were added to our collection. Only one study, the STAR study, provides individual level data.

In the next section we list some basic information about the studies selected.

2.3. Studies selected
A summary of the statistical information is given in Table 1.

2.3.1. Study 1: Balow (1969 ), California
Study 1 was an experimental (but non-randomized) study on reading achievement for stu-



Class Size Effects 401

Table 1. Raw and adjusted data of each study for reading scores

Study Grade Class  Number of Mean £ SD Adjusted  Pooled SD,  Standardized Effect size

k j size h pupils, ny, reported, mean ﬁf,k SDj, adjusted mean Vs — VLjk
Xhjk + Opjk Vhji

1 1 15 251 50.9 50.9 12.01% 0.125

1 30 744 48.9 48.9 12.01 —0.042 0.17

3 15 656 248.9 248.9 12.37 0.012

3 30 602 245.6 248.6% 12.37 -0.013 0.02
2 4 16.6 256 0.00 £ 0.30 0.00 0.275 —0.012

4 23.7 368 —0.04 +£0.30 —0.04 0.275 —0.157 0.15

4 30.3 450 0.02 £0.27 0.02 0.275 0.061 —0.07

4 35.7 555 0.02 +0.25 0.02 0.275 0.061 —0.07
3 2 15 78 2.39 +0.809 2.67% 0.620 0.282

2 30 542 2.52 £ 0.895 2.47 0.620 —0.041 0.32

3 15 156 3.16 £ 0.954 3.49% 0.588 0.212

3 30 555 3424+1.074 3.33 0.588 —0.061 0.27

4 15 57 4.38 £ 1.181 4.37% 0.661 0.188

4 30 441 4.23 + 1.400 4.23 0.661 —0.024 0.21

5 15 43 5.40 +1.534 5.55% 0.665 0.395

5 30 413 5.22 +1.680 5.21 0.665 —0.041 0.44

6 15 63 5.69 + 1.510 6.28% 0.700 0.320

6 30 374 6.19 +£1.925 6.10 0.700 —0.037 0.36
4 1 15 1127 49.7 + 14.45 53.4§ 9.01 0.098

2 25 516 50.6 & 16.12 50.6 9.01 —0.213 0.31
5 2 15 57 52.0+9.93 52.0 8.379 0.198

2 25 55 48.7 +7.25 48.7 8.379 —0.205 0.39
6 1 19 368 43.2 43.2 10.46+ —0.085

1 31 646 44.6 44.6 10.46 0.049 —0.13
7 1 20 371 523.8 + 88.7 523.8 137.6 0.191

1 27 350 469.8 £ 175.4 469.8 137.6 -0.176 0.39

2 20 309 590.2 +49.6 590.2 50.41 0.115

2 27 313 578.7 £ 51.2 578.7 50.41 —0.114 0.23
8 9 20 2819 70.6 £ 11.2§§ 70.6 13.3 0.300

9 30 2543 62.6 £ 15.48§ 62.6 133 —0.301 0.60
9 1 15 2644 531.0 + 57.1 529.1% 37.23 0.070

1 24 1414 520.0 &+ 54.4 516.1% 37.23 —0.167 0.24

2 15 3112 591.0 +45.6 591.1* 28.98 0.020

2 24 1482 583.0 +454 579.2% 28.98 —0.042 0.06

3 15 3353 619.0 + 38.5 619.5% 21.77 0.008

3 24 1357 615.0 + 38.2 619.2% 21.77 —0.020 0.03

+SD derived from the F-test value reported.

iBoth the mean and the SD were adjusted for a pretreatment score based on the reported correlation coefficient
between the pretreatment and post-treatment scores.

§Both the mean and the SD were adjusted for a pretreatment score assuming a correlation coefficient of 0.8.
§§Both the mean and the SD were calculated on the basis of an average measure from 10 schools available in the paper.
*Both the mean and the SD were adjusted for a pretreatment score using a three-level model with covariates.

dents from grades 1-2 and then grades 3—4. Class sizes were defined as 15 for small and 30 for
large classes. The means of the reading score at grade 1 for the two classes were reported
equal so that scores at grade 2 were compared. Means at grade 4 were compared adjusting for
the intake reading or pupils’ intelligence quotient measured at grade 3. No standard error for
any measure was reported, except for F-test values in the paper.

2.3.2. Study 2: Shapson et al. (1980), Toronto city
Study 2 was an RCT for four class size groups: 16, 23, 30 and 37. The trial period was from
grade 4 to grade 5. Efforts were made to keep the same group of pupils in the same class
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during the trial year. It was reported that the changes in pupils in a class were limited to
within +3 by the end of the study. Measures included test scores for composition, vocab-
ulary, reading, mathematical concepts and mathematical problem solving. Means and SDs
adjusted for the year of the study and teachers’ experience were reported.

2.3.3. Study 3: Doss and Holley (1982), Austin, Texas

Study 3 was a 5-year matched design study from grade 2 to grade 6 for school achievement in
reading, language and mathematics. The class size was 15 for small and 30 for large classes.
Initial means and SDs of test scores at the beginning of the year and those at the end of the
year were reported for the five years. Correlation coefficients between the prescores and post-
scores were also reported by grade and class.

2.34. Study 4: Wilsberg and Castiglione (1968), New York City

A total of 1127 grade 1 students from 13 schools and 516 grade 2 students from seven schools
were used in study 4. Grade 1 students were in small classes of 15 and grade 2 students were
in large classes of 25 and over. Both received the same materials, and help for a year. The
study reported means and SDs of a reading test at entry into the study, and means and SDs of
vocabulary and comprehension tests were taken at the end of the study.

2.3.5. Study 5: Wagner (1981), Toledo, Ohio
Grade 2 students in one school assigned to small classes of less than 15 were compared with a
matched school with large classes of 25 in study 5. This was published as a doctoral thesis.

2.3.6. Study 6: Mazareas (1981), Boston

A random sample of 1014 grade 1 pupils (368 from small classes of less than 20 and 646 from
large classes of more than 30) were used in study 6. Outcomes were adjusted for covariates
and F-test values were reported for five school attainment scores including reading. This was
published as a doctoral thesis.

2.3.7. Study 7: Butler and Handley (1989), Mississippi

Study 7 was a matched design study of grade 1 and grade 2 students measuring reading, listening
and achievement in mathematics. Outcomes for students in smaller classes (size 20) of grade 1
and grade 2 were compared with the same group of students in larger classes (size 27) followed
for 2 years. Students in the smaller and larger classes were from the same school. The study
matched for factors such as teachers’ qualifications and an entrance test, but it did not carry out
covariate adjustment. Means and SDs by subject by class group were reported.

2.3.8. Study 8: San Juan Unified School District (1991), California

A total of 2819 students from 10 high schools (grade 9) originally in large classes of 30 were
assigned to reduced size classes of 20 for a year and compared with those in larger classes in
study 8. The means of a reading comprehension test in grades 9 and 10 were reported.

2.3.9. Study 9: Word et al. (1990), Tennessee
The STAR project (study 9) was an RCT longitudinal study with children followed from
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kindergarten to grade 3 for 4 years with measurements at 1-year intervals. Smaller classes
averaged about 15 students (13—17) and larger classes about 24 (22-25). About 4000 students
were available for the analysis and the initial assignment into kindergarten classes was at
random.

In Table 1 the class size, number of pupils, means and SDs are taken from the published
papers. The adjusted means and pooled SDs are computed by using equations (1) and (2) respec-
tively below. The standardized adjusted means are computed by using equation (3) below.

As we can see from Table 1 several problems arise. The tests that were used to measure
achievement are obviously different from study to study. Rescaling the measurements to a
common scale is essential for meta-analysis. Common practice is to standardize the mean for
each class group within each study by using a pooled SD. For example, the conventional effect
size measure (Glass and Smith, 1979; Hedges and Olkin, 1985) is (s — 1.)/SD oo1ed> Where the
terms y5 and j; indicate the mean score of smaller and larger class groups respectively. For our
purposes we require, as a minimum, estimates of the means and pooled SDs. Some studies did
not present SDs for their achievement measures. In this case an F-test or ¢-test value reported by
such a study had to be used to derive the pooled SD for the two groups under comparison.

Differences in the effect of class size between studies may arise from various causes. Where
common data are available, e.g. on socioeconomic background, we can see whether such
factors explain part of the study differences (Thompson, 1994). In the present case we have
the additional problem that different achievement tests were used in each study and this will
generally introduce further, unknown, variation. A further issue is that, apart from the STAR
study where student level data were available, the between-school variation within a study is
not separately reported but should be included in our models.

2.4. Adjusting for pretreatment score

Our inclusion criteria for non-RCT studies to be matched on student or class factors imply
that for each study we can adjust for initial achievement. This is important for non-
randomized studies to allow for any association between initial achievement and allocation to
classes of different sizes. In randomized studies it will generally increase precision as well as
potentially helping to correct for any problems with the randomization procedure.

Given the means and SDs for both pretreatment and post-treatment as well as the within-
group correlation coefficient r(pre, post) between the pretreatment and post-treatment test
scores, we adjust the post-treatment mean of the small and large classes by equation (1) to
obtain estimates of the adjusted means ﬁgposl and ﬂf‘post. This is equivalent to applying an
analysis of covariance to the two class groups with the pretreatment score as the covariate.

0,
ﬁ}ct,post = )_Ch‘posl + ap_ml r(pre, pOSt) ()_Ch,pre - “‘_Cpre) (l)
pre
where /1 indexes the class size and X, is the overall pretest mean. The symbols o and X refer
to the pooled between-subject SD and treatment means respectively. If the correlation
coefficient between the pretreatment and post-treatment scores is not provided, an estimate
may be available from other studies (for example see the footnote to Table 1).

2.5. Adjusting and pooling standard deviations
Given the residual sum of squares of the post-treatment score adjusted for the pre-treatment
score for each class size group separately, say SSg and SS;, a pooled SD is calculated as
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SSq + SS,
SDPOOled = \/(m) (2)

where D refers to the degrees of freedom used for each class size group.

The final summary statistics are the adjusted means and pooled SDs in Table 1. The
standardized adjusted means are computed by calculating, for each grade in each study, the
mean over all class sizes weighted by the numbers of students, subtracting this from each
standardized mean and dividing by the pooled SD, namely

:&g.jk - Z nlp/'kﬁhcz/'k / Z ny, i
Yhje = é u (3a)
o SDjk

(h =1 for a large class; 4 = 2 for a small class). The standardized adjusted means are the
responses used for the aggregate level data.

On the basis of these the conventional effect size can be estimated as in the last column of
Table 1 by using

Vsjk — VLjk = (ﬂgfk - /:Lg.ﬂc)/SD/k' (3b)

The homogeneity test (Hedges and Olkin, 1985) for the weighted and bias-corrected effect
size estimates for the eight studies with aggregate level data indicates significant heterogeneity
between them (yis = 255.5; p « 0.001). Heterogeneity may have arisen in several ways
including inappropriate assumptions about ways of combining effect sizes and omitted levels
(between classes and between schools) in the analyses.

As an alternative to working with adjusted effects, we could consider treating the pretest
score as a covariate in the multilevel model described in the next section. A difficulty with this
approach, however, is that the coefficient for the pretest will vary from study to study, and we
shall not pursue this further.

3. A multilevel meta-analysis model

In this section we formulate a general class of meta-analysis models by considering a simple
two-level structure. We shall assume that we have a collection of studies, each concerned
with the comparison of several ‘treatments’. These treatments may be distinct categories
(represented by dummy variables) or may be effects represented by regression coefficients
or a mixture of the two kinds. The basic models that we shall develop are ‘variance com-
ponent” models but we shall also illustrate a random-coefficient model, and the variance
heterogeneity case can also be incorporated (Goldstein (1995), chapter 3).

For the ith subject in the jth study who received the Ath treatment, we can write a basic
underlying model for outcome y,; as

Vi = (XB)yj + utyiy + wyj + epijs h=1,..,H, j=1,..,J, i=1..,m,,

4
iy ~ NO, ). ey ~ N0, 7). @

where (X/3);; is a linear function of covariates for the ith subject in the jth study, u, is the
random effect of the Ath treatment for the jth study and e,,; is the random residual of the hth
treatment for subject i in study j. The term ¢,; is a dummy treatment variable (contrasted
against a suitable base category) and ¢, is the treatment contrast of primary interest. If the
treatment dummy variables are replaced by a continuous variable #; then model (4) becomes
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y”:(Xﬂ)l/_’_atU‘f‘ul‘i_e”, jzl,..., J, izl,..., I/l/-,
u; ~ N0, 02), e;; ~ N(0, 02).

It is also possible to allow the variances within and between studies to be different for each
treatment or to vary with the value of a continuous treatment variable, leading to complex
variance structures (Goldstein (1995), chapter 3). We can also introduce covariates where
data are available and appropriate, and interactions between treatments and covariates. For
example, a particular treatment contrast may differ according to the covariate values. We
may also relax the normality assumption of the level 1 residuals, e.g. if fitting a generalized
linear multilevel model (Goldstein, 1995; Turner et al., 1999).

3.1. Aggregate level data
Consider now the case where model (4) is the underlying model but we only have data by
treatment group at the study level. Aggregating to this level we write the mean response as

Ynj = (XB); + ayly; + uy; + ey ®)

where the dot notation denotes the mean for study j. This implies particular constraints, e.g.
var(e, ;) = var(e;)/n,;. A difficulty may arise with the first term in equation (5) since this
implies that the mean of the covariate function (X(3),; for each study is available.

The corresponding model for the case of a continuous treatment variable is

y;=XB),;+tat;+u+e,.

3.2. The two-treatment case
Consider the special case of two treatments, 2 = 1, 2. We collapse equation (5) and, using an
obvious notation, rewrite to give

yi=yi—yy=atute 6

= 0 — Q. ( )

This implies the constraint var(u;) = var(uy;) + var(uy) — 2 cov(u;, uy). We can combine

equations (5) and (6) into a single model for the case where some aggregated responses are in
terms of separate treatment groups and some are in terms of contrasts of groups.

3.3. Defining origin and scale

When combining data from aggregate level studies it is necessary to ensure that the response
variable scales are the same and that there is a common origin. In traditional two-treatment
meta-analyses the treatment difference is divided by a suitable (pooled) within-treatment SD
as described earlier. In our general model, likewise, the response variable in each study can be
scaled by dividing it by an estimate of the level 1 SD. Where individual data are available we
may use an estimate of the level 1 SD from a preliminary analysis and for aggregate data we
may derive this from reported summary information, if this is available.

In situations where the same response variable is used in each study, and scaling has been
carried out, we can apply equations (4) and (5) directly. In many cases, however, different
response variables are used. For example, in class size studies different reading tests are used.
In this case we would not generally expect the means for corresponding treatments to be
identical. One procedure for dealing with this is to choose one treatment as a reference



406 H. Goldstein, M. Yang, R. Omar, R. Turner and S. Thompson

treatment (or control) and in each study to subtract its mean from the values of the other
treatments and to work with these differences. This is the standard approach in two-treatment
studies. Thus we chose one treatment described by an intercept term with dummy variables
for the remainder. The coefficients of the intercept and of these dummy variables would
generally be modelled as random at the study level. In the two-treatment case this leads to
model (6).

Where we have a study with individual data we likewise subtracted the mean of the
reference treatment group from the response variable. In the fixed part of the model, for the
level 1 units with that treatment, the intercept term (and other treatment dummy variables)
will be 0.

3.4. Variance information

We may have additional information about variances from studies, e.g. information from
other meta-analysis studies about between- or within-study variation. Suppose, for example,
that in model (4) we have an external estimate, say r,,, of o7, + a’o},, where we might have
a =1 /ny;. If we write an additional component to the model as an extra level 2 unit

Thue = uhj + aelzij (7)

where the fixed part is identically 0 and we have additional constraints imposed as above, this
information is then incorporated into the estimation. We note, however, that this extra level 2
unit is given the same weight as every other level 2 unit in the model, and we may wish to
assign a different weight depending on the accuracy of the information obtained. Weighting is
discussed in the next section.

3.5. Weighting units

We shall consider only weighting of the level 2 units, although extensions to differential
weighting of level 1 units are possible. Suppose that the jth level 2 unit is assigned a weight w;.
These weights may reflect information about the quality of the study or possibly non-
response. Such an analysis might be undertaken as a sensitivity analysis to complement
an unweighted analysis. Note that sample size weighting is already incorporated in the
estimation via equation (5). Assuming that the weights are uncorrelated with the random
effects, we rewrite model (4) to include the vector of the inverses of the square roots of the
weights as the explanatory variable for the level 2 random effects. This gives

Wiy = (XB)y; + aply;; + u/;j“'ffo’s + ey ®)

and we can carry out the standard estimation for this model. This procedure for carrying out
a weighted multilevel analysis is discussed in Pfeffermann ez a/. (1997) and is equivalent to
their ‘step A only’ method. They also discussed the case where the weights are correlated with
the random effects.

3.6. Modelling class size
In our analysis class size is treated as a continuous variable centred at a value of 15. In all the
studies, as is clear from Table 1, only the average class sizes for ‘small’ or ‘large’ classes are
reported. These values are therefore the values used in the analysis.

One of our aggregate level studies (Doss and Holley, 1982) sampled separate grades within
schools. In principle this provides a further level between the class and the school. A
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preliminary analysis, however, detected variation at this level only for the simplest model, so we
do not include it in further models, although grade level itself is incorporated as a fixed factor.

3.7. Aggregate level models for class size data
For the aggregate level studies we can write a basic model as

Vi = o + i Cye + 2 BiG i + €y
7

Qe = Qg + Uy + Vo Qi = ap + Uy, 9)
2 2
u()jk ~ N(Oa 0u())7 e.j/c ~ N(Os Ue/njk)a
2 2
vor ~ N(O, o7), v ~ N, 0,1), COV(Vgk, U1x) = Oyo1s

where j and k now index the grade and study respectively. The parameter ¢, estimates the mean
score for a class size of 15. The term uy is the random departure (residual) of the jth-grade
mean from the kth study and §, the fixed effect for grade /, with the G, ; being grade dummy
variables, these being covariates in the model as described in equation (5). The term vy is the
residual for the kth study. The variable C;, is the class size and the parameter «; estimates the
overall class size effect per additional student. The term v, estimates the additional random
departure for the kth study of the overall class size effect. Further covariates could of course
be added, if available. Not all the studies sampled more than one grade level and in some
studies several grades are sampled within each school, whereas in others different grades are
sampled in different schools. In the latter case grade differences are confounded with school
differences so an interpretation of between-grade variation is difficult. For this reason we do
not fit grade as a level in the following analysis, although we do study fixed grade effects.

Since all our data have been standardized, the underlying level 1 variance is equal to 1. We
therefore define the explanatory variable z;, = 1/ \/njk and we can write the first line of model
(9) for the aggregated model as

Yk = agix +a Ci + 21: BiGrjk + WiZj
wie ~ N0, 1).

(10)

In practice, for classes of a given size in a study, typically we only have available the mean
over all classes, so, although the contribution to the variance from these classes for the kth
study is X, n_,_kl, the data that are available provide only the value of (%; n_,k)_l. When these
class sizes are constant, however, the first expression can be obtained from the second where
the number of classes is known.

3.8. Results
We first present results for the aggregate level studies only and follow this with results from
both the individual level study and the combined individual and aggregate level studies.
Table 2 presents the results of fitting models (9) and (10) for the aggregate data studies
(numbers 1-8 in Table 1), using maximum likelihood estimation for three models as shown,
together with a 95% confidence interval for the estimates based on a parametric bootstrap
with 1000 replications (Goldstein, 1995).
Model A allows the class size effect to vary across studies, model B allows no such
variation and model C includes a quadratic effect of class size. As can be seen from the log-
likelihoods, model A fits the data substantially better than model B, so there is substantial
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Table 2. Model estimates for the aggregated study data using model (9)t

Parameter Estimates for the following models:

Model A Model B Model C
Fixed effects
Intercept 0.163 (0.028, 0.308) 0.207 (0.149, 0.261) 0.224 (0.053, 0.393)
Class size, linear —0.020 (—=0.036, —0.004) —0.022 (—0.025, —0.019) —0.048 (—0.072, —0.025)
Class size, quadratic 0.002 (0.001, 0.003)
Random (between-study) effects
ol 0.060 (0.0, 0.101) 0.004 (0.0, 0.014) 0.067 (0, 0.135)
T 01 —0.006 (—0.010, —0.001) —0.006 (—0.013, 0.004)
o 0.0006 (0.0, 0.0010) 0.0006 (0, 0.0010)
—2 log-likelihood —46.1 266.3 —54.1

+The constrained parameter at class level is omitted. 95% bootstrap intervals are given in parentheses.

evidence of heterogeneity in the class size effect across studies. Model A estimates the effect
on reading scores as a decrease of 0.02 SD units per additional student. This is slightly greater
than the 0.17 units estimated by Slavin (1990) comparing classes of 15 or 16 with larger
classes of 25-30. Model C indicates a quadratic effect of class size whereby from a class size of
15 to a size of 30 there is a continuing decrease in achievement, but an increase in achieve-
ment thereafter. This result, however, is influenced by study 2 with the large classes over 30.

A test for equality of grade effects is not significant (x: = 1.8) so these have been omitted
from these models. The likelihood ratio test statistic suggests that the class size effect varies
across studies. However, there are only eight studies in the data set so inferences based on
large sample results should be viewed with caution. Also these models ignore between-school
variation within studies and between-grade variation as pointed out above. If for model A,
however, we allow the level 1 variance to be estimated we obtain an estimate of 1.81 with a
likelihood ratio test statistic, for comparison with model A, of 3.0 with 1 degree of freedom so
there is only rather weak evidence for a value different from 1.0. If we do the same for model
B the level 1 variance estimate is 16.6 and the test statistic is 285.5. The analysis utilizes all
the information that is available for the published aggregate studies. Since we are working
with standardized data the only flexibility lies in the modelling of the class size effect and
the between-study variation. In comparison with the inclusion of individual level data the
analysis illustrates the limitations of using aggregate level data.

4. Models for combining individual level data with study level data

Although the STAR individual level data set has covariates available, the aggregate level data
have not been adjusted for covariates in a consistent fashion, other than for class size and
initial test scores as discussed above. Some studies, however, such as that of Shapson et al.
(1980), reported their results adjusted for other factors, and some of the studies carried out
initial matching. In the following analysis we shall ignore this variation, but it needs to be
borne in mind when the results are interpreted.

The STAR study has three levels: school, class and student. Children were recruited when
they entered kindergarten where they were randomly assigned to three sizes of class; a small
class of 13—17, a regular class of 22-25 and a regular class of 22-25 with a teaching aide. The
last two categories are combined since in the STAR study they show no differences. The
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students were followed for 4 years to the end of grade 3, and for the present purposes we use
the reading test score data at the end of grade 1, adjusted for reading test scores at the end of
kindergarten, i.e. a study extending over 1 year. The study attempted to retain the original
class compositions, but this was not entirely possible. A discussion of the problems of
interpreting data from this study is given by Goldstein and Blatchford (1998).

The following model is a combined model for the STAR study and the previously analysed
aggregate level studies. We omit the effect of grade since this was not significant for the
aggregate level analysis.

Vi = (g + iy Cijgg) + € (1 = 20) + (i + X0 + V11 Ciji) 21

Qo = Qg + Wy, oy =a;+wy, Qojjki = Vor + Uojir + €k
z; = 1 if individual data study, z; = 0 otherwise,
wor ~ N(O, Uﬁzo)a wy ~ N(O, Ui-l)» cov(wy, wyy) = Oy (1
o ~ N(O, Ugo)a v ~ N(O, 0'31)’ coV(Loxs> Virt) = Tuo15
Uyjrs ™~ N(O, Uio)» Cijk1 ™ N(O, ag), €k~ N(O, Ucz»/njk/)»

where x,;;, is the end of kindergarten score, with the standard assumption that it is
independent of the random effects, and C is the class size. The parameter o2, represents the
between-study variance in the class size effect, and o2, the between-school variance in the
class size effect.

This model utilizes a notation similar to that used before and is now a four-level model
with students i grouped within classes j within schools & within studies /. The STAR data are
standardized by using the residual variance from a preliminary three-level model with only
the STAR data. For the combined data analyses in Table 3 the random-effects parameter
estimates at levels 1-3 are derived from the STAR data and at the class level (2) the aggregate
level variance, which is not shown, is constrained to be 1. The between-study level (4) inter-
cept and class size coefficient random parameters are estimated from the complete data set.

4.1. Results

In Table 3 the level 4 (between-study) variation is somewhat smaller than that estimated from
the aggregate data studies only. We see that the class size effect for the STAR data and the
combined estimate is little different from that in the analysis using only aggregate level data
(Table 2) and the quadratic effect is now negligible. In fact the linear class size effect in the
combined model is less precise than for the STAR study alone because of the substantial
heterogeneity between studies in the class size effect. The STAR data show only a small and
not significant (y3 = 1.5) variation in the class size effect between schools. In fact Goldstein
and Blatchford (1998) show that for mathematics test scores there is a marked variation
between schools. A study of the (shrunken) estimated residuals at the study level does not
reveal any outliers.

5. Discussion

We have shown how a series of studies, with results reported at different levels of aggre-
gation, can be combined efficiently within a single multilevel model to provide effect size
estimates. Since the analysis is based on maximum likelihood estimation within an explicit
model it can be expected to yield more efficient estimates than traditional approaches to
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Table 3. Parameter estimates for model (11)}

Parameter Estimates for the following types of data:
STAR data only Combined data (linear) Combined data (quadratic)
Fixed effects
ayp 0.078 0.184 0.175
oy (class size, linear) —0.024 (0.006) —0.022 (0.007) —0.017 (0.011)

as (class size, quadratic)
o, (pretest) 0.907 (0.018)
Random effects
Level 4 (between study)
Uﬁvo
Ty01
2

Oyl
LCV2€1 3 (between school)

0.907 (0.018)

0.038 (0.020)
—0.004 (0.002)
0.0004 (0.0002)

~0.0003 (0.0006)
0.907 (0.018)

0.037 (0.019)
—0.004 (0.002)
0.0004 (0.0002)

T 0.305 (0.064) 0.305 (0.064) 0.305 (0.064)

Ol 0.00014 (0.004) 0.00012 (0.004) 0.00013 (0.004)

o2 0.0006 (0.0006) 0.0006 (0.0006) 0.0006 (0.0006)
Level 2 (between class)

o 0.139 (0.023) 0.138 (0.023) 0.138 (0.023)
Level 1 (between student)

o’ 1.000 (0.023) 1.000 (0.023) 1.000 (0.023)
—2 log-likelihood 11996.5 11948.3 11948.1

tStandard errors are given in parentheses.

meta-analysis. These traditional models also have been unable to combine studies with both
individual and aggregate level responses. Our approach does not require balanced data, but it
does require that the reporting of studies for inclusion in the model conforms to certain
minimum requirements. As we have illustrated, these requirements are such that it should
be possible to carry out a suitable standardization for means and variances, after adjusting
for relevant covariates. One of the problems with observational studies, especially those
involving institutions such as schools, is that (multilevel) modelling incorporating insti-
tutional (and other) differences is absent and this can result in biased inferences. In the
present case (Table 3) the intraclass and intraschool level correlations are sizable which
implies that some of the inferences from the aggregate level studies may overestimate
statistical significance. The estimates themselves, however, should be relatively unaffected,
and this is consistent with our analysis.

A remaining problem which we have not investigated in detail occurs where studies adjust
effects by using different sets of explanatory variables. In the normal distribution case, if
information is available about the covariance matrix of all such covariates then for the
aggregate level studies common adjustments can be carried out as we have done in model (1).

The model can be extended readily to the multivariate case where more than one outcome
is considered, e.g. in the bivariate analysis of mathematics and reading achievement scores.
This approach can also be used where not all studies measure all responses so the joint
analysis within a single model will provide more efficient estimates than analysing each
response separately.

Since we have adopted a model-based approach it is possible in principle to incorporate
further model components. An important component is the modelling of publication bias
(Copas, 1999), although such models may not lead to improved estimates unless the bias is
large (Hedges and Vevea, 1996). In the present case we would argue that publication bias may
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not be a serious issue. The criteria for study selection have been quite stringent so the relevant
studies are carefully executed long-term studies which are unlikely to remain unpublished.

It should be noted that in combining studies for modelling purposes we are making an
assumption that the responses used in the various studies are indeed measuring the same
thing. In social science applications of meta-analysis this is more problematic than in, say,
clinical trials and needs to be borne in mind when interpreting results.

Finally, although the thrust of this paper is methodological, it is of interest that the one
large RCT gives an estimate for the class size effect which is very similar to that from the
observational studies. This point is pursued further by Goldstein and Blatchford (1998) who
also discuss the usefulness of RCTs in this kind of research.
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