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1. Fundamentals: units and levels 

While this chapter concentrates on educational data, many of the issues are more 

generally relevant. This is especially the case when we consider what we mean by a 

'unit' and a 'level'. 

Traditionally, pupils or students have been viewed as well-defined units, often at the 

lowest level of a data hierarchy. Likewise schools have typically been considered as 

well-defined units with students 'nested' or grouped within them. Thus, we would 

ordinarily say that a particular student 'belongs to' a particular school over a period of 

time. We immediately see, however, that this does not always accord with reality. For 

example, a student may move from one school to another during a study, or a school 

may change by splitting into two schools or being merged with another school. 

Likewise, if we consider the unit of a 'class' within a school, this may vary in its form 

and composition frequently, and any particular student may experience several 

different teachers with which she or he is studying a particular subject during a year. 

We would regard such a student as ‘belonging to’ or having a 'multiple membership' 

of the set of teachers and we shall describe such structures in more detail later. The 

same kinds of issues arise in demographic studies (Goldstein et al., 2001), health and 

other human sciences. In other words our definition of a 'unit' has to incorporate 

temporal information (for what period does it exist in a particular form) and the 

relationships between units have to be specified in terms of membership at particular 

periods. This has clear implications for longitudinal studies, but also applies in many 

cases to purely cross sectional data. Suppose, for example, that we are comparing 

student achievement test scores among schools at one point in time. It is well known 

that the use of such data to rank order schools is problematical because it fails to take 

account of students’ prior ‘intake’ achievements (see also Section 3). In addition, 

however, it assumes that the students can be assigned unequivocally to the schools 

they belong to at the time of the test. Typically there will be significant amounts of 

mobility among schools, so that many of the students will have been in their assigned 
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schools a relatively short time and it will be unreasonable to expect those schools to 

have greatly influenced the student test scores. 

It is important to distinguish between actual changes in the definition of a unit and 

merely changes in a unit's characteristics. Thus, for example, a school may change the 

number of students it has or its teachers, but may still be regarded as the same unit, 

and of course, when modelling the effects of  school size or composition such changes 

can be taken into account. Even so, there may be borderline cases; a school may 

undergo reorganisation to such an extent that it changes nearly all of its staff, has a 

new name and perhaps new accommodation. If, at the same time, its student 

composition also changes with some moving to other schools and new students 

entering it may be more useful to consider this as a change of unit, with the new unit 

only coming into existence at that time. A choice in such a case will partly depend 

upon the research questions being asked and also upon the modelling feasibility of 

different approaches which I shall be discussing later. 

There is another kind of unit whose definition is closely tied in with the definition of a 

'level'. This is where a collection of lower level units belongs to a higher level unit 

which itself is defined solely (or partly) in terms of the particular units that belong to 

it. Thus, for example, a friendship group is defined solely by its members and will 

change when any are lost or acquired. Families and households have similar 

properties (Goldstein et al., 2001). At any one time an individual person may belong 

to several friendship groups (or learning groups for example) and this can be regarded 

as a multiple membership structure. Because group formation can change over the 

period of study, it will often be the case that there will exist many more groups than 

there are individuals. In such a situation we may encounter modelling estimation 

problems in terms of separating out different effects: in terms of levels it we may 

regard the groups as lower level units generating measurements which are ‘nested’ 

within individuals, where each individual can be thought of as generating a set of 

friends. For example, in the case of learning groups within a classroom, if the results 

of a group project are being measured then the basic response is measured at the 

group level rather than that of the student and, so long as there is adequate movement 

of individuals among groups, this can be modelled as a multiple membership structure 

with groups at level 1 and students at level 2. This example will be discussed in more 

detail in Section 4. In household studies a similar situation can arise when a 

household characteristic, such as electricity use, is being measured over time with 
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individuals changing households. In both these cases we can, in principle, obtain 

estimates of the relative contributions of groups (households) and individuals and also 

estimate (posterior) effects for each individual or group. The ability of such models in 

education to take account of group learning and performance provides a powerful tool 

for many situations that formerly have posed considerable analytical problems.  

In order precisely to define a complex data structure of the kind I have been 

describing we need to specify the membership relationships among all the units 

involved. In fact there is just a small number of types of relationship involved and 

these can conveniently be set out diagrammatically for any particular structure. I shall 

describe how this may be done below when looking at examples. 

In the next section we shall look at the specification of a basic multilevel model 

followed by a section on cross-classified structures, with some examples. This is 

followed by a section on multiple membership models, also with examples, and a 

final section in which I reflect on further applications and extensions.  

 

2. The basic multilevel model. 

Before describing the basic multilevel model, it is useful to reflect on why such 

models are necessary. For many years, educational researchers discussed the ‘units of 

analysis’ problem, one version of which has also been called the ‘ecological fallacy’ 

(see also the chapter by Diez-Roux). At one extreme, it is possible to study 

relationships among variables ignoring group structures. At the other extreme we can 

work solely with group, say school, averages in exploring relationships. Aitkin and 

Longford (1986) set out the statistical issues associated with various procedures. In an 

earlier analysis Aitkin et al (1981) reworked a well known study on teaching styles 

which used student level data but ignored school membership (Bennett, 1976). They 

showed that formerly ‘significant’ results became non-significant when a multilevel 

model was used. Woodhouse and Goldstein (1989) showed how the use solely of 

aggregate level data based upon school means could lead to unstable and misleading 

conclusions.  

In addition to the problem of making misleading inferences, failure to model both 

students and schools simultaneously makes it impossible to study the extent to which 

school and student characteristics interact to influence the response measurement or 
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measurements. This can only be done within the context of a multilevel model as I 

shall now describe. 

For simplicity consider a simple data structure where a response is measured on 

individual students or students in a number of schools, together with one or more 

explanatory variables (covariates). Instead of schools we could think of households, 

areas, etc. We wish to model a relationship between the individual response and the 

explanatory variables, taking into account the possibility that this relationship may 

vary across schools. The response might be a continuous variable such as a test score 

or survival time, or a discrete variable such as an attitude towards schooling. We shall 

assume in what follows that we are dealing with a continuously distributed response, 

and for simplicity that this has a Normal distribution. Extensions to other kinds of 

responses follow similar lines and these are discussed by Goldstein (1995). This is a 

simple 2-level structure with the schools as higher level units and students as lower 

level units. A simple such model can be written as follows 
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where  is the response and  the value of  a single explanatory variable 

(covariate) for the i-th individual in the j-th school. For example, the response might 

be an examination score measured on students at the age of 16 years and the 

explanatory variable a test score measured on the same students five years earlier at 

the age of 11 years (Figure 1 shows this schematically for three schools). 

yij xij

(Figure 1 here) 

The slope coefficient β1  is for the present assumed to be the same for all the schools 

while the random variable u  represents the departure of the j-th school’s intercept 

from the overall population intercept term 

j0

β 0 . The first two terms on the right hand 

side of (1) constitute the fixed part of the model and the last two terms describe the 

random variation. As mentioned we shall develop the model initially assuming that 

the random variables have a Normal distribution 
2 2

0 0~ (0, )      ~ (0, )j u iju N e N eσ σ  

Note that we are at liberty to ‘fix’ one or more of the u  using an associated dummy 

(0,1) variable as an explanatory variable, for example if we knew that it was special 

and should not be considered as a member of the same population as the remainder. 

j0
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This is often useful for exploring ‘outliers’ (Langford and Lewis, 1998). The key 

point about these random variables is that it allows us to treat the samples of units as 

coming from a universe or population of such units. Thus, the schools (and students) 

chosen are not typically the principal focus of interest; they are regarded as a random 

sample from a population of schools and we are concerned with making statements 

about that population, for example in terms of its mean and variance.  

 

We can elaborate (1) by allowing the coefficient β1  to vary across schools and rewrite 

the model in the more compact form 
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This model is often referred to as a ‘random coefficient model’ by virtue of the fact 

that the coefficients β 0ij  and β1 j  in the first equation of (2) are random quantities, 

each having a variance with a covariance between them. As more explanatory 

variables are introduced into the model, so we can choose to make their coefficients 

random at the school level thereby introducing further variances and covariances, and 

this will lead to models with complex covariance structures. One of the aims of 

multilevel modelling is to explore such potential structures and also to attempt to 

explain them in terms of further variables.  

Having fitted such a model we can obtain  estimates for the individual ‘residuals’ 

( ) at either level by estimating their expected values (or other functions of 

their distributions),  given the data and model estimates. Thus, for example, we can 

estimate

0 1, ,j ju u eij

)E u u Yj j( , | , ,0 1 β θ  where  

2 2
1 2 u0 01 1{ , }  ={ , , , }T

u u e
2β β β θ σ σ σ σ=       (3) 

and substituting model estimates for the unknown parameters. The multilevel model is 

here described in non-Bayesian terms. For a full Bayesian specification of this model 

we would need to add prior distribution assumptions for the parameters in (3). The 

interested reader is referred, for example, to Rasbash et al. (2000) for details with 
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worked examples. These procedures are all implemented in the software package 

MLwiN  (Rasbash et al., 2000) and reference will be made to other features of this 

package in what follows. 

 

3. Cross classified models. 
Suppose a student is classified as belonging sequentially to a particular combination 

of primary (elementary) school and secondary (high) school and we have followed a 

sample of such students through each school and wish to relate measurements made at 

the end of secondary school to those made earlier in the primary schools. The students 

will be identified by a cross classification of primary schools and secondary schools.  

Note that even if we did not have prior measurements, but did have identification of 

the primary and secondary schools we could still carry out a cross classified analysis. 

 

Raudenbush (1993) and Rasbash and Goldstein (1994) present the general structure of 

a model for handling such random cross classifications.  In our example we have a 

cross classified structure which can be modelled as follows: 

y X u u e

j J j J i
i j j i j j j j i j j( ) ( ) ( )( ) ,

,... , ,... ,...
1 2 1 2 1 2 1 2

1 1 2 21 1 1

= + + +

= = = N

β   

       ,      
      (4) 

in which the score of student i, belonging to the combination of primary school and 

secondary school , is predicted by a linear 'regression' function denoted by  

j1
j2

( ) ( , )X i j jβ
1 2

.  The random part of the model is given by two level 2 residual terms, 

one for the primary school attended by the student ( ) and one for the secondary 

school attended ( ), together with the usual level 1 residual term for each student. 

We note that the latter may be further modelled to produce complex level 1 variation 

(Goldstein, 1995, Chapter 3), allowing for example for separate variances for males 

and females, etc. This applies to all our models. 

uj1

uj2

 

As an example consider the analysis carried out by Goldstein and Sammons (1997) 

who fitted a series of cross classified models to a cohort of 758 students from the age 

0f 8 years in primary school to the age of 16 years in secondary school. There were 48 

primary schools and 116 secondary schools involved. They had achievement 
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measures at the ages of 8, 11 and 16 years and the principal aim was to separate the 

effect of primary school attended from that of secondary school. The results are 

presented in table 1.  

(Table 1 here) 

Column C presents a model which includes gender and a crude measure of 

disadvantage (eligibility for free school meals) but no prior achievement scores, and it 

shows that the between-primary school variation is about three times that between 

secondary schools. This is partly explained by the fact that secondary schools are 

much larger than primary schools, but the relative importance of primary schools for 

achievement at the end of secondary schools is nevertheless notable. Column B shows 

the effect of adding in achievement measures at the start of secondary schooling so 

that the response effectively measures adjusted achievement or ‘secondary school 

progress’. Both the school level variances are reduced but the ratio is relatively 

unaltered. In both these analyses the level 1 (student) variance has an extra term to 

allow for different variances for males and females. Thus, in column C the variance 

between females is 0.74 whereas that between males is 0.74+2 x 0.10 = 0.94 (for 

technical details on how this is specified see Goldstein, 1995, Chapter 3). In Analysis 

A in addition the between-student variance is allowed to vary also as a function of the 

LRT score. Thus at an extreme, high, LRT score of 2, the variation between boys is  

0.50+2 x 0.092 +2 x 2 x 0.093 + 4 x 0.033 = 1.19, whereas for girls with average LRT 

scores it is just 0.50.  

 

When primary school is ignored the apparent variation due to secondary school 

attended is estimated to be more than twice the value found in the cross classified 

models. The substantive importance of this for studies of schooling is that it becomes 

necessary to take account of achievement during periods of schooling prior to the one 

immediately being considered (secondary here). The researchers also carried out a 

bivariate response model where the 11 year achievement scores and the 16 year 

achievement score become responses. The simple correlation between these responses 

was 0.53 which reduces to 0.29 when adjustment is made for the 8 year achievements 

and gender (from a subsequent analysis of the data). When a cross classified model is 

fitted, we can decompose this correlation into a between-(primary)-school and a 

between-student correlation. After adjusting for the 8 year achievement score the 

between-student correlation was just 0.16 and the between-primary school correlation 
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was 0.81. This suggests that in terms of progress (that is after adjusting for the 8 year 

prior achievement) the moderate overall correlation of 0.29 is an average of a large 

correlation between the effects of primary schools on these two achievements and a 

much smaller correlation at the student level. This further supports the finding of the 

persistence of the primary school effect throughout secondary schooling. 

A special case is also of some interest, where some students do not belong to any 

units of one 'arm' of the cross classification - an incomplete cross classification. 

Consider a longitudinal study of children entering school for the first time in reception 

(kindergarten) classes. Some of these will have attended a form of pre school 

provision, say a nursery school. We wish to model achievement at the end of the 

reception year as a function of the effect of the school, together with that of the 

nursery where this was present. To do this we have a cross classified model for one 

set of students and a simple hierarchical model for the other, with a common school 

effect. If we thought that the school effect was different for the two groups of children 

then we would simply fit separate effects (with different variances etc.) and the two 

effects would be allowed to covary at the school level.  

 

The examples illustrate how a cross classified model can avoid misspecification and 

misleading inferences as well as providing a level of detailed analysis not possible 

when a purely hierarchical structure is assumed. Even so, there is a further major 

problem with the above example. Only those students were included for analysis who 

had complete schooling records throughout the period and any changes in school 

between 8 and 11 years and between 11 and 16 years were ignored. In the next section 

I shall show how these problems can be overcome. 

  

4. The multiple membership model 

To illustrate this model consider just the secondary schools from the above example, 

and suppose that we know, for each individual, the weight , associated with the 

-th secondary school attended by student i   with . These weights, for 

example, may be proportional to the length of time a student is in a particular school 

during the course of the longitudinal study. Note that we allow the possibility that for 
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some (perhaps most) students only one school is involved so that one of these 

probabilities is one and the remainder are zero. Note that when all level 1 units have a 

single non-zero weight of 1 we obtain the usual purely hierarchical model. We can 

write the following model for the case of membership of just two schools {1,2}: 

y X w u w u e
w w

i i i i

i i

( , ) ( , ) ( , )( )1 2 1 2 1 1 2 2 1 2

1 2 1
= + + i+

+ =

β
     (5a) 

and more generally: 
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The notation  means for all schools (h) that belong to the set of schools {j}.  { }h j∈

In the particular case of membership of just two schools with equal weights we have 

w    i1 = = =∑w w ui ih h
h

2
205 2. , var( ) /σ u . In other words the contribution to the level 2 

variation is just half that for a student who remains in one school, since in the former 

case the level 2 contribution is averaged over two (random) schools. Note that, if we 

ignore the multiple membership of schools and simply assign students, say, to the 

final school that they attend, we will underestimate the true extent of between-school 

variation. This is because, for those students who do attend more than one school, the 

true level 2 variation is less than that for students who attend a single school. In the 

model, however, we assume that the level 2 variation for these students is the same as 

that for those attending a single school, with the result that the overall level 2 

variation is underestimated. 

 

A slightly different notation to describe membership relationships is used by Browne 

et al. (2001). This is particularly useful when we have very complex structures 

involving mixtures of hierarchical, crossed and multiple membership classifications. 

Essentially it works by requiring just a single unique identification for each lowest 

level observation, in the present case a student. Each student then has a relationship 

with every other type of unit, that is in the present case, they are classified into 

primary and secondary schools, the model specifies which classifications are involved 
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and the data structures specifies precisely which schools are involved for each 

student. Thus the cross classified model (4) would be written as follows 
(2) (3)
sec ( ) ( )( ) ,   

1,...
i i ondary i primary i iy X u u e

i N

β= + + +

=
 

where primary(i) and secondary(i) refer respectively to the primary and secondary 

schools attended by student i. The superscripts for the random variables identify the 

classification; where this is absent, and if there is no ambiguity, it is assumed to be the 

lowest level classification (1).  

The multiple membership model (5b) would be written as 
2

2 21          
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i i i ,h h i
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i ,h h u

h school( i )

y ( X ) w u e
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Adoption of this notation for complex data structures is particularly useful for fitting 

such models within an MCMC framework which involves repeated estimation via 

conditional chain sampling for  each unit's random effects. As Browne et al. (2001) 

point out, MCMC procedures become necessary when structures reach certain levels 

of complexity. MCMC models involve generating a chain of (correlated) values 

sampled from the ‘posterior’ distribution for each parameter of the model, including 

the random effects or residuals. At each step of the procedure a sample value for a 

parameter is drawn from the appropriate distribution conditional upon the observed 

data and the current values of all the other parameters in the model. This means that 

storage requirements are moderate. It also means that very complex structures can be 

defined simply by specifying how each parameter relates to the other parameters in 

the model. 

 

Browne et al (2001) also use simple diagrams for representing complex structures. 

Thus the cross classified structure modelled in Table 1 can be represented as follows 

(Figure 2 here) 

The single directional lines indicate a membership relation, and here students are 

members of just one secondary school and one primary school. Where multiple 

membership is involved, two parallel lines are used (see below). 
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While the notation of (6) and (7) is powerful, we may often wish, as below, to retain 

the notation used in (4) and (5) since this may be more familiar and because it is easy 

to specify when structures are not highly complex. 

 

Equations (5) and (7) specify a 2-level model where the level 2 variation among 

secondary schools is modelled using the set of weights for each student across all 

schools as explanatory variables. A similar formulation can be used to model the case 

where, for some students, there is no identification of the school(s) to which they 

belong. If we are able to assign a set of probabilities of membership among a subset 

of schools, however, then utilising the (square root) of these probabilities as weights 

(standardised to sum to 1) we can still carry out a valid analysis (Hill and Goldstein, 

1998). 

 

An extension of (5) is also possible and has important applications, for example in 

modelling spatial data. In this case we write 
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   (8) 

There are now two sets of higher level units which influence the response. In spatial 

models one of these sets is commonly taken to be the single area where an individual 

(level 1) unit lives and the other set consists of the neighbouring units that have an 

effect. The total weights for each set will need to be carefully chosen; in spatial 

models the  are typically chosen each to equal 1 (see Langford et al, 1999 for 

an example). Another application of such a model for household data is where 

households share facilities, for example an address. In this case the household that an 

individual resides in will belong to one set and the other households at the address 

will belong to the other set. We can readily extend (8) to the case of multiple sets - 

which can be thought of as a multiple cross classification of multiple membership 

classification sets. This will allow us additionally to incorporate multiple spatial 

structures into, for example, household models. 

1  W , W
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In education we have an analogous situation to the traditional spatial correlation one. 

In the traditional schooling (school effectiveness) model a particular school is 

assumed to have an effect on student performance, attitudes etc., which is independent  

of any other school in the population. In practice, however, such an assumption will 

often be unreasonable since schools to some extent will be in 'competition' with each 

other for a share of resources (teachers, buildings etc.) and possibly also for certain 

kinds of students (see Goldstein, 2000 for a discussion of this). This leads to a 'spatial' 

type model, for example (see Langford et al., 1999) 

1 2 1

2

} 1 2 2

2
2 2 1 1 2

1 2

      

  

i{j }{ j } i{ j j ih h i{ j }
h { j }

ih h u h
h

y ( X ) u w u e

w W , var( u ) var( u )

j { j , j }

β

2
2uσ σ

∈

= + + +

= =

=

∑

∑ =      (9) 

where the value of  and the component weights will need to be carefully 

determined. In practice it would be advisable to carry out sensitivity analyses, trying 

different values for these weights. The component weights would need to take 

account of geographical catchment areas as well as any administrative arrangements 

that might affect inter-school relationships. Model (9) identifies two random effects 

for each school, the usual one, U

2W

1, which is the direct effect on the students within the 

school and U2, the (weighted) effect of the school on surrounding schools. Thus, we 

may be interested in the relative sizes of the latter among schools and also the 

correlation between U1 and U2 .  We can explore other topics: for example, by fitting 

further explanatory variables we can study the extent to which such variables 

‘explain’ the effect of each school on surrounding schools. In these ways we can 

address directly issues of how competition among schools operates and how the 

nature of the relationship between the effect of a school on the students within it and 

its effect on students in other schools. 

 

We can further elaborate (9) by identifying subsets of the 'spatial' effects ( ) 

corresponding, for example, to different school types which might be supposed to 

have differing kinds of effects and we can also of course include random coefficients 

for any of the classifications. Note that in the fixed part of the model, 

2U

{ }( )i jX β , we 

can incorporate characteristics measured on the schools as well as on students. We 

can also incorporate ‘spatial’ effects into the fixed part of the model. For example the 
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difference in social background between a school and the (weighted) average social 

background of neighbouring schools may be an important predictor of performance or 

behaviour, in addition to the social backgrounds of the students within a given school.  

If we have longitudinal data we can incorporate prior achievements of students in a 

given school and its neighbours, and if mobility takes place among schools then this 

can be incorporated by fitting a multiple membership structure for the U1. 

Additionally, if we measure successive cohorts of students passing through a set of 

schools we can model the between-school variances as functions of time in order to 

obtain inferences about changing influences.  

 

Models such as (9) can also be applied to demographic data on households, where the 

attitudes, opinions, consumption habits, etc. of a household, may be influenced by 

surrounding households. Most commonly such effects are modelled within a 

traditional hierarchical model where ‘neighbourhoods’ are defined, say using 

administrative regions, with households nested within them. Such models, however, 

have the drawback of using typically arbitrary definitions of spatial units. The 

advantage of  a multiple membership formulation is that it requires only that a suitable 

‘distance function’ determining the weights should be constructed. Of course, there 

may well be problems in defining such a function, since it may not be simply the 

Euclidean distance and there may be important problems to do with obtaining the 

necessary data. Nevertheless, as an approach it does have the potential for solving the 

spatial unit definition problem, especially with the advent of comprehensive 

Geographical Information Systems (GIS). 

 

We see, therefore, that these models, in principle, enable us to provide adequately 

contextualised descriptions of schooling that can incorporate the social nature of 

institutions as described by their effects on each other. In particular these models are 

relevant to political and social debates about the effects of 'market competition' 

between schools and how this affects performance and other factors, especially in 

terms of trends over time. Existing discussions of this issue are typically carried out at 

aggregate (school) level and therefore are unable to obtain valid estimates of between-

school variation (see for example Gorard, 2000). 

To illustrate the flexibility of these models consider again the example of modelling 

learning groups discussed earlier. It was pointed out that where the response was 
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modelled at the group level we had a multiple membership model where groups 

'belonged' to individuals, and a model such as (7) could be used. Suppose, in addition 

to measuring outcomes at the group level we also have a measure of achievement or 

attitude at the student level. Recalling that the groups are defined as level 1 units the 

group response will have an individual component and this will generally be 

correlated with the response at the student level. We could therefore write such a 

model as 
2 (1)

1 1 1 1

2
2 2 2 2

1 2
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1

   (individual response - )
 ( 0

( )
i i i , j j i

j group( i )

i , j
j group( i )

( )
j j j

j j

y ( X ) w u e i

w

y ( X ) u j
cov u ,u )

β

β

∈

∈

= + +

=

= +

≠

∑

∑
  (10) 

This is a bivariate response model with one response at each level. The first equation 

refers to a group response and, given suitable data with individuals belonging to 

different groups, can be used to estimate individual and group effects. The second 

equation models an individual student response and from the complete model we can 

directly estimate the correlation between a student's contribution to the group 

response and their individual response. Figure 3 shows the relationships using a 

double arrow for the multiple membership of groups within children and a dotted line 

joining the two child ‘effects’ to indicate a bivariate response model. 

 

 

We can also identify those individuals who may be discrepant, say with low 

contributions to the group response but high individual effect and this might be an 

important diagnostic for learning potential. An alternative formulation for some 

purposes would be to incorporate the individual level measure as a covariate in the 

model for the group response. If, however, we had sequential measures on individuals 

then we might wish to fit trend terms with random coefficients and then the full 

bivariate response formulation becomes necessary (see Goldstein, 1995 Chapter 6 for 

such a model in the purely hierarchical case). Further elaborations can be introduced, 

for example by modelling classes of students (containing learning groups) within 

teachers and/or schools and so forth. 
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It is perhaps worth mentioning that multiple membership models bear a close 

relationship to fuzzy sets (see for example, Manton et al, 1994, for an introduction, 

and Haberman, 1995 for a critique) where individual units also can belong to several 

groups at a time, with 'membership coefficients' being equivalent to our weights. 

There appears to be no explicit application of fuzzy set theory, however, to general 

hierarchical structures. 

 

In the final section I will explore the nature of the new kinds of knowledge that the 

application of such models is able to generate. 

5. Types of response 

We have so far considered models with a continuous (Normally distributed) 

univariate or multivariate response variable. Multilevel models can, however, be 

formulated for other response types. One of the most common is that for a binary 

response, for example whether or not a student passes an examination. In such a case 

the equivalent to (1) can be written as  

( | ) ,   ~ (1,

0  if fail
1  if pass

ij ij ij ij

ij

E y j y Binomial

y

)π π=

⎧
= ⎨
⎩

      (11) 

0 1 1 0

2
0 0

logit( ) log{ /(1 )}

var( )
ij ij ij ij j

j u

x u

u

π π π β β

σ

= − = +

=

+
 

This can then be extended in all the same ways as (1) to cross classifications etc. This 

is one example of a generalised multilevel linear model and another example is where 

we have a count as the response variable. 

 

An important class of models is where the response is a duration. These models are 

often known as survival or event history models and again the multilevel formulation 

involves the same kinds of generalisations as with (1). So called parametric and semi-

parametric models can be fitted and Goldstein (1995 Chapter 9) gives details. A 

particularly useful formulation for multilevel structures is the ‘piecewise’ model. Here 

the time interval is divided into small time segments and the occurrence of events 

noted. With a suitable specification we can then fit models using (11) together with all 

its generalisations. 
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All of these different kinds of response model assume Normal variation at higher 

levels. This implies that we can create multivariate response models where we have a 

mixture of different kinds of responses. For example, we nay measure the duration of 

tasks undertaken by children as well as their scores on a test and the responses of a 

group to which they belong. In principle all of these can be incorporated into a single 

linked model. 

 

Finally, we can have models with underlying latent structures (see McDonald and 

Goldstein, 1989). These may be factor analysis models with different factor structures 

at each level or classification or more general structural relation models where the 

factors are related to each other. 

 

6. Final thoughts about new insights 

It is worth making the general point that all of these complex models require 

adequate, and generally large, data sources. Obtaining such data often will be costly 

and time consuming. Thus, as well as posing methodological challenges in terms of 

formulation and estimation there is the overwhelming prior condition that suitable 

data are available. 

It would be agreed generally that the reality of education and learning involves 

complex processes and interactions. This does not preclude providing useful 

information in terms of simplified models or even simple summaries. Nevertheless, 

within the context of statistical modelling, I would argue that unless we can formulate 

models (based on appropriate data) that approach the real underlying complexity our 

descriptions of these processes will be incomplete and that this will hinder adequate 

causal explanations and understandings. For example, the models described in this 

paper may be suitable for the analysis of ethnographic data collected from student 

observations in ways that can preserve the detail with which the data are collected. 

Such data will often incorporate details of interactions among students and groups of 

students within a classroom in an attempt to understand the ways in which peer group 

influences may work. We may be able to begin to model such data using the spatial 

models and group response models that have been described. A simple example 

would be observations made on the tasks children are engaged on and the length of 
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time they spend on these. Traditionally, such measurements would be assumed to be 

independent from child to child, i.e. the length of time spent by one child does not 

affect the length of time spent by a nearby child. This, however, is debateable and a 

spatial type model would be useful here. Furthermore, where such data are collected 

over a long time period, with changing group or spatial structures, the multiple 

membership models can be used to characterise these. By embedding such data within 

a formal modelling framework we can extend the range of existing analyses and 

construct the foundation for secure generalisations and in this way help to secure a 

link, that is a common framework, between existing quantitative and qualitative 

research traditions. As we explore deeper levels of complexity so we would expect to 

generate new theoretical insights and the process of developing the models 

themselves will often suggest new directions for data collection and theory 

development. 

 

 A further important class of models are those known as ‘meta analyses’. These seek 

to combine results from several studies in order to achieve a more reliable inference. 

Thus, in the simplest case, each study is a level 2 unit and individuals within a study 

are level 1 units. A 2-level model for such studies can allow overall variability as well 

as variability in relation to particular coefficients. Thus, for example, if each study is 

concerned with the effect of class size on achievement we can see whether the 

relationship with class size varies from study to study, as well as estimating the 

average effect. We can also incorporate studies where data are available only at 

aggregate level, rather than at individual level. This is particularly important since 

many published studies quote only aggregate results. Goldstein et al (2000) discuss 

how such studies can be incorporated into a general multilevel framework. This is 

done using a device similar to that used in (10) where we have two equations, one of 

which models a level 2 response and one models a level 1 response. The level 1 

response equation has a level 2 random effect as does the level 2 response equation. 

By allowing the level 2 random effects to be correlated we link the two equations and 

this linking allows efficient estimation of all the parameters. 

 

While this chapter has been concerned largely with education, with some reference to 

demography, almost all the issues covered apply to other areas for example health, 

and collaboration between such disciplinary areas will be fruitful. Finally, there is a 
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wealth of further information about applications and current developments that can be 

found on the website of the London based Multilevel models project 

(http://multilevel.ioe.ac.uk/).  
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Figure 1 

A simple multilevel data structure for three schools with parallel slopes. 
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Figure 2 
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Figure 3. 
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Table 1. Variance components cross-classified model for 16-year-old 
exam score as response. The exam score and the LRT (Reading test) 
score have been transformed empirically to have N(0,1) distributions. 
Free school meal is a binary (yes, no) variable. At level 2 the subscript 1 
refers to Primary and 2 to Secondary school. At level 1 the subscript 0 
refers to the intercept, 1 to males and 2 to LRT. At the age of 11 years 
students were allocated to a grouping based upon verbal reasoning scores: 
VR1 (the base category) comprises the lowest 25%, VR2 the middle 50% 
and VR3 the highest 25%.  

 A B C 
Fixed    
Intercept 0.51 0.50 0.25 
Males -0.21 (0.06) -0.19 (0.06) -0.34 (0.07) 
Free school Meal -0.22 (0.06) -0.23 (0.06) -0.37 (0.08) 
VR2 band -0.39 (0.08) -0.38 (0.08)  
VR3 band -0.71 (0.13) -0.71 (0.13)  
LRT score 0.31 (0.04) 0.32 (0.04)  
    
Random    
Level 2:    

(Primary)        σ u1
2 0.025 (0.013) 0.036 (0.017) 0.054 (0.024) 

(Secondary)  σ u2

2 0.016 (0.014) 0.014 (0.014) 0.019 (0.02) 

Level 1:    

σ e0
2  0.50 (0.06) 0.55 (0.06) 0.74 (0.05) 

σ e01  0.092 (0.03) 0.06 (0.03) 0.10 (0.05) 

σ e02  0.093 (0.018)   

σ e2
2

 0.033 (0.022)   

    
-2Log likelihood 1848.8 1884.2 2130.3 
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