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The bootstrap sample

Consider a simple random sample of n observations x xn1,....  from which we wish to
estimate a population quantity, say a mean or median. We choose an estimator, say
x and we wish to estimate features of the distribution of this estimator, say its
standard error or population quantiles. The simplest nonparametric bootstrap is
obtained as follows.

A single bootstrap sample is obtained by sampling randomly (i.e. according to the
assumed mechanism which generated the observations), with replacement, n
observations from the original sample. Denote this by X x xn

* * *{ ,...., }= 1 . Then we can

obtain B of these bootstrap samples,  X X X B*1 *2 *, ,...., .For each of these we
calculate our estimate, say of the mean, and each of these is referred to as a bootstrap
replicate. It is such replicates which are used for inference.

Standard error estimates for bootstrap functions

 For a set of replicates we can calculate the standard error or  quantiles to make
inferences. Thus, we can get an estimate of the standard error of the mean simply by
calculating the standard deviation of the bootstrap replicates for the sample mean.
Note, however, that this is only an estimate: it is based on a finite sample of
bootstraps. As the sample size tends to infinity so this becomes more accurate and
approximates the ideal bootstrap estimate. If  θ *  is the bootstrap estimator then the
ideal bootstrap estimate for the standard error is the square root of EF ( )*θ θ− 2 , where
F is the distribution function for the data.

Note, however, that even as the number of bootstrap replications tends to infinity, the
estimate of the population density function which is used to generate the bootstrap
samples is the empirical ’plug in’ one derived from the observations by placing mass
points (e.g. equal probabilities) at each one. Thus, with nonparametric bootstrapping,
we do not have exact inference. This does not carry over to the parametric case where
the assumed population distribution is used for sampling. In some situations the
nonparametric bootstrap can perform very badly, for example in small or moderate
samples where the statistic of interest is the smallest or largest value, say of a set of
higher level residuals in a multilevel model.

In practice, we would normally wish to stop generating bootstrap replicates when the
running estimate of the quantity of interest (the standard deviation in this case) ’settles
down’ to a predetermined accuracy - for example in terms of the coefficient of



variation of the bootstrap estimate - when it reaches a certain value. The coefficient of
variation depends on the underlying distribution so will often not be useful when that
is unknown. Clearly we require a general practical stopping rule. What will be
particularly important is visual inspection of the updated histogram and smoothed
density function.

A further consideration, as with all statistical analysis, is the detection of rogue values
or ’outliers’, in this case individual replicates. Density displays and box and whisker
plots are useful diagnostic tools here. We should be careful about discarding extreme
values, and as an alternative we can use robust estimators of the standard error of
replicates. One such would be
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Where z ( )α  is the 100α th percentile of the standard Normal distribution.  Unless the
distribution of the bootstrap quantity θ  is Normal this is biased - nevertheless, it is
consistent by virtue of the Central Limit Theorem, and this same result allows us to
use approximate Normal theory distribution for calculating confidence intervals for
the parameter function of interest. Inspection of the bootstrap density function and
the use of Normal plots will show how good the Normal approximation is in any
particular case.

In some cases, for example estimating a mean or a set of regression coefficients, the
standard error of a bootstrap sample can be obtained analytically, depending only on
functions of covariates (e.g. a cross product matrix) and the variance, or residual
variance of the observations which is obtained from the original analysis. This does
not carry over directly to the multilevel case, where the standard errors are functions
of the parameters, but we can study the accuracy of these estimated standard errors via
the bootstrap replications.

Bootstraps for complex data structures

We shall use as an illustration a 2-level variance components model and the JSP data
set (Woodhouse, 1996).

y X u eij ij j ij= + +( )β (2)

where the explanatory variables are 8 year maths score and gender and the response is
11 year maths score. We have simulated the response from the model results given in
Woodhouse (1996) to ensure an approximately Normal distribution. Based on 887
pupils in 48 schools the IGLS estimates are given in table 1.



Table 1. JSP 2 level variance components model parameter estimates (IGLS).

Fixed

Intercept 16.06 (0.93)

8 year maths -0.17 (0.37)

Gender 0.58 (0.033)

Random

Level 2 4.61 (1.32)

Level 1 29.32 (1.43)

We now consider drawing a bootstrap sample. We first consider nonparametric
versions. To do this we need to decide whether we are going to sample complete units
or just residuals. In general it seems that we would wish to use the latter, since mostly
we are concerned with conditional inference, i.e. fixing the explanatory variables. In
some situations, however, such as survey samples, it is more natural to think of all the
variables as generated randomly so that complete unit selection is to be preferred.

The process of selecting a bootstrap sample corresponds to the supposed probabilistic
mechanism which generated the data. This can be modelled as the selection of a
simple random sample of school residuals according to the density f(U) and within
each school a sample of students according to f(E). As we shall see, this is appropriate
for the parametric bootstrap but raises difficulty in the nonparametric case.

Nonparametric Bootstrap

In the nonparametric complete unit bootstrap suppose we sample, with replacement, a
random sample of schools. Suppose we number these 1,…,n . Then, if we sample with
replacement from the students associated with the jth  school, this will in general lead
to variable total numbers (N) of students across bootstrap samples. This procedure,
however, does retain the data structure. The variability of  N will add some noise to
our estimates but for moderate or large sample sizes this will be negligible and the
procedure will be consistent. For higher level models we obtain a consistent bootstrap
by sampling just the higher level units with replacement.

Another possibility is to sample level 1 units directly. Having selected a random
sample of the required size we then sort into their actual level 2 units. This leads to a
variable number of level 2 units and a variable number of level 1 units per level 2
unit, but retains the overall number of level 1 units. This procedure, however, pays no
attention to the sample structure since each level one unit is sampled independently so
that the within-unit correlation structure is not preserved. Likewise, if we sample level
2 units and then sample level 1 units from within each level 2 unit, the joint
probability of selection for two level 1 units within a level 2 unit is the product of
their separate selection probabilities. This is also the case for two level 1 units from
different level 2 units - in the balanced case these joint probabilities are 1 2/ n , where
n is the size of each level 2 unit. Thus, again the within-unit correlation structure is
not preserved. In both these cases the independent selection of level 1 units will tend



to add precision to the estimation of level 2 effects and so overestimate the level 2
variation in the bootstrap samples. We note that the same considerations apply if the
level 1 units are selected with replacement, sorted into their level 2 units and then
these level 2 units selected with replacement.

These same considerations apply when sampling empirical (estimated) residuals in
addition to the other problems which occur as follows. For sampling residuals within
a nonparametric bootstrap, we work with the estimated (posterior) residuals (possibly
after centring them to ensure they have zero means). The following procedure retains
the sample structure. Sample with replacement the level 2 residuals, one for each level
2 unit. For each level 2 unit, sample with replacement the required number of level 1
residuals associated with that same bootstrap sampled level 2 residual. The required
number is the number in the original data set for that level 2 unit. Note that in some
cases this will mean sampling more level 1 residuals (with replacement) than there
actually are associated with the chosen level 2 residual. The reason for this is that the
level 1 and level 2 residual estimates are correlated and we need to preserve this
correlation structure in our bootstrap sampling. Note that both level 1 and level 2
residuals are ’shrunken’: the variance of each is less than the population variances, but
the  correlation between them ensures that the variance of the sum is equal to the total
residual variance. In the variance components case this is equivalent to sampling the
raw residuals for each chosen level 2 unit and then further sampling with replacement
from these raw residuals to achieve the required number.

For each bootstrap sample we then carry out the estimation of the parameters of the
model. The results of doing this, sampling residuals, for 500 bootstraps for the JSP
data is given in Table 2. A difficulty with this procedure, however, is that the amount
of shrinkage is correlated with the school size. Thus, the larger level 2 residuals will
also tend to have the largest number of level  1 residuals so that these will be given
greater weight in the estimation. This violates the assumption that the random errors
provided for the bootstrap should be independent of the unit sizes. This will tend to
lead to an upward bias and this is confirmed in Table 2 (linked level 1 residuals). The
alternative procedure of selecting level 1 residuals from the overall set of level 1
residuals will tend to reduce both level 2 and level 1 variances as is also shown in
Table 2 (unlinked level 1 residuals).

A final possibility is to select, for each school, a set  of linked level 1 + level 2
residuals and attaching these to the same number of  sets of fixed variables by
selecting these with replacement from each school. This, however, destroys the
sample structure and again leads to overestimation of the level 2 variation.

Parametric Bootstrap

In the parametric case, we sample first the level 2 residuals from the (estimated) level
2  distribution, in this case a simple Normal distribution. Then we sample level 1
residuals from the (estimated) level 1 distribution. The structure is preserved since,
according to the model assumptions the distributions are independent across levels.
The procedures extend naturally to the random coefficient case.



Table 2. Results of 500  bootstrap replications for three bootstrap procedures for the JSP data in Table
1. Mean of bootstraps (s.d. in brackets - estimating model s.e.)

Complete case -
random sample of
level 1 units

Sampling complete
level 2 units only

Posterior
residuals -
unlinked

Posterior residuals -
linked

Fixed coefficient

Intercept 16.03 (1.09) 16.11 (0.91) 16.09 (0.95) 15.97 (1.40)

Gender -0.18 (0.38) -0.14 (0.38) -0.18 (0.36) -0.18 (0.36)

 8 year maths 0.58 (0.034) 0.55 (0.033) 0.58 (0.032) 0.58 (0.032)

Random

Level 2 variance 6.34 (1.09) 4.46 (1.00) 3.11 (0.95) 6.62 (1.40)

Level 1 variance 27.75 (1.38) 29.27 (1.46) 28.12 (1.35) 26.69 (1.96)

We notice that in none of these cases do we obtain satisfactory estimates of the
random parameters, for the reasons already discussed. The fixed parameters and their
standard errors are, however, well estimated except where we have tried to preserve
the distributions of level a and level 2 units.

Table 3 shows the results of a fully parametric bootstrap obtained by simulating from
the estimated random parameters of the model.

Table 3. JSP 2 level variance components model parameter estimates (IGLS)
and 500 parametric bootstraps

Fixed Fitted model (s.e.) Bootstrap (s.d.)

Intercept 16.06 (0.93) 16.06 (0.93)

8 year maths -0.17 (0.37) -0.17 (0.37)

Gender 0.58 (0.033) 0.58 (0.033)

Random

Level 2 4.61 (1.32) 4.46 (1.29)

Level 1 29.32 (1.43) 29.20 (1.36)

Note that the RIGLS estimates for the level 2 and level 1 variances are 4.76 and
29.30 respectively.

We see now that the bootstrap estimates are very close to those from the fitted model
and similar to those from the complete level 2 nonparametric bootstrap in Table 2,
although the standard deviation for the level 2 variance in the latter case appears to be
an underestimate. The RIGLS level 2 estimate which corrects for the ML bias is
higher by an amount which is the difference between the fitted estimate and the
bootstrap one, implying that the bootstrap accurately corrects for the bias in the ML
estimate of this parameter. This leads onto the topic of bias correction



Bootstrap bias correction

If the bootstrap estimate of a parameter (or other function of the data) is θ *  then the

bias in the estimate $θ  is θ θ*
$− . Thus the bias corrected estimate is 2 $

*θ θ− . In some
models the bias of the estimation procedure is a function of the parameter values, so
that a simple bias correction will be an approximation only and an iterative procedure
will be necessary. This is the case for generalised linear multilevel models with
nonlinear link functions and a worked example is given by Goldstein (1996). Because
a bias corrected estimate of a parameter may have greater variability it is also useful
routinely to check the accuracy of a bias corrected  estimate by using it (or a set of
these) as the basis for another set of bootstrap replications. As a rule of thumb, and as
a default, 500 bootstrap replications should be used for bias correction.

Confidence intervals

For many purposes the Normal approximation for the bootstrap replications is
adequate and we can use the estimated standard errors for constructing confidence
intervals (and significance tests). For example Figure 1 is a Normal plot based on
1000 bootstrap replications for the level 2 variance from Table 3.

Figure 1. Normal score plot for level 2 variance bootstrap replications of Table 3.

In general, however, we may not be able to rely upon the Normal approximation
(although studying plots such as Figure 1 should help in making a decision in any
particular case). In this case the simplest procedure is to use the empirical bootstrap
distribution by simply reading off the  100α - percentile points, interpolating where

necessary. Call these $ , $
*( ) *( )θ θα α1 2  where in the standard symmetrical case α α2 11= −

and the coverage is 2α . This does, however, require a large number of replicates, as a
rule of thumb 2000 can be used for a 95% interval.



Where there may be biases a better interval is the bias corrected one computed as
follows. Define
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where Φ is the standard Normal cumulative distribution function and B is the number
of bootstrap replicates.

For the iterated bootstrap, if we denote the final bias-corrected estimate by $θ c  then
the percentage points are given by
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This makes the assumption, however, that the parameters from the (biased) bootstrap
replicates have the same variability as those derived from an unbiased procedure. In
general this will not be the case where the bias is a function of the underlying true
values. Suppose the functional relationship between the bias-corrected value and the
biased one is given by θ θc g= ( )* . If we apply this transformation to the final set of

bootstrap replicates { }*θ , with the median fixed at $θ c , then we can use these
transformed values for inference. This relationship can be estimated, for example, by
simulating samples from a range of  values covering the random parameter space of
interest. This space will include values beyond the range generated by the procedure
because of the variability of individual replicates. For multiparameter models this may
be complicated. An alternative approximation is, for each parameter, to regress the
sequence of bias corrected values on the bootstrap replicate means, using a low order
polynomial relationship and extrapolating to cover the range of the bootstrap
replicates. This line is then used to transform the final set of bootstrap replicates. If we
wish to estimate the standard deviation of the bias corrected replicates then we can fit
a straight line and use the slope of this line to scale the standard deviation as
calculated from the actual bootstrap replicates. Kuk (1995) considers a simple scaling

correction which is effectively just the ratio $ / $
*θ θc , that is the slope of the line

passing through the origin and the final estimates. This is the one used by MLwiN .
Some simulations of these procedures would be useful.

In studying the Normality of a bootstrap set of replicates it may also be useful to look
at (Normal) kernel density estimates for varying window sizes.

It is also useful to be able to study running estimates of the bootstrap parameters of
functions, including standard errors (bootstrap standard deviations) and percentile
estimates so that visual inspection can be used to determine when to stop bootstrap
sampling. In this case it is useful to compute, and plot, an estimate of the coefficient
of variation, based e.g. on an estimate of standard deviation taken from the previous,
say,  100 running estimates and the current running estimate.



Bootstrap likelihood

The likelihood, considered as a function of a parameter θ , is proportional to

L p yi
i

( ) ( | )θ θ= ∏ (4)

where i  indexes the data units. The partial likelihood based on a parameter estimate
$θ  rather than the data { yi } can be approximated by a bootstrap as follows. We
consider the parametric bootstrap.

The first stage is to generate B1 bootstrap replications to produce bootstrap parameter

estimates: label the set of  the parameter of interest  S1={ $ ,.., $ ,.., $* * *θ θ θ1 1b B }. For each

replication (i.e. from the parameter estimates associated with each replication) we
generate a second stage bootstrap set of replicates giving the set of interest

S2b={ $ ,...., $** **θ θb bB1 1
}. For S2b we estimate the (Normal) kernel density $( | $ )*p t bθ as a

function of t and evaluate it at t = $θ . Because the set S2b was generated from a

population with parameter $
*θ b , $( $ | $ )*p bθ θ is an estimate of the partial likelihood of  θ  at

θ θ= $ . We thus have estimates of the likelihood for all the values in S1 and we can use
a suitable smoother (such as LOESS) to plot the likelihood function. In fact, for the
region of interest a simple polynomial, or fractional polynomial function may be
adequate. From this function we can obtain the maximum and by plotting -
2log(likelihood) we can obtain confidence intervals using the asymptotic chi squared
approximation.

This can be extended to more than one parameter (the estimates for all the parameters
are available from the bootstrap replications), but this will then involve smoothing in
more than one dimension, although again we may be able to achieve a satisfactory
smoothing via an additive function of polynomials.

Harvey Goldstein


