
Multilevel Models for Binary
Responses



Preliminaries

Consider a 2-level hierarchical structure. Use ‘group’ as a general
term for a level 2 unit (e.g. area, school).

Notation

n is total number of individuals (level 1 units)

J is number of groups (level 2 units)

nj is number of individuals in group j

yij is binary response for individual i in group j

xij is an individual-level predictor



Generalised Linear Random Intercept Model

Recall model for continuous y

yij = β0 + β1xij + uj + eij

uj ∼ N(0, σ2
u) and eij ∼ N(0, σ2

e )

or, expressed as model for expected value of yij for given xij and uj :

E(yij) = β0 + β1xij + uj

Model for binary y

For binary response E(yij) = πij = Pr(yij = 1), and model is

F−1(πij) = β0 + β1xij + uj

F−1 the link function, e.g. logit, probit clog-log
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Random Intercept Logit Model: Interpretation

log

(
πij

1− πij

)
= β0 + β1xij + uj

uj ∼ N(0, σ2
u)

Interpretation of fixed part

β0 is the log-odds that y = 1 when x = 0 and u = 0

β1 is effect on log-odds of 1-unit increase in x for individuals
in same group (same value of u)

β1 is often referred to as cluster-specific or unit-specific effect
of x

exp(β1) is an odds ratio, comparing odds for individuals
spaced 1-unit apart on x but in the same group
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Random Intercept Logit Model: Interpretation

log

(
πij

1− πij

)
= β0 + β1xij + uj

uj ∼ N(0, σ2
u)

Interpretation of random part

uj is the effect of being in group j on the log-odds that y = 1;
also known as a level 2 residual

As for continuous y , we can obtain estimates and confidence
intervals for uj

σ2
u is the level 2 (residual) variance, or the between-group

variance in the log-odds that y = 1 after accounting for x
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Response Probabilities from Logit Model

Response probability for individual i in group j calculated as

πij =
exp(β0 + β1xij + uj)

1 + exp(β0 + β1xij + uj)

Substitute estimates of β0, β1 and uj to get predicted probability:

π̂ij =
exp(β̂0 + β̂1xij + ûj)

1 + exp(β̂0 + β̂1xij + ûj)

We can also make predictions for ‘ideal’ or ‘typical’ individuals with
particular values for x , but we need to decide what to substitute
for uj (discussed later).
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Example: US Voting Intentions

Individuals (at level 1) within states (at level 2).

Results from null logit model (no x)

Parameter Estimate se

β0 (intercept) -0.107 0.049
σ2

u (between-state variance) 0.091 0.023

Questions about σ2
u

1. Is σ2
u significantly different from zero?

2. Does σ̂2
u = 0.09 represent a large state effect?
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Testing H0 : σ2
u = 0

Likelihood ratio test. Only available if model estimated via
maximum likelihood (not in MLwiN)

Wald test (equivalent to t-test), but only approximate because
variance estimates do not have normal sampling distributions
Bayesian credible intervals. Available if model estimated using
Markov chain Monte Carlo (MCMC) methods.

Example

Wald statistic =

(
σ̂2

u

se

)2

=

(
0.091

0.023

)2

= 15.65

Compare with χ2
1 → reject H0 and conclude there are state

differences.

Take p-value/2 because alternative hypothesis is one-sided
(HA : σ2

u > 0)
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State Effects on Probability of Voting Bush

Calculate π̂ for ‘average’ states (u = 0) and for states that are 2
standard deviations above and below the average (u = ±2σ̂u).

σ̂u =
√

0.091 = 0.3017

u = −2σ̂u = −0.603 → π̂ = 0.33
u = 0 → π̂ = 0.47
u = +2σ̂u = +0.603 → π̂ = 0.62

Under a normal distribution assumption, expect 95% of states to
have π̂ within (0.33, 0.62).
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ûj with 95% Confidence Intervals for uj



Adding Income as a Predictor

xij is household annual income (grouped into 9 categories), centred
at sample mean of 5.23

Parameter Estimate Standard error

β0 (constant) −0.099 0.056
β1 (income, centered) 0.140 0.008
σ2

u (between-state variance) 0.125 0.030

−0.099 is the log-odds of voting Bush for household of mean
income living in an ‘average’ state

0.140 is the effect on the log-odds of a 1-category increase in
income

expect odds of voting Bush to be exp(8× 0.14) = 3.1 times
higher for an individual in the highest income band than for
an individual in the same state but in the lowest income band
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Prediction Lines by State: Random Intercepts



Latent Variable Representation

As in the single-level case, consider a latent continuous variable y∗

that underlines observed binary y such that:

yij =

{
1 if y∗ij ≥ 0

0 if y∗ij < 0

Threshold model

y∗ij = β0 + β1xij + uj + e∗ij

As in a single-level model:

e∗ij ∼ N(0, 1) → probit model

e∗ij ∼ standard logistic (with variance ' 3.29) → logit model

So the level 1 residual variance, var(e∗ij), is fixed.
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Impact of Adding uj on Coefficients

Recall single-level logit model expressed as a threshold model:

y∗i = β0 + β1xi + e∗i

var(y∗i |xi ) = var(e∗i ) = 3.29

Now add random effects:

y∗ij = β0 + β1xij + uj + e∗ij

var(y∗ij |xij , uj) = var(uj) + var(e∗i ) = σ2
u + 3.29

Adding random effects has increased the residual variance
→ scale of y∗ stretched out
→ β0 and β1 increase in absolute value.



Impact of Adding uj on Coefficients

Recall single-level logit model expressed as a threshold model:

y∗i = β0 + β1xi + e∗i

var(y∗i |xi ) = var(e∗i ) = 3.29

Now add random effects:

y∗ij = β0 + β1xij + uj + e∗ij

var(y∗ij |xij , uj) = var(uj) + var(e∗i ) = σ2
u + 3.29

Adding random effects has increased the residual variance
→ scale of y∗ stretched out
→ β0 and β1 increase in absolute value.



Impact of Adding uj on Coefficients

Recall single-level logit model expressed as a threshold model:

y∗i = β0 + β1xi + e∗i

var(y∗i |xi ) = var(e∗i ) = 3.29

Now add random effects:

y∗ij = β0 + β1xij + uj + e∗ij

var(y∗ij |xij , uj) = var(uj) + var(e∗i ) = σ2
u + 3.29

Adding random effects has increased the residual variance
→ scale of y∗ stretched out
→ β0 and β1 increase in absolute value.



Impact of Adding uj on Coefficients

Recall single-level logit model expressed as a threshold model:

y∗i = β0 + β1xi + e∗i

var(y∗i |xi ) = var(e∗i ) = 3.29

Now add random effects:

y∗ij = β0 + β1xij + uj + e∗ij

var(y∗ij |xij , uj) = var(uj) + var(e∗i ) = σ2
u + 3.29

Adding random effects has increased the residual variance
→ scale of y∗ stretched out
→ β0 and β1 increase in absolute value.



Impact of Adding uj on Coefficients

Recall single-level logit model expressed as a threshold model:

y∗i = β0 + β1xi + e∗i

var(y∗i |xi ) = var(e∗i ) = 3.29

Now add random effects:

y∗ij = β0 + β1xij + uj + e∗ij

var(y∗ij |xij , uj) = var(uj) + var(e∗i ) = σ2
u + 3.29

Adding random effects has increased the residual variance
→ scale of y∗ stretched out
→ β0 and β1 increase in absolute value.



Single-level vs Random Intercept Coefficients

βRI coefficient from a random intercept model

βSL coefficient from the corresponding single-level model

For a logit model

βRI = βSL

√
σ2

u + 3.29

3.29

Replace 3.29 by 1 to get expression for relationship between probit
coefficients.

NOTE: Adding random effects to a continuous response model
does not ‘scale up’ coefficients because the level 1 variance is not
fixed and so: var(ei ) ' var(uj) + var(eij)
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Single-level vs Random Intercept Coefficients

Simulated data where distribution of x1 and x2 same in each level
2 unit.

σ̂2
u = 1.018 so expected RI:SL ratio is

√
1.018+3.29

3.29 = 1.14

Variable βSL βRI βRI/βSL

Constant 0.221 0.257 1.163
x1 0.430 0.519 1.207
x2 0.498 0.613 1.231

In practice, RI:SL ratio for a given x may be quite different from
that expected if distribution of x differs across level 2 units.
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Impact of Adding level 1 x

In random effects model for continuous y

Reduction in level 1 residual variance σ2
e

Reduction in total residual variance σ2
u + σ2

e

Coefficients of variables correlated with x will change
(increase or decrease)

In random effects model for binary y

Level 1 residual variance σ2
e∗ cannot change; fixed at 3.29

(logit) or 1 (probit)

So addition of x will tend to increase proportion of variance
that is at level 2, i.e. ratio of σ2

u to σ2
e∗

→ increase in level 2 residual variance → stretches scale of y∗

→ increase in absolute value of coefficients of other variables
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Variance Partition Coefficient for Binary y

Usual formula is:

VPC =
level 2 residual variance

level 1 residual variance + level 2 residual variance

From threshold model for latent y ∗, we obtain

VPC =
σ2

u

σ2
e∗ + σ2

u

where σ2
e∗ = 1 for probit model and 3.29 for logit model

In voting intentions example, σ̂2
u=0.125, so VPC=0.037. Adjusting

for income, 4% of the remaining variance in the propensity to vote
Bush is attributable to between-state variation.
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Marginal Model for Clustered y

When y are clustered, an alternative to a random effects model is
a marginal model.

A marginal model has two components

1. Generalised linear model specifying relationship between πij

and xij

2. Specification of structure of correlations between pairs of
individuals in the same group

Exchangeable - equal correlation between every pair (as in
random intercept model)
Autocorrelation - used for longitudinal data where correlation a
function of time between measures
Unstructured - all pairwise correlations estimated

Estimated using Generalised Estimating Equations (GEE)
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Marginal vs Random Effects Approaches

Marginal

Accounts for clustering and adjusts standard errors

Clustering regarded as a nuisance

No parameter representing between-group variance

No distributional assumptions about group effects, but no
estimates of group effects either

Random effects

Accounts for clustering and adjusts standard errors

Clustering of substantive interest

Estimate between-group variance σ2
u

Level 2 residuals ûj interpreted as group effects

Can allow between-group variance to depend on x
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Level 2 residuals ûj interpreted as group effects

Can allow between-group variance to depend on x



Marginal vs Random Effects Approaches

Marginal

Accounts for clustering and adjusts standard errors

Clustering regarded as a nuisance

No parameter representing between-group variance

No distributional assumptions about group effects, but no
estimates of group effects either

Random effects

Accounts for clustering and adjusts standard errors

Clustering of substantive interest

Estimate between-group variance σ2
u
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Marginal and Random Effects Models

Marginal β have a population-averaged (PA) interpretation

Random effects β have a cluster-specific (CS) interpretation

Random intercept logit model

logit(πij) = βCS
0 + βCS

1 xij + uj

where uj ∼ N(0, σ2
u)

Marginal logit model

logit(πij) = βPA
0 + βPA

1 xij

Plus specification of structure of within-cluster covariance matrix
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Interpretation of CS and PA Effects

Cluster-specific

βCS
1 is the effect of a 1-unit change in x on the log-odds that

y = 1 for a given cluster, i.e. holding constant (or
conditioning on) cluster-specific unobservables

βCS
1 contrasts two individuals in the same cluster with

x-values 1 unit apart

Population-averaged

βPA
1 is the effect of a 1-unit change in x on the log-odds that

y = 1 in the study population, i.e. averaging over
cluster-specific unobservables
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Example: PA vs. CS Interpretation (1)

Consider a longitudinal study designed to assess cancer patients’
tolerance to different doses of chemotherapy.

yij indicates whether patient j has an adverse reaction at occasion
i to (time-varying) dose xij .

βCS
1 is effect of 1-unit increase in dose, holding constant

time-invariant unobserved individual characteristics
represented by uj . If patients are assigned to different doses at
random, could be interpreted as a causal effect.

βPA
1 compares individuals whose dosage xij differs by 1 unit,

averaging over between-individual differences in tolerance.
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Example: PA vs. CS Interpretation (2)

Suppose we add a level 2 variable, gender (x2j), with coefficient β2.

Because x2j is fixed over time, we cannot interpret βCS
2 as a

within-person effect. Instead βCS
2 compares men and women

with the same value of xij and uj , i.e. the same dose and the
same combination of unobserved time-invariant
characteristics.

βPA
2 compares men and women receiving the same dose xij ,

averaging over individual unobservables.

For a level 2 variable, βPA
2 may be of more interest.
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Comparison of PA and CS Coefficients

In general |β̂CS | > |β̂PA|

The relationship between the CS and PA logit coefficients for
a variable x is approximately:

βCS =

√
σ2

u + 3.29

3.29
βPA

When there is no clustering, σ2
u = 0 and βCS = βPA.

Coefficients move further apart as σ2
u increases

Note that marginal models can also be specified for continuous
y , but in that case CS and PA coefficients are equal
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Predictions from a Multilevel Model

Response probability for individual i in group j calculated as

πij =
exp(β0 + β1xij + uj)

1 + exp(β0 + β1xij + uj)

where we substitute estimates of β0, β1 and uj to get predicted
probabilities.

Rather than calculating probabilities for each individual, however,
we often want predictions for specific values of x . But what do we
substitute for uj?
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Predictions: Handling uj

Suppose we want predictions for x = x∗. What do we do about u?

1. Substitute the mean uj = 0. But predictions are not the mean
response probabilities for x = x∗ because π is a nonlinear
function of uj . Value of π at mean of uj 6= mean of π.

2. Integrate out uj to obtain an expression for mean π that does
not involve u. Leads to probabilities that have a PA
interpretation, but requires some approximation.

3. Average over simulated values of uj . Also gives PA
probabilities, but easier to implement. Now available in
MLwiN.
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Predictions via Simulation

1. Generate M values for random effect u from N(0, σ̂2
u), and

denote generated values by u(1), u(2), . . . , u(M)

2. For each simulated value (m = 1, . . . ,M) compute, for given
x ,

π(m) =
exp(β̂0 + β̂1x + u(m))

1 + exp(β̂0 + β̂1x + u(m))

3. Calculate the mean of π(m):

π =
1

M

M∑
m=1

π(m)

4. Repeat 1-3 for different value of x
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Predicted Probabilities for Voting Bush

Random intercept model
Method 1 Method 3 Marginal model

Household income
Low 0.374 0.378 0.377
Medium 0.444 0.446 0.445

High 0.564 0.564 0.562
Sex

Male 0.510 0.510 0.510
Female 0.442 0.444 0.444

In this case, π̂ from Methods 1 and 3 are very similar. This is
because (i) predictions are all close to 0.5, and (ii) σ̂2

u is small,
so that βCS is close to βPA

In longitudinal applications, where σ̂2
u can be large, there will

be bigger differences between Methods 1 and 3
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u is small,
so that βCS is close to βPA

In longitudinal applications, where σ̂2
u can be large, there will

be bigger differences between Methods 1 and 3



Predicted Probabilities for Voting Bush

Random intercept model
Method 1 Method 3 Marginal model

Household income
Low 0.374 0.378 0.377
Medium 0.444 0.446 0.445

High 0.564 0.564 0.562
Sex

Male 0.510 0.510 0.510
Female 0.442 0.444 0.444

In this case, π̂ from Methods 1 and 3 are very similar. This is
because (i) predictions are all close to 0.5, and (ii) σ̂2

u is small,
so that βCS is close to βPA

In longitudinal applications, where σ̂2
u can be large, there will

be bigger differences between Methods 1 and 3



Random Slope Logit Model

So far we have allowed πij to vary from group to group by including
a group-level random component in the intercept: β0j = β0 + u0j .

BUT we have assumed the effect of any predictor x is the same in
each group. We now consider a random slope model in which the
slope of x (β1) is replaced by β1j = β1 + u1j .

log

(
πij

1− πij

)
= β0 + β1xij + u0j + u1jxij

where (u0j , u1j) follow a bivariate normal distribution:

u0j ∼ N(0, σ2
u0), u1j ∼ N(0, σ2

u1), cov(u0j , u1j) = σu01
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Example: Random Slope for Income

Extend random intercept logit model for relationship between
probability of voting Bush and household income to allow income
effect to vary across states.

Random int. Random slope
Parameter Est. se Est. se

β0 (constant) −0.099 0.056 −0.087 0.057
β1 (Income, centred) 0.140 0.008 0.145 0.013

State-level random part
σ2

u0 (intercept variance) 0.125 0.031 0.132 0.032
σ2

u1 (slope variance) - - 0.003 0.001
σu01 (intercept-slope covariance) - - 0.018 0.006
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Testing for a Random Slope

Allowing x to have a random slope introduces 2 new parameters:
σ2

u1 and σu01.

Test H0 : σ2
u1 = σu01 = 0 using a likelihood ratio test or

(approximate) Wald test on 2 d.f.

For the income example, Wald = 9.72. Comparing with χ2
2 gives a

two-sided p-value of 0.0008

=⇒ income effect does vary across states.
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Prediction Lines by State: Random Slopes



Intercept vs. Income Slope Residuals

Bottom left: Washington DC

Top right: Montana and Utah



Level 2 Variance in a Random Slope Model

In a random slope model, the between-group variance is a function
of the variable(s) with a random coefficient x :

var(u0j + u1jxij) = var(u0j) + 2xijcov(u0j , u1j) + x2
ij var(u1j)

= σ2
u0 + 2σu01xij + σ2

u1x
2
ij

Between-state variance in log-odds of voting Bush

0.132 + 0.036 Income + 0.003 Income2
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Between-State Variance by Income



Adding a Level 2 x : Contextual Effects

A major advantage of the multilevel approach is the ability to
explore effects of group-level (level 2) predictors, while accounting
for the effects of unobserved group characteristics.

A random intercept logit model with a level 1 variable x1ij and a
level 2 variable x2j is:

log

(
πij

1− πij

)
= β0 + β1x1ij + β2x2j + uj

β2 is the contextual effect of x2j .

Especially important to use a multilevel model if interested in
contextual effects as se(β̂2) may be severely estimated if a
single-level model is used.
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Individual and Contextual Effects of Religiosity

Individual religiosity measured by dummy variable for frequency of
attendance at religious services (1=weekly or more, 0=other)

State religiosity is proportion of respondents in state who attend a
service weekly or more.

No contextual effect Contextual effect
Variable Est. se Est. se

Individual religiosity 0.556 0.037 0.543 0.037
State religiosity - - 2.151 0.350
Between-state variance 0.083 0.022 0.030 0.010

(Model also includes age, sex, income and marital status.)
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Cross-Level Interactions

Suppose we believe that the effect of an individual characteristic
on πij depends on the value of a group characteristic.

We can extend the contextual effects model to allow the effect of
x1ij to depend on x2j by including a cross-level interaction:

log

(
πij

1− πij

)
= β0 + β1x1ij + β2x2j + β3x1ijx2j + uj

The null hypothesis for a test of a cross-level interaction is
H0 : β3 = 0.
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Example of Cross-Level Interaction

Suppose we believe that the effect of individual age on the
probability of voting Bush might depend on the conservatism of
their state of residence, which we measure by state religiosity.

Selected coefficients from interaction model

Variable Est. se

Age 0.012 0.005
State prop. attending religious services weekly 4.206 0.716
Age × State religiosity −0.043 0.013

Z-ratio for interaction coefficient is 0.043/0.013 = 3.31 which is
highly significant =⇒ effect of age depends on state religiosity.
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Effect of Age by State Religiosity

Age effects on log-odds of voting Bush

Proportion attending Age Effect
services weekly

0.16 0.012 − (0.043 × 0.16) = 0.005
0.30 0.012 − (0.043 × 0.30) = −0.0009
0.64 0.012 − (0.043 × 0.64) = −0.016

So age effect is weakly positive for the least religious states, and
becomes less strongly positive and then more strongly negative as
state-level religiosity increases.

=⇒ Difference between young and old respondents in voting
intentions is greatest in most religious states.
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A Brief Overview of Estimation Procedures

Multilevel models for continuous responses are usually
estimated via maximum likelihood (ML)

For binary (and other discrete) responses, there is a range of
options:

Direct ML via numerical quadrature (software includes SAS,
Stata, MIXOR, aML)
Quasi-likelihood (MLwiN, HLM)
Markov chain Monte Carlo (MCMC) methods (WinBUGS,
MLwiN)

In some situations, different procedures can lead to quite
different results
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Comparison of Quasi-Likelihood Methods

Rodŕıguez and Goldman (2001, J. Roy. Stat. Soc.) simulated a
3-level data structure with 2449 births (level 1) from 1558 mothers
(level 2) in 161 communities (level 3), and one predictor at each
level.

Results from 100 simulations

Parameter True value MQL1 MQL2 PQL2

Child-level x 1 0.74 0.85 0.96
Family-level x 1 0.74 0.86 0.96
Community-level x 1 0.77 0.91 0.96
Random effect st. dev.
Family 1 0.10 0.28 0.73
Community 1 0.73 0.76 0.93
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Rodŕıguez and Goldman (2001, J. Roy. Stat. Soc.) simulated a
3-level data structure with 2449 births (level 1) from 1558 mothers
(level 2) in 161 communities (level 3), and one predictor at each
level.

Results from 100 simulations

Parameter True value MQL1 MQL2 PQL2

Child-level x 1 0.74 0.85 0.96
Family-level x 1 0.74 0.86 0.96
Community-level x 1 0.77 0.91 0.96
Random effect st. dev.
Family 1 0.10 0.28 0.73
Community 1 0.73 0.76 0.93



Comparison of Estimation Procedures

Rodŕıguez and Goldman (2001) also analysed real data on child
immunisation in Guatemala.

Random effect standard deviations

PQL2 PQL1-B ML MCMC

Family 1.75 2.69 2.32 2.60
Community 0.84 1.06 1.02 1.13

PQL-B is PQL with a bias correction; ML is maximum likelihood;
MCMC is Markov chain Monte Carlo (Gibbs sampling)
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Guidelines on Choice of Estimation Procedure

ML via numerical quadrature preferred for simple models, but
estimation times can be lengthy when there are several
correlated random effects

Quasi-likelihood methods quick and useful for model
screening, but biased (especially for small cluster sizes)

MCMC methods are flexible and becoming increasingly
computationally feasible; the recommended method in MLwiN
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