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11.1 Hb&aomﬁoiob

Traditional applications of structural equation models have, until recently, ig-
nored complex population data structures. Thus, for example, factor analyses
of achievement or ability test scores among students have not adjusted for dif-
ferences between schools or neighbourhoods. In the case where a substantial
part. of inter-individual differences-can be accounted for by such groupings,
inferences whicli ignore this may be seriously misleading. In the extreme case,
if all the variation was due to a combination of school and neighbourhood
' effects, a failure to adjust to these would lead to the detection of apparent
individual level factors which would in fact be non-existeut.

Recognising this problem, McDonald and Goldstein (1989) presented a
. multilevel factor analysis and structural equation model where individuals
are recognised as belonging to groups and explicit random effects for group
1 effects are incorporated. They presented an algorithm for maximum likeli-
hood estimation (this model was further explored by Longford & Muthen,
1992; McDonald, 1993). Raudenbush (1995) applied the EM algorithm to
estimation for a 2-level structural equation model. Rowe and Hill (in press)
. : show how existing multilevel software can be used to provide approximations
. to maximum likelihood estimates in general multilevel structural equation

models. ) ,

In this chapter these models are extended in two ways. First, it is shown
how a Markov Chain Monte Carlo (MCMC) algorithmn can be used to fit such
models. An important feature of the MCMC approach is that it decomposes
the computational algorithm into separate steps, for each of which there is a
relatively straightforward estimation procedure. This provides a chain sam-
pled from the full posterior distribution of the parameters from which one can
2 calculate uncertainty intervals based upon quantiles etc. The second advan-

tage is that the decomposition into separate steps allows one to easily extend
the procedure to the estimation of very general models, and an illustration
of how this can be done is provided.
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A fairly general 2-level factor model can be written as follows, using stan-
dard factor and multilevel model notation:

M\“\»wdw+§+\:\cu + e
Y= ,T\lu@v AH“—HV
q.”f...nmw.@.”f:..ﬁu\. i=1,..,J

where the “uniquenesses” u (level 2), e (level 1) are mutually independent
with covariance matrix ¥;, and there are R response measures. The A,,4;
are the loading matrices for the level 1 and level 2 factors and the v, v, are
the independent factor vectors at level 1 and level 2. Note that there can
be different numbers of factors at each level. By adopting the convention of
regarding the measurements themselves as constituting the lowest level of the
hierarchy, Equation 11.1 is regarded as a 3-level model. Extensions to more
levels are straightforward.

Model (11.1) allows for a factor structure to exist at each level and one
needs to further specify the factor structure, for example that the factors
are orthogonal or patterned with corresponding identifiability constraints.
Further restrictions can be imposed. For example, one may wish to model
the uniquenesses in terms of further explanatory variables. In addition, one
can add measured covariates to the model and extend to the general case of
a linear structural or path model (see discussion).

11.2 A Simple Illustration

To illustrate these procedures. consider a simple single level model which can
be written as

Yri=ArVi+en, r=1,.,R i=1.,N
v; ~N(0,1)," er ~N(0,02)

This can be viewed as a 2-level model with a single level 2 random effect (v;)
with variance constrained to 1 and R level 1 units for each level 2 unit, each
with their own (unique) variance.

If the values of the “loadings” A, were known, then Model (11.2) could be
fitted directly as a 2-level model, with the loading vector as the explanatory
variable for the leve] 2 random effects with variance constrained to be equal
to 1; if there are any measured covariates in tlie model their coefficients could
also be estimated at the same time. Conversely, if the values of the random
effects v; were known, one could estimate the loadings; this would now be a
single level model with each response variate having its own variance. These
considerations suggest that an EM algorithm can be used in the estimation
where the random effects are regarded as missing data (see Rubin & Thayer,
1982). In this chapter a stochastic MCMC algorithm is proposed.

MCMC works by simulating new values for each unknown parameter in
turn from their respective conditional posterior distributions assuming the

(11.2)
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other parameters are known. This can be shown to be equivalent (upon con-
vergence) to sampling from the joint posterior distribution. MCMC proce-
dures generally incorporate prior information about parameter values and
so are fully Bayesian procedures. In this chapter diffuse prior information is
assumed, although algorithms are given that assume generic prior distribu-
tions (see below). Inference is based upon the chain values: conventionally the
means of the parameter chains are used as point estimates but medians and
modes (which will often be close to maximum likelihood estimates) are also
available, as illustrated. This procedure has several advantages. In principle it
allows one to provide estimates for complex multilevel factor analysis models
with exact inferences available. Since the model is an extension of a general
multilevel model one can theoretically extend other existing multilevel models
in a similar way. Thus, for example, one could consider cross-classified struc-
tures and discrete responses as well as conditioning on measured covariates.
Another example is the model proposed by Blozis and Cudeck (1999) where
second level residuals in a repeated measures model are assumed to have a
factor structure. The following section describes the procedure by applying it
to the simple example of Equation (11.2) and then applies it to more complex
examples.

11.3 A Simple Implementation of the Algorithm

The computations have all been carried out in a development version of the
program MLwiN (Rasbash et al., 2000). The essentials of the procedure are
described next. :

Assume that the factor loadings have normal prior distributions, p(A.) ~
N(Ar,0%) and that the level 1 variance meBoPSm have independent inverse
Gamma priors, p(o2.) ~ I'"!(a,.,b%.). The * superscript is used to denote
the appropriate parameters of the prior distributions.

11.3.1 This model can be updated using a very simple three step
Gibbs sampling algorithm

Step 1: Update ). (r=1,...,R) from the following distribution: p(A,) ~
N(J,,D,) where
-1 - . .
D, = AM vi +|._|v and M. =D, AMU i +|yuq|v

Tie oz Tar

Step 2: Update v; (i=1,...,N) from the following distribution: p(¥;) ~
N (4, D;) where

2 -1 é
D; = AMU A Hv and ©; =D, AMUQ\/#\va
Step 3: Update o2, from the following distribution: p(c2,) ~ I'""*(a,,., b,,.)
where &,, = N/2 +a}, and b,, = 13" €2, + b],..
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To study the performance of the procedure, a small data set using the
following model and parameters was simulated:

, O = . , N=20, R=4 (11.3)

ISR N

Yri = \/16._.. + €ri, AHH%V

The lower triangle of the correlation matrix of the responses is

1

0931
0920971
0.890.970.991

All the variables have positively skewed distributions, and the chain loading
estimates also have highly significant positive skewness and kurtosis. The
initial starting value for each loading was 2 and for each level 1 variance
{uniqueness) was 0.2. Good starting values will speed up the convergence of
the MCMC chains.

Table 11.1 shows the maximum likelihood estimates produced by the
AMOS factor analysis package (Arbuckle, 1997) together with the MCMC re-
sults. The factor analysis program carries out a prior standardisation so that
the response variates have zéro means. In tetms of the MCMC algorithm,
this is equivalent to adding covariates as an “intercept” term to Equation 4,
one for each response variable; these could be estimated by adding an extra
step to the above algorithm. Prior centring of the observed responses can be
carried out to improve convergence.

The loading estimates are summarised by taking both the mean and me-
dians of the chain. The mode can also be computed, but in this data set for
the variances it is very poorly estimated and is given only for the loadings.
In fact, the likelihood surface with respect to the variances is very flat. The
MCMC chains can be summarised using a Normal kernel density smoothing
method (Silverman 1986).

The estimates and standard errors from the MCMC chain are larger than
the maximum likelihood estimnates. The standard errors for the latter will
generally be underestimates, especially for such a small data set since they
use the estimated (plug in) parameter values. The distributions for the vari-
ances in particular are skew so that median rather than mean estimates seem
preferable. Since sampling is from the likelihood, the maximum likelihood
estimate will be located at the joint parameter mode. Although this has not
been computed, as can be seen from the loading estimates the univariate
modes are closer to the maximum likelihood estimates than the means-or

11 MULTILEVEL FACTOR ANALYSIS 229

Table 11.1. Maximum likelihood estimates for simulated data set together with
MCMC estimates using chain length 50,000 burn in 20.

Parameter |ML estimatelMCMC mean|MCMC medianMCMC modal
(s.e.) estimates (s.d.) |estimates estimates

AL 0.92 (0.17) [1.03 (0.22) 1.00 0.98

Az 2.41 (0.41)  [2.71 (0.52) 2.65 2.59

As 3.86 (0.57) |3.91 (0.72) 3.82 3.71

bW 4.30 (0.71)  |4.82 (0.90) 4.71 4.58

o3 0.15 (0.05)  |0.17 (0.07) 0.16

) 0.25 (0.09) |0.31 (0.14) 0.28

o) 0.09 (0.10) |0.10 (0.17) 0.06

024 0.43 (0.20)  |0.55 (0.31) 0.50

medians. Table 11.2 shows good agreement between the variable means and
the fitted intercept terms.

Table 11.2. Variable means and fitted intercepts

Variable Mean Intercept
1 0.54 0.57
2 0.64 0.71
3 1.12 1.21
4 1.28 1.36

The structure described by Equations 11.3 and 11.4 was also fitted with a
simulated data set of 200 cases rather than 20. The results are given in Table
11.3 for the maximum likelihood estimates and the means and medians of the
MCMC procedure. A closer agreement can be seen in this table. The MCMC
estimates are slightly higher (by up to 2%) than the maximum likelihood
ones, with the modal estimates being closest. In more complex examples one
may need to run the chain longer with a longer burn in and also try more
than one chain with different starting values. For example, a conventional
single level factor model could be fitted using standard software to obtain
approximations to the level 1 loadings and unique variances.

11.4 Other Procedures

Geweke and Zhou (1996) consider the single level factor model with uncor-
related factors. They use Gibbs sampling and consider identifiability con-
straints. Zhu and Lee (1999) also consider single level structures including
non-linear models that involve factor products and powers of factors. They
use Gibbs steps for the parameters and a Metropolis Hastings algorithm for
simulating from the conditional distribution of the factors. They also provide
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Table 11.3. Model (11.3) & (11.4) with 200 simulated individuals. 5000 cycles.

Parameter |ML estimatel MCMC  mean|MCMC median[MCMC mode
(s.e.) estimates (s.d.) |estimates estimates

¥ 0.95 (0.06) |0.97 (0.06) 0.96 0.96

Az 1.86 (0.10)  [1.89 (0.10) 1.89 1.88

As 2.92 (0.15)  [2.98 (0.16) 2.97 297 2

bW 3.86 (0.20) |3.94 (0.20) 3.93 3.92

a 0.22 (0.023) 10.23 (0.024) 0.22 0.22

o2 0.27 (0.033) [0.27 (0.033)  [0.27 0.27

0% 0.38 (0.058) [0.38 (0.060)  |0.38 0.38

o2, 0.39 (0.085) 10.39 (0.087)  |0.38 0.38

a goodness-of-fit criterion (see discussion). It appears, however, that their
algorithm requires individuals to have complete data vectors with no miss-
ing responses, whereas the procedure described in this chapter has no such
restriction.

Scheines, Hoijtink, and Boomsma, Ccoov also use MCMC and take as
data the sample covariance matrix, for a single level structure, where covari-
ates are assumed to have been incorporated into the means. They assume
a multivariate normal prior with truncation at zero for the variances. Re-
jection sampling is used to produce the posterior distribution. They discuss
the problem of identification, and point out that identification issues may be
resolved by specifying an informative prior.

McDonald and Goldstein (1989) show how maximum likelihood estimates
can be obtained for a 2-level structural equation model. They derive the co-
variance structure for such a model and show how an efficient algorithm can
be constructed to obtain maximum likelihood estimates for the multivari-
ate normal case. Longford and Muthén (1992) develop this approach. The
latter authors, together with Goldstein (1995, Chapter 11) and Rowe and
Hill (1997) also point out that consistent estimators can be obtained from

a 2-stage process as follows. A 2-level multivariate response linear model is -

fitted using an efficient procédure such as maximum likelihood. This can be
accomplished, for example as pointed out earlier by defining a 3-level model
where the lowest level is that of the response variables (see Goldstein, 1995,
Chapter 8 and Model (11.5) below). This. analysis will produce estimates for
the (residual) covariance matrices at each level and each of these can then be
structured according to an underlying latent variable model in the usual way.
By considering the two matrices as two “populations” one can also impose
constraints on, say, the loadings using an algorithm for simultaneously fitting
structural equations across several populations. .
Rabe-hesketh, Pickles, and Taylor (2000) consider a general formulation,
similar to model 7 below, but allowing general link functions, to specify mul-
tilevel structural equation generalised linear models (GLLAMM). They con-
sider maximum likelihood estimation using general maximisation algorithms
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and a set of macros has been written to implement the niodel in the program
STATA.

In the MCMC formulation presented in this chapter, it is possible to deal
with incomplete data vectors and also to use informative prior distributions,
as described below. The algorithni can also be extended to the non-linear
factor case using a Metropolis Hastings step when sampling the factor values,
as in Zhu and Lee (1999).

11.5 General Multilevel Bayesian Factor Models

Extensions to models with further factors, patterned loading matrices and
higher levels in the data structure are straightforward. Consider the 2-level
factor model

Yrij = Br + M y@ 3 + M v Mw + Urj -+ €rij

Urs ~ N(0,00,), erij ~N(0,03,),

V) ~ MYNp(0,2), vyi) ~ MVNo(0, )

.Q.C

Here R responses for N individuals are split between J level 2 units. F
sets of factors, with tmv defined at level 2 and G sets of factors, with v_mw
defined at level 1 are given. For the fixed part of the model, the algorithm is
restricted to a single intercept term [, for each response a:ro:_w: it is easy
to extend the algorithm to arbitrary fixed terms. The residuals at levels 1
and 2, er;; and u,jare assumed to be independent.

Although this allows a very flexible set of factor models it should be
noted that in order for such models to be identifiable suitable constraints
must be put on the parameters. See Everitt (1984) for further discussion of
identifiability. These will consist of fixing the values of some of the elements
of the factor variance matrices, 21 and 25 and/or some of the factor loadings,
v,vwv and v,%.v, or specifying informative priors.

The algorithms presented will give steps for all parameters and so any
parameter that is constrained will simply maintain its chosen value and will
not be updated. It is initially assumed that the factor variance matrices,
12, and £2; are known (completely constrained) and a discussion is provided
about how the algorithm can be extended to encompass partially constrained
variance matrices. The parameters in the following steps are those available
at the current iteration of the algorithm.



232 GOLDSTEIN & BROWNE

11.6 Prior Distributions

For the algorithm assume the following general priors:
p(B-) ~ N(B}, of,)
PO ~ N, 03,,),0080) ~ NOG", 02,,)
plo2) ~ T=N(aly, b5,),0(02,) ~ I (aly, b2)

With the assumption that the factor variance matrices are known, one
can use a Gibbs sampling algorithm which will involve updating parameters
in turn by generating new wvalues from the following 8 sets of conditional
posterior distributions.

Step 1: Update current value of 8.(r=1,...,R) from the following distri-
bution

p(B;) ~ N(Br, D,,) where

-1
D, = (X Pv

T 2 2
Oer Oy
and .
5
5 . MUQ dei; B
B =Dy, | =L
. T 2 2
Lt Oer Opr
where

By = e~ i

Step 2: Update ym.v (r=1,...,R, f=1,...,F where not constrained) from

the following distribution: Rymwv ~N Awm.v. wav where

-1

Yimi()? 1

= (Zame?, 1
and
s -y (Bt 2
Oer O2fr
where
4 (@, ,@

rijf = €rij = Ap Vg,

D
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Step 3: Update ymw (r=1,...,R, g=1,...,G where not constrained) from
the following distribution: p(A%Y) ~ N (AY, DYy where :

-1
MQT\%va 1

.UAWV = = - 4
g iz,
and .
(1) 4(1) 1)
5w = pw (=4 wwfa + wm
er 1gr
where
1 1)
A, = erij — A58

‘Step 4: Update tmnv ( g=1,...,J) from the following distribution:
E&.nvv ~ ?:\ZMA&&M Uwvv where

@ @\T -1
' v, VS. v _
D = (L2 gy
and
ni (240
X .2 _ 1@ T Opgy
;" = D; > > o2
r =1 er
where
(2) d 2 (2
2
diij = erig = 3 A5 vy
f=1

AD = (A2, AT,

N\MS = T\va. cry N\mu.vvﬂ

Step 5: Update (i = 1,...,15,5 = 1,...,J) from the following dis-

tribution: ES@J ~ g<2®€%ﬁ bmvv where

(D \(INT !
y _ Ar A\/ﬂ v -1

Dy = MU|I% + 0

r er
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and

\/3 &E

~(1) _ (D) i
;" = Dy Mﬂ

r

where

(1) 1),,(1)
4 ey )

Ir 1o

\/M.: — A\/Cv Evﬂ

1 1 1
v = @, ST

Step 6: Update u,;(r=1,...,R, j=1,...,J) from the following distribu-
P N (u)
tion: p(u,;) ~ N(4,; U.G.v

tav e

where
—1
; 1
D = AE v
? 0. Oir
and () n
. Dy
o (u)
\:.a.u. - Q.w M&ﬂ:
er =1
where

&M.w = €rij — Urj
Step 7: Update 02, from tlte ».o:oéEm distribution: p(02.) ~ I'"1(a,,,b,,.)
where a,, = J/2+a},. and b mM” uZ; + bl

Step 8: Update o2, from the mo:oé_:m distribution: p(02,.) ~ I'"(a,,., b,,.)
where &,, = N/2+ a;, and b MMH e + ben

Note that the level 1 ammac&m_ €rij own be calculated by subtraction at every
step of the algorithm.

11.7 Unconstrained Factor Variance Matrices

In the general algorithm it was assumed that the factor variances are all con-
strained. Typically, one would fix the variances to equal 1 and the covariances
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to equal 0 and have independent factors. This form permits the simplification
of steps 4 and 5 of the algorithm to univariate normal updates for each factor
separately. One may however wish to consider correlations between the fac-
tors. Here one will have to modify the algorithm to allow another special case
where the variances are constrained to be 1 but the covariances can be freely
estimated. Where the resulting correlations obtained are estimated to be close
to 1 or -1 then one may be fitting too many factors at that particular level.
As the variances are constrained to equal 1 the covariances between factors
equal the correlations between the factors. This means that each covariance
is constrained to lie between —1 and 1. Ouly the factor variance matrix at
level 2 is considered here, as the step for the level 1 variance matrix simply
involves changing subscripts. The following priors are used:

(22, m)~ Uniform(—1,1) ¥V l#m

Here 2;4,is the I, m—th element of the level 2 factor variance matrix.
These covariance parameters are updated using a Metropolis step and a Nor-
mal random walk proposal (see Browne & Rasbash, in preparation) for more
details on using Metropolis Hastings methods for constrained variance 1na-
trices).

Step 9 : At iteration t generate {25, -~ ZAQMNMV‘ 02,,) where Qm::
is a proposal distribution variance that has to be set for each covariance.
TForm a proposed new matrix {25 by replacing the I, m-th element of ,O.MT.:
by §25,.,. If £2; is positive definite, set b.m.ﬁwi = bm.:: with probability

(2 1), (2 t t—
BEAH%AQM_N\EJ\R,O% v_tA J and bm WE bﬁ
itive definite. 2 2 2

Hete @Abn_t\u )=11I |25|2/2 962:? vﬂAbwvl:\? Jand

7.

21m o...rmaé_mmg or if not pos-

P VD) = m D12 exp ()T () D)

This procedure is repeated for each covariance that is not constrained.

Missing Data. The example that is discussed in this chapter has the
additional difficulty that individuals have different numbers of responses.
This is not a problem for the MCMC methods if one is prepared to assume
missingness is at random or effectively so by design. This is equivalent to
giving the missing data a uniform prior. One then has to simply add an extra
Gibbs sampling step to the algorithm to sample the missing values at each
iteration. As an illustration, consider an individual who is missing response
r. In a factor model the correlation between responses is explained in the
factor terms and conditional on these terms the responses for an individual
are independent and so the conditional distributions of the missing responses

have simple forms.
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Step 10: Update yri; (r=1,...,R, i=1,...,n;, j=1,...,J V yri; that are
missing) from the following distribution, given the current values, y,;; ~

F G
N(§rij, 02,) where Grij = B, + 3 AP0 + 2 A8 +ury.
%HH QHH

11.8 Example

The example uses a data set discussed by Goldstein (1995, Chapter 4) and
consists of a set of responses to a series of 4 test booklets by 2439 pupils
in 99 schools. Each student responded to a core booklet containing Earth
Science, Biology and Physics items and to a further two booklets randomly
chosen from three available. Two of these booklets were in Biology and one
- in Physics. As a result there are 6 possible scores, one in Earth Science, three
in Biology and 2 in Physics, each student having up to five. A full description
of the data is given in Goldstein (1995).

A multivariate 2-level model fitted to the data gives the following maxi-
mum likelihood estimates for the means and covariance/correlation matrices
in Table 11.4. The model can be written as follows

m m m m
?.?HMum..a:?._-MUﬁ.§:.»$.»+MUS?HE»+MUS»HE.»
h=1 h=1 h=1 h=1

ul m

Uz . ()

us ' v3

w | VO ||~ N0, 2,) ,

Us Us AHH@V
Ug ' Vs

Thjk =1 if h=1, 0 otherwise
zik=1 if agirl, =04f a boy
1 indexes response variables,

j indexes students,

k indexes schools

Two 2 level factor models are now fit to these data, as shown in Table
11.5. Improper uniform priors are used for the fixed effects and loadings and
I'Y(¢,€) priors for the variances with ¢ = 107%. The fixed effects in Table
11.5 are omitted, since they are very close to those in Table 11.4. Model A
has two factors at level 1 and a single factor at level 2. For illustration, all
the variances are constrained to be 1.0, and covariance (correlation) between
the level 1 factors are allowed to be estimated. Inspection of the correlation
structure suggests a model where the first factor at level 1 estimates the
loadings for Earth Science and Biology, constraining those for Physics to be
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zero (the physics responses have the highest correlation), and for the second
factor at level 1 to allow only the loadings for Physics to be unconstrained.
The high correlation of 0.90 between the factors suggests that perhaps a single
factor will be an adequate summary. Although the results are not. presented
in this chapter, a similar structure for two factors at the school level where
the correlation is estimated to be 0.97 was also studied, strongly suggesting
a single factor at that level.

Table 11.4. Science attainment estimates.

Fixed Estimate (s.e.)
Earth Science Core 0.838 (0.0076)
Biology Core 0.711 (0.0100)
Biology R3 . 0.684 (0.0109)
Biology R4 0.591 (0.0167)
Physics Core 0.752 (0.0128)
Physics R2 0.664 (0.0128)
Earth Science Core (girls - boys) |-0.0030 (0.0059)
Biology Core (girls - boys) -0.0151 (0.0066)
Biology R3 (girls - boys) 0.0040 (0.0125)
Biology R4 (girls - boys)- -0.0492 (0.0137)
Physics Core (girls ~ boys) -0.0696 (0.0073)
Physics R2 (girls - boys) -0.0696 (0.0116)

Level .,

2 (School)

E.Sc. core|Biol. Core[Biol R3 |Biol R4 [Phys. Phys. R2
core

E.Sc. core 0.0041

Biol. core 0.68 0.0076

Biol R3 0.51 0.68 0.0037

Biol R4 0.46 0.68 0.45 0.0183

Phys. core 0.57 0.90 0.76 0.63 0.0104

Phys. R2 0.54 0.78 0.57 0.65 0.78 0.0095

Level

1 (Student)

E.Sc. core}Biol. Core|Biol R3 |Biol R4  |Phys. Phys. R2

core
E.Sc. core 0.0206

Biol. core 0.27 0.0261

Biol R3 0.12 0.13 0.0478

Biol R4 0.14 0.27 0.20 0.0585

Phys. core 0.26 0.42 0.11 0.27 0.0314

Phys. R2 0.22 0.33 0.14 0.37 E.ﬁ 0.0449

Random: Variances on diagonal; correlations off-diagonal.
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For model B the three topics of Earth Science, Biology and Physics were
separated in order to separately have non-zero loadings on three correspond-
ing factors at the student level. This time the high inter-correlation is that
between the Biology and Physics booklets with only moderate (0.49, 0.55)
correlations between Earth Science and Biology and Physics. This suggests
that one needs at least two factors to describe the student level data and that
the preliminary analysis suggesting just one factor can be improved. Since
the analyses are for illustrative purposes no further possibilities were pursued
with these data. Note that Model B at level 1 is strictly non-identified, given
uniform priors. The constraint of a positive definite factor covariance matrix
provides estimates of the factor correlations, and loadings, which are means
over the respective feasible regions.

11.9 Discussion

This chapter has shown how factor models can be specified and fitted. The
MOCMC computations allow point and interval estimation with an advantage
over maximum likelihood estimation in that full account is taken of the un-
certainty associated with the estimates. In addition, it allows full Bayesian
modelling with informative prior distributions which may be especially useful
for identification problems. As pointed out in the introduction, the MCMC
algorithin is readily extended to handle the general structural equation case,
and further work is being carried out along the following lines. For simplicity
the single level model case is.considered to illustrate the procedure.

One kind of fairly general, single level, structural equation model can be
written in the following matrix form (see McDonald, 1985 for some alternative
representations)

Ay = Agup + W
Yi=Aun+U,
. Y, = Aqus + Us

(11.6)

Where Y3, Y; are observed multivariate vectors of responses, A; is a known
transformation matrix, often set to the identity matrix, Ay is a coefficient
matrix which specifies a multivariate linear model between the set of trans-
formed factors, v, and va, Ay, A, are loadings, Uj, Us are uniquenesses, W is
a random residual vector and W, Uy, Uy are mutually independent with zero
means. The extension of this model to the multilevel case follows that of the
factor model and the discussion is restricted to sketching how the MCMC
algorithm can be applied to Equation (11.6). Note, that as before one can
add covariates and measured variables multiplying the latent variable terms
as shown in Equation (11.6). Note that A, can be written as the vector A3
by stacking the rows of Aq. For example if
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Table 11.5. Science attainment MCMGC factor model estimates.

Parameter

A Estimate (s.e.)

B Estimate (s.e.) |

Level 1: factor 1 loadings
BE.Sc. core

Biol. core

Biol R3

Biol R4

Phys. core

Phys. R2

Level 1: factor 2 loadings
E.Sc. core

Biol. core

Biol R3

Biol R4

Phys. core

Phys. R2

Level 1: factor 3 loadings
E.Sc. core

Biol. core

Biol R3

Biol R4

Phys. core

Phys. R2

Level 2: factor 1 loadings
E.Sc. core

Biol. core

Biol R3

Biol R4

Phys. core

Phys. R2

Level 1: residual variances
E.Sc. core

Biol. core

Biol R3

Biol R4

Phys. core

Phys. R2

Level 2: residual variances
E.Sc. core

Biol. core

Biol R3

Biol R4

Phys. core

Phys. R2

Level 1 correlation factors 1 & 2
Level 1 correlation factors 1 & 3
Level 1 correlation factors 2 & 3

0.06 (0.004)
0.11'(0.004)
0.05 (0.008)
0.11 (0.009)
O*
O*

O*
O*
O*
O*
0.12 (0.005)
0.12 (0.007)

0.04 (0.007)
0.09 (0.008)
0.05 (0.009)
0.10 (0.016)
0.10 (0.010)
0.09 (0.011)

0.017 (0.001)
0.015 (0.001)
0.046 (0.002)
0.048 (0.002)
0.016 (0.001)
0.029 (0.002)

0.002 (0.0005)
0.0008 (0.0003)
0.002 (0.0008)
0.010 (0.002)
0.002 (0.0005)
0.003 (0.0009)
0.90 (0.03)

0.11 (0.02)
O*
O*
O*
O*
O*

o*
0.10 (0.005)
0.05 (0.008)
0.10 (0.009)
O*
Q0*

O*
O*
o*
C*
0.12 (0.005)
0.12 (0.007)

0.04 (0.007)
0.09 (0.008)
0.05 (0.010)
0.10 (0.016)
0.10 (0.010)
0.09 (0.011)

0.008 (0.004)
0.015 (0.001)
0.046 (0.002)
0.048 (0.002)
0.016 (0.001)
0.030 (0.002)

0.002 (0.0005)
0.0008 (0.0003)
0.002 (0.0008)
0.010 (0.002)
0.002 (0.0005)
0.003 (0.0009)
0.55 (0.10)
0.49 (0.09)

0.92 (0.04)

* indicates constrained parameter. A chain of length 20,000 with a burn in

of 2000 was used. Level 1 is standent. level 9 ic echanl

2
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Qg

Qg a a
Ap=("°"1 ) then A} =

az a3 ag

as

The distributional form of the model can be written as

\w:; ~ ?\ﬂ\.ZA.AMQM; va
vy ~ MVN(0, 5,,),v2 ~ MVN(0, 5y,)
Yy ~ MVN(Ajv1, £1), Yo ~ MV N(Aqvg, T3)

with priors
Ay~ MVN(A3,Z4;), A1 ~MVN(A),Za), A ~ MVN(dy, Za,)

and X, X», X3 having inverse Wishart priors. The coefficient and loading
matrices have conditional normal distributions as do the factor values. The
covariance matrices and uniqueness variance matrices involve steps similar
to those given in the earlier algorithm. The extension to two levels and more
follows the same general procedure as sliown earlier.

The model can be generalised further by considering m sets of response
variables, Y7, Y2, ...Y, in Equation (11.6) and several, linked, multiple group
structural relationships with' the k-th relationship having the general form

k) 4 (k) 3 .w
SVRAD =3V P AR+ w®
SAC

g

and the above procedure can be extended for this case. Note that the model
for simultaneous factor analysis (or, more generally, structural equation model)
in several populations is a special case of this model, with the addition of any
required constraints on parameter values across populations.

The model can also be generalised to include fixed effects, responses at
level 2 and covariates Zj, for the factors, which may be a subset of the fixed
effects covariates X .

Y = X3+ \»MSSNM: + ult) \»mcf Z) + etV

Y@ = AP,z 4 u®

(11.7) -

YO = {yri5}, YO = {35}

r=1,.,R i=1,.,i; j=1,.,J

The superscript refers to the level at which the measurement exists, so
that, for example, 15, Y25 refer respectively to the first measurement in the
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i-th level 1 unit in the j-th level 2 unit (say students and schools) and the
second measurement taken at school level for the j—th school.

Further work is currently being carried out on applying these procedures
to non-linear models and specifically to generalised linear models. For sim-
plicity consider the binomial response logistic model as anillustration. Write

E(yi;) = mij = [1 + exp —(a; + Av;)]
(11.8)

m\u.u.).\wmbAﬁa \EC,V

The simplest model is the multiple binary response model (ni; = 1) that
is referred to in the psychometric literature as a unidimensional item respouse
model (Goldstein & Wood, 1989; Bartholomew & Knott, 1999). Estimation
for this model is not possible using a simple Gibbs sampling algorithm, but
as in the standard binomial multilevel case (see Browne, 1998) any Gibbs
steps that do not have standard conditional posterior distributions could be
replaced with Metropolis Hastings steps.

The issues that surround the specification and interpretation of single
level factor and structural equation models are also present in multilevel
versions. Parameter identification has already been discussed; another issue
is the boundary “Heywood” case. Such solutions occur where sets of loading
parameters tend towards zero or a correlation tends towards 1.0 and have
been observed. A final important issue that only affects stochastic procedures
is the problem of “flipping states”. This means that there is not a unique
solution even in a 1-factor problem as the loadings and factor values may
all flip their sign to give an equivalent solution. When the number of factors
increases there are greater problems as factors may swap over as the chains
progress. This means that identifiability is an even greater consideration when
using stochastic techniques.

For making inferences about individual parameters or functions of para-
nieters one can use the chain values to provide point and interval estimates.
These can also be used to provide large sample Wald tests for sets of pa-
rameters. Zhu and Lee (1999) propose a chi-square discrepancy function for
evaluating the posterior predictive p-value, whicli is the Bayesian counterpart
of the frequentist p-value statistic (Meng, 1994). In the multilevel case the
a — level probability becomes

J 15 . .
pa(Y) = (3 45)7' Y x2(3p) = D(¥:169), 90))
i=1

i=1

(11.9)
D(¥69,50) = YT 571,

where Y; is the vector of responses for the i—th level 2 unit and X is the
{non-diagonal) residual covariance matrix.
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