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Preface 

In the mid 1980's a number of researchers began to see how to introduce systematic 
approaches to the statistical modelling and analysis of hierarchically structured data. The 
early work of Aitkin et al (1981) on the teaching styles' data and Aitkin’s subsequent classic 
work with Longford (1986) initiated a series of developments that, by the early 1990's had 
resulted in a core set of established techniques, experience and software packages that 
could  be applied routinely. These methods and further extensions of them are described in 
this book and are coming to be applied widely in areas such as education, epidemiology, 
geography, child growth, household surveys and many others.  

In addition to the first edition of the present text (Goldstein, 1987b), two expository volumes 
appeared in the early 1990’s. That by Bryk and Raudenbush (1992) discusses 2 and 3-level 
linear multilevel models with applications especially to educational data and also to repeated 
measures designs. Longford (1993) gives a more theoretically oriented account and includes 
additionally discussion of a multilevel factor analysis model, models with categorical 
responses and multivariate models. The present volume aims to integrate existing 
methodological developments within a consistent terminology and notation, provide 
examples and explain a number of new developments, especially in the areas of discrete 
response data, time series models, random cross classifications, errors of measurement, 
missing data and nonlinear models. In many cases these developments are the subject of 
continuing research, so that we can expect further elaborations of the procedures described. 

The main text seeks to avoid undue statistical complexity, with methodological derivations 
occurring in appendices. Examples and diagrams are used to illustrate the application of the 
techniques and references given to other work. The book is intended to be suitable for 
graduate level courses and as a general reference. 

Harvey Goldstein 

August, 1994 

Preface to the first Internet edition 

It is now nearly 5 years since the second edition was completed. Since then there have been 
many developments; in methodology, in applications and in computation. A new edition of 
Multilevel Statistical Models is now being planned and it will incorporate these 
developments. In the meantime the second edition has been corrected and one or two topics 
amplified, with some additional references. This edition does not contain a subject index; 
readers can search the text electronically for topics. Information about current issues in 
multilevel modelling can be obtained from the folowing web site which has further useful 
links; www.ioe.ac.uk/multilevel/ . 

Harvey Goldstein 

h.goldstein@ioe.ac.uk 

April 1999 
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Notation 

 

The following definitions refer to a 2-level model. The extension to three and higher level 
models is usually straightforward. Where this is not clear, a three level definition is included. 

 

Definition Symbol 

Response variable vector Y  

Explanatory variable design matrix X  

Fixed part explanatory variable design matrix for a 
single unit 

X

X
ij

j

 for a level 1 unit

  for a level 2 unit
 

 

 

Total residuals at each level for a 3-level model 

v v z

u u z

e e z

k hk hk
h

q

jk hjk hjk
h

q

ijk hijk hijk
h

q

=

=

=

=

=

=

∑

∑

∑

( )

( )

( )

3

0

2

0

1

0

3

2

1

    

Explanatory variable design matrix for level 2 and 
level 1 random coefficients 

Z Z( ) ( ),2 1   

Predicted value from fixed part of model $ ( )y X Xij ij ij= =β β  

Raw or total residual for level 1 unit  ~ $y y yij ij ij= −  

Mean raw residual for level 2 unit ~ ~y
n

yj
j

ij
i

n j

=
=
∑1

1

 

Estimated residual or posterior residual estimate $ , $u ej ij   

Covariance matrix of random coefficients at level i Ω Ω Ωi i, { }  =  

Parentheses denoting vector or matrix of elements {} 

Covariance matrix of response vector for k-level 
model 

Vk  or just  V 

Contribution to covariance matrix of response vector 
from level i for k-level model 

V Vk i i( ) ( ),   or just    

Direct sum of  matrices A Ak1 ,....,  
i

k

iA
=
⊕

1
 

Kronecker product of conformable matrices A A1 2,  A A1 2⊗  
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vec operator on matrix A  vec A( )  

  

  

  

  

 

Glossary 

Cluster 

 

A grouping containing 'lower level' elements. For example in 
a sample survey the set of households in a neighbourhood.  

Design matrix In the fixed part of the model, the matrix of values of the 
explanatory variables X . In the random part the matrix of 
explanatory variables Z . 

Explanatory variable Also known as an ‘independent’ variable. In the fixed part 
of the model usually denoted by x  and in the random part 
by z . 

Fixed part That part of a model represented by Xβ, that is the average 
relationship. 

Level A component of a data hierarchy. Level 1 is the lowest level, 
for example students within schools or repeated 
measurement occasions within individual subjects. 

Level n variation The variation of level n unit measurements about the fixed 
part of a model. 

Nesting The clustering of units into a hierarchy 

Random part That part of a model represented by Zu , that is the 
contribution of the random variables. at each level. 

Response variable Also known as a ‘dependent’ variable. Denoted by y . 

Unit An entity defined at a level of a data hierarchy. For example 
an individual student will be a level 1 unit within a level 2 unit 
which is a school. 
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Chapter 1  

Introduction  

1.1 Multilevel data 

Many kinds of data, including observational data collected in the human and biological 
sciences, have a hierarchical or clustered structure.  For example, animal and human 
studies of inheritance deal with a natural hierarchy where offspring are grouped within 
families. Offspring from the same parents tend to be more alike in their physical and mental 
characteristics than individuals chosen at random from the population at large. For instance, 
children from the same family may all tend to be small, perhaps because their parents are 
small or because of a common impoverished environment.  

Many designed experiments also create data hierarchies, for example clinical trials carried 
out in several randomly chosen centres or groups of individuals. For now, we are concerned 
only with the fact of such hierarchies not their provenance. The principal applications we 
shall deal with are those from the social sciences, but the techniques are of course applicable 
more generally. In subsequent chapters, as we develop the theory and techniques with 
examples, we shall see how a proper recognition of these natural hierarchies allows us to 
seek more satisfactory answers to important questions. 

We refer to a hierarchy as consisting of units grouped at different levels. Thus offspring may 
be the level 1 units in a 2-level structure where the level 2 units are the families: students may 
be the level 1 units clustered within schools that are the level 2 units. 

The existence of  such data hierarchies is neither accidental nor ignorable. Individual people 
differ  as do individual animals and this necessary differentiation is mirrored in all kinds of 
social activity where the latter is often a direct result of the former, for example when 
students with similar motivations or aptitudes are grouped in highly selective schools or 
colleges. In other cases, the groupings may arise for reasons less strongly associated with 
the characteristics of individuals, such as the allocation of young children to elementary 
schools, or the allocation of patients to different clinics. Once groupings are established, 
even if their establishment is effectively random, they will tend to become differentiated, and 
this differentiation implies that the group' and its members both influence and are influenced 
by the  group  membership. To ignore this relationship risks overlooking the importance of 
group effects, and may also render  invalid many of the traditional statistical analysis 
techniques used for studying data relationships. 

We shall be looking at this issue of statistical validity in the next chapter, but one simple 
example will show its importance. A well known and influential study of primary 
(elementary) school children carried out in the 1970's (Bennett, 1976) claimed that children 
exposed to so called 'formal' styles of teaching reading exhibited more progress than those 
who were not. The data were analysed using traditional multiple regression techniques which 
recognised only the individual children as the units of analysis and ignored their groupings 
within teachers and into classes. The results were statistically significant. Subsequently, 
Aitkin et al, (1981) demonstrated that when the analysis accounted properly for the 
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grouping of children into classes, the significant differences disappeared and the 'formally' 
taught children could not be shown to differ from the others.  

This reanalysis is the first important example of a multilevel analysis of social science data. 
In essence what was occurring here was that the children within any one classroom, because 
they were taught together,  tended to be similar in their performance. As a result they  
provide rather less information  than would have been the case if the same number of 
students  had been taught separately  by different teachers. In other words, the basic unit for 
purposes of comparison should have been the teacher not the student. The function of the 
students can be seen as providing, for each teacher, an estimate of that teacher's 
effectiveness.  Increasing the number of students per teacher would increase the precision of 
those estimates but not change the number of teachers being compared. Beyond a certain 
point, simply increasing the numbers of students in this way hardly improves things at all. On 
the other hand, increasing the number of teachers to be compared, with the same or 
somewhat smaller number of students per teacher,  considerably improves the precision of 
the comparisons. 

Researchers have long recognised this issue. In education, for example, there has been much 
debate (see Burstein et al, 1980) about the so called 'unit of analysis' problem, which  is the 
one just outlined. Before multilevel modelling became well developed as a research tool,  the 
problems of ignoring hierarchical structures were reasonably well understood, but they were 
difficult to solve because powerful general purpose tools were unavailable. Special purpose 
software, for example for the analysis of genetic data, has been available longer but this was 
restricted to 'variance components' models (see chapter 2) and was not suitable for handling 
general linear models. Sample survey workers have recognised this issue in another form. 
When population surveys are carried out, the sample design typically  mirrors the 
hierarchical population structure, in terms of geography and household membership. 
Elaborate procedures have been developed to take such structures into account when 
carrying out statistical analyses. We return to this in a little more detail in a later section.  

In the remainder of this chapter we shall look at the major  areas explored in this book. 

1.2  School effectiveness 

Schooling systems present an obvious example of a hierarchical structure, with pupils 
grouped or nested or clustered within schools, which themselves may be clustered within 
education authorities or boards. Educational researchers have been interested in comparing 
schools and other educational institutions, most often in terms of the achievements of their 
pupils. Such comparisons have several aims, including the aim of public accountability 
(Goldstein, 1992) but, in research terms, interest usually is focused upon  studying the 
factors that explain school differences.  

Consider the common example where test or examination results at the end of a period of 
schooling are collected for each school in a randomly chosen sample of schools. The 
researcher wants to know whether a particular kind of subject streaming practice in some 
schools is associated with improved examination performance. She also has good measures 
of the pupils' achievements when they started the period of schooling so that she can control 
for this in the analysis. The traditional approach to the analysis of these data would be to 
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carry out a regression analysis, using performance score as response,  to study the  
relationship with streaming practice, adjusting for the initial achievements. This is very similar 
to the initial teaching styles analysis described in the previous section, and suffers from the 
same lack of validity through failing to take account of the school level clustering of students.  

An analysis that explicitly models the manner in which students are grouped within schools 
has several advantages. First, it enables data analysts to obtain statistically  efficient 
estimates of regression coefficients. Secondly, by using the clustering information it provides 
correct standard errors, confidence intervals and significance tests, and these generally will 
be more 'conservative' than the traditional ones which are obtained simply by ignoring the 
presence of clustering - just as Bennett's previously statistically significant results became 
non-significant on reanalysis. Thirdly, by allowing the use of covariates measured at any of 
the levels of a hierarchy, it enables the researcher to explore  the extent to which differences 
in average examination results between schools are accountable for by factors such as 
organisational practice or possibly in terms of other characteristics of the students. It also 
makes it possible to study the extent to which schools differ for different kinds of students, 
for example to see whether the variation between schools is greater for initially high scoring 
students than for initially low scoring students (Goldstein et al, 1993) and whether some 
factors are better at accounting for or 'explaining' the variation for the former students than 
for the latter. Finally,  there is often considerable interest in the relative ranking of individual 
schools, using the performances of their students after adjusting for intake achievements. 
This can be done straightforwardly using a multilevel modelling approach. 

To fix the basic notion of a level and a unit, consider figures 1 and 2 based on hypothetical 
relationships.  

. Figure 1 shows the exam score and intake achievement scores for five students in a school, 
together with a simple regression line fitted to the data points. The residual variation in the 
exam scores about this line, is the level 1 residual variation, since it relates to level 1 units 
(students) within a sample level 2 unit (school). In figure 2 the three lines are the simple 
regression lines for three schools, with the individual student data points removed. These 
vary in both their slopes and their intercepts (where they would cross the exam axis), and 
this variation is level 2 variation. It is an example of multiple or complex level 2 variation 
since both the intercept and slope parameters vary. 

 

Level 1 variation

Intake achievement

Exam
Score

0

1

2

3

4

5

6

0 0.5 1

Level 2 variation

Intake achievement

Exam
Score

0

1

2
3

4

5
6

0 0.5 1

 
          Figure 1                                                                Figure 2 
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The other extreme to an analysis which ignores the hierarchical structure is one which treats 
each school completely separately by fitting a different regression model within each one. In 
some circumstances, for example where we have very few schools and moderately large 
numbers of students in each, this may be efficient. It may also be appropriate if we are 
interested in making inferences about just those schools. If, however, we regard these 
schools as a (random) sample from a population of schools and we wish to make inferences 
about the variation between schools in general, then a full multilevel approach is called for. 
Likewise, if some of our schools have very few students, fitting a separate model for each of 
these will not yield reliable estimates: we can obtain more precision by regarding the schools 
as a sample from a population and using the information available from the whole sample 
data when making estimates for any one school.  This approach is especially important in the 
case of repeated measures data where we typically have very few level 1 units per level 2 
unit.  

We introduce the basic procedures for fitting multilevel models to hierarchically structured 
data in chapter 2 and discuss the design problem of  choosing the numbers of units at each 
level in chapter 11. 

1.3 Sample survey methods 

We have already mentioned sample survey data which will be discussed in many of the 
examples of this book. The standard literature on surveys, reflected in  survey practice, 
recognises the importance of taking account of the clustering in complex  sample designs. 
Thus, in a household survey, the first stage sampling unit will often be a well-defined 
geographical unit. From those which are randomly chosen, further stages of random 
selection are carried out until the final households are selected. Because of the geographical 
clustering exhibited by measures such as political attitudes, special procedures have been 
developed to produce valid statistical inferences, for example when comparing mean values 
or fitting regression models (Skinner et al, 1989).  

While such procedures usually have been regarded as necessary they have not generally 
merited serious substantive interest. In other words, the population structure, insofar as it is 
mirrored in the sampling design, is seen as a 'nuisance factor'. By contrast, the multilevel 
modelling approach views the population structure as of potential interest in itself, so that a 
sample designed to reflect that structure is not merely a matter of saving costs as in 
traditional survey design, but can be used to collect and analyse data about the higher level 
units in the population. The subsequent modelling can then incorporate this information and 
obviate the need to carry out special adjustment procedures, which are built into the analysis 
model directly. 

Although the direct modelling of clustered data is statistically efficient, it will generally be 
important to incorporate weightings in the analysis which reflect the sample design or, for 
example, patterns of non-response, so that robust population estimates can be obtained and 
so that there will be some protection against serious model misspecification. A procedure for 
introducing external unit weights into a multilevel analysis is discussed in Chapter 3. 
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1.4  Repeated measures data 

A different example of hierarchically structured data occurs when the same individuals or 
units are measured on more than one occasion. A common example occurs in studies of 
animal and human growth. Here the occasions are clustered within individuals that represent 
the level 2 units with measurement occasions the level 1 units. Such structures are typically 
strong hierarchies because there is much more variation between individuals in general than 
between occasions within individuals. In the case of child height growth, for example, once 
we have adjusted for the overall trend with age, the variance between successive 
measurements on the same individual is generally no more than 5% of the variation in height 
between children.  

There is a considerable past literature on procedures for the analysis of such repeated 
measurement data (see for example Goldstein, 1979), which has more or less successfully 
confronted the statistical problems. It has done so, however, by requiring that the data 
conform to a particular, balanced, structure. Broadly speaking these procedures require that 
the measurement occasions are the same for each individual. This may be possible to 
arrange, but often in practice individuals will be measured irregularly, some of them a great 
number of times and some perhaps only once. By considering such data as a general 2-level 
structure we can apply the standard set of multilevel modelling techniques that allow any 
pattern of measurements while providing statistically efficient parameter estimation. At the 
same time modelling a 2-level structure presents a simpler conceptual understanding of such 
data and leads to a number of interesting extensions that will be explored in chapter 6. 

One particularly important extension occurs in the study of growth where the aim is to fit 
growth curves to measurements over time. In a multilevel framework this involves, in the 
simplest case, each individual having their own straight line growth trajectory with the 
intercept and slope coefficients varying between individuals (level 2). When the level 1 
measurements, considered as deviations from each individual's fitted growth curve, are not 
independent but have an autocorrelated or time series structure, neither the traditional 
procedures nor the basic multilevel ones are adequate. This situation may occur, for 
example, when measurements are made very close together in time so that a 'positive' 
deviation from the curve at one time implies also a positive deviation after the short interval 
before the next measurement.  

1.5  Event history models 

Modelling time spent in various states or situations is important in a number of areas. In 
industry the 'time to failure' of components is a key factor in quality control. In medicine the 
survival time is a fundamental measurement in studying certain diseases. In economics the 
duration of employment periods is of great interest. In education, researchers often study the 
time students spend on different tasks or activities.  

In studying employment histories, any one individual will generally pass through several 
periods of employment or unemployment, while at the same time changing his 
characteristics, for example his level of qualifications. From a modelling point of view we 
need to model the length of time in each type of employment, relating this to both constant 
factors such as an individual's social origins or gender and to changing or time dependent 
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factors such as qualifications and age. The multilevel structure is analogous to that for 
repeated measures data, with periods taking the place of occasions. Furthermore, we would 
have generally a further, higher level of the hierarchy since individuals, which are the level 2 
units, are themselves typically clustered into workplaces, which now constitute level 3 units1. 
In fact, the structure is even more complicated because these workplaces change from 
period to period and if we wish to include this level in our model we need to consider cross-
classifications of the units. We shall have more to say about cross classifications shortly. 

There are particular problems arising when studying event duration data that are 
encountered  when some information is 'censored' in the sense that instead of being able to 
observe the actual duration we only know that it is longer than some particular value, or in 
some cases less than a particular value. Chapter 9 will discuss ways of dealing with this issue 
for multilevel event duration models.  

1.6  Discrete response data 

Until now we have assumed implicitly that our response or dependent variable is 
continuously distributed, for example an exam score or anthropometric measure such as 
height. Many kinds of statistical modelling, however, deal with categorised responses, in the 
simplest case with proportions. Thus, we might be interested in a mortality rate, or an 
examination pass rate and how these vary from area to area or school to school.  

In studying mortality rates in a population, it is often of great concern to try to understand the 
factors associated with variations from area to area or community to community. This 
produces a basic 2-level structure with individuals at level 1 and communities at level 2. A 
typical study might record deaths over a given time period together with the characteristics 
of the individuals concerned along with a control group and level 2 characteristics of the 
communities, such as their sizes or social compositions. One analysis of interest would be to 
see whether any of these explanatory variables could explain between-community variation. 
Another interest might be in studying whether mortality rate differences, say between men 
and women, varied from community to community. 

Such models, part of the class known as generalised linear models have been available for 
some time for single level data (McCullagh and Nelder, 1989),  with associated software. In 
chapter 7 we show how to fit multilevel models with several categorical responses and even 
models with mixtures of categorical and continuous responses.  

1.7  Multivariate models 

An interesting special case of a 2-level model is the multivariate linear (or generalised linear) 
model. Suppose we have taken several measurements on an individual, for example their 
systolic and diastolic blood pressure and their heart rate. If we wish to analyse these 
together as response variables we can do so by setting up a multivariate, in this case 3-
variate, model with explanatory variables such as age, gender, social background, smoking 
exposure, etc. We can think of this as a 2-level model by considering each individual as a 

                                                 
1Formally, we can regard unemployment for this purpose as a particular workplace. 
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level 2 unit, with the three measurements constituting the level 1 units, rather as occasions 
did for the repeated measures model. Chapter 4 will show how this formal device for 
specifying a multivariate model yields considerable benefits. For example, by considering 
further higher levels, in this case say clinics, we have a simple way of specifying a 
multivariate multilevel model. Also, if some individuals do not have all the measurements, for 
example if they are randomly missing a blood pressure measurement, then this is 
automatically taken account of in the analysis, without the need for special procedures for 
handling missing data.  

A particularly important application occurs where measurements are missing by design 
rather than at random. In certain kinds of surveys, known as rotation designs, and in certain 
kinds of educational assessments known as matrix sample designs, each individual unit has 
only a subset of measurements made on it. For example, in large-scale testing programmes, 
the full range of tests may be too extensive for any one student, so that each student 
responds to only one combination. Such designs are  viewed usefully as having a multivariate 
response with the full set of tests constituting the complete multivariate response vector, and 
every student having some tests missing. Such designs can become rather complex, 
especially since the students themselves are clustered into schools. By viewing the data as a 
single hierarchy in which the multivariate responses are level 1, we obtain an efficient and 
readily interpretable analysis. 

The multivariate multilevel model is also the basis for ways of dealing with missing data in 
multilevel models and this is developed in chapter 11. 

1.8 Nonlinear models 

Some kinds of data are better represented in terms of nonlinear rather than linear models. 
For example, the modelling of discrete response data is  considered formally as a case of 
modelling nonlinear data. Many kinds of growth data are conveniently modelled in this way, 
especially during periods of rapid and complex growth such as early infancy and at the 
approach to adulthood when growth approaches an upper asymptote (Goldstein, 1979). 
Other examples arise when the response variable has inherent constraints. For example, 
biochemical activity patterns in patients may exhibit asymptotic behaviour, or cyclical 
patterns, both of which are difficult to model using purely linear models. Chapter 5 will 
introduce such models and show how to extend the linear multilevel model to this case. It 
will also consider cases where variances and covariances can be modelled as nonlinear 
functions of  explanatory variables. 

1.9 Measurement errors 

Most measurements made in the human sciences contain some error component. This may 
be due to observer error as when measuring the weight of an animal, or an inherent result of 
being able to measure only a small sample of behaviour  as in educational testing. It is well 
known that when variables in statistical models contain relatively large components of such 
error the resulting statistical inferences can be very misleading unless careful adjustments are 
made ( Fuller, 1987). In the case of simple regression, when the explanatory or independent 
variable is measured with error, the usual estimate of the regression line slope is an 
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underestimate compared to that which would result if the measurement were available 
without error. This is particularly important in studies of school effectiveness where the fitting 
of intake achievement scores is important but where such scores often have large 
components of measurement error. 

An important case when the latter arise is where the level 2 variable is a 'compositional' 
variable. That is, it is a measurement aggregated from the characteristics of the level 1 units 
within the level 2 units. Thus, for example the mean intake achievement and the standard 
deviation of the intake achievements of all the pupils in a school are compositional variables 
that may, and indeed sometimes do, affect the final achievements of each individual student. 
Likewise in a household survey, we may consider that a measure of the average social status 
or the percentages of households in each social group, using all the households in the 
immediate community, are important explanatory variables to fit in a model. The problem 
arises when it is possible to collect data on only some of the level 1 units, this being the 
typical situation with household sample surveys. What we then have is an estimate of a 
compositional variable that is measured with error, in the case of household surveys typically 
with a very large error. In many educational studies this also occurs where only a small 
proportion of students within a class or school are sampled.  

Chapter 10 discusses the problem of level 1 measurement error as well as the issue of 
measurement errors in variables measured at level 2. 

1.10  Random cross classifications 

Whilst the title of this book refers to multilevel, that is hierarchical models, we have already 
alluded to examples where units are cross-classified as well as clustered. In geographical 
research, the definition of an individual's  geographical area is contingent upon the context 
being considered. Thus, the relevant location unit for purposes of leisure may not be the 
same as that surrounding the environment of work or schooling. We can  conceive formally 
of individuals belonging simultaneously to both types of  unit each of which may  have an 
influence on a person's life. 

In most schooling systems, students move from elementary to secondary or high school. We 
might expect that both the elementary and secondary schools attended will influence a 
student's achievements, behaviour and attitudes. Thus the level 2 units are of two types, 
elementary school and secondary school, with each 'cell' of their cross classification contains 
some, or possibly no students. In this example, a third way of classification could be the area 
or neighbourhood where the student lives. 

 

An interesting special case occurs where for a single level 2 classification, level 1 units may 
belong to more than one level 2 unit. An example from sociology concerns children’s' and 
adults' friendship patterns where an individual may belong to several groups simultaneously. 
The characteristics of the members  of each group will influence such an individual, in 
relation to the individual's exposure to the group. Such multiple unit membership may be 
viewed formally as a multiway classification of the relevant units. Thus, for the case where an 
individual at most belongs to two groups we cross classify the friendship groups by 
themselves, with each individual belonging to one cell of the classification. 
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In chapter 8 we show how to handle such random cross-classified structures as special 
cases of the general multilevel model. This not only allows an efficient method of modelling 
such structures, it also allows any complexity of mixed hierarchical and cross classified data 
to be handled comprehensively in the same modelling framework using the same general 
purpose software. For example, in epidemiological studies involving the use of  trained raters 
or observers, a different random sample of raters  may rate the status of the individuals 
within each level 2 unit, such as a clinic or workplace.  This leads to a complex structure 
where at level 1 we have a cross classification of individuals by raters, where the individuals 
and raters are nested  within the level 2 units. Such mixtures of hierarchically structured and 
crossed units can be modelled within this overall framework. 

1.11 Structural equation models 

In many areas of the social sciences, where measurements are difficult to define precisely, an 
investigator might suppose that there is some underlying construct which cannot be 
measured directly but nevertheless can be assessed indirectly by measuring a number of 
relevant indicators. Structural equation modelling, and in particular the special case of factor 
analysis, was developed for this purpose, typically dealing with individuals' behaviour, 
attitudes or mental performance. Where individuals are grouped within hierarchies, for all the 
same reasons discussed above, is important to carry out such analyses in a multilevel 
framework. For example, we may be interested in underlying individual attitudes based upon 
a number of indicators. Data on such indicators may be available over time and we can 
postulate a model whereby the underlying attitude  varies from individual to individual (level 
2) and also varies randomly over time within individuals (level 1). The model can then be 
further elaborated by studying whether there is any systematic change over time and whether 
this varies across individuals. Chapter 11 discusses such models. 

1.12 Levels of aggregation and ecological fallacies 

When studying relationships among variables, there has often been controversy about the 
appropriate 'unit of analysis'. We have alluded to this already in the context of ignoring 
hierarchical data clustering, and as we have seen, the issue is resolved by explicit hierarchical 
modelling.   

One of the best known early illustrations of what is often known as the ecological or 
aggregation fallacy was the study by Robinson (1950) of the relationship between literacy 
and ethnic background in the United States. When the mean literacy rates and mean 
proportions of Black Americans for each of nine census divisions are correlated the resulting 
value is 0.95, whereas the individual-level correlation ignoring the grouping is 0.20. 
Robinson was concerned to point out that aggregate-level relationships could not be used as 
estimates for the corresponding individual-level relationships and this point is now well 
understood. In chapter 3 we shall discuss some of the statistical consequences of modelling 
only at the aggregate level. 

Sometimes the aggregate level is the  principal level of interest, but nevertheless a multilevel 
perspective is useful. Consider the example (Derbyshire, 1987) of predicting the proportion 
of  children socially 'at risk' in each local administrative area for the purpose of allocating 
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central government expenditure on social services. Survey data are available for individual 
children with information on risk status so that a prediction can be made using area based 
variables as well as child and household based variables. The probability of a child being 'at 
risk' was estimated by the following (single level) equation 

 

logit( ) . . . .p x x x= − + + +6 3 5 9 2 2 1 51 2 3  

 

where x1 is the proportion of children in the area in households with a lone parent, x2  is the 
proportion of households in each area which have a density of more than 1.5 persons per 
room and x3  is the proportion of households whose 'head' was born in the British 'New 
Commonwealth' or Pakistan. All these explanatory 
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variables are measured at the aggregate area level and the response p is the proportion of 
children at risk in each area. Although we can regard this analysis as taking place entirely at 
the area level (with suitable weighting for the number of children in each area),  there are 
advantages in thinking of it as a 2-level model with each child being a level 1 unit and the 
response variable being the binary response of whether or not the child is at risk.  

First, this allows us to incorporate possibly important variables that are measured at the child 
level, for example whether or not each child's household is overcrowded. Including such 
level 1 variables may greatly improve the predictive power of the model. With the results of 
such a model we can then form a prediction for each area by aggregating over the known 
numbers of children living in overcrowded households. 

Secondly, the possibility of modelling the characteristics of children or their households 
allows the possibility of an allocation formula that can take account of costs and benefits 
related to the actual composition of each area in terms of these child characteristics. 

1.13 Causality 

In the natural sciences, experimentation has a dominant position when making causal 
inferences. This is both because the units of interest can be  manipulated experimentally, 
typically using random allocation, and because there is a widespread acceptance that the 
results of experiments are generalisable over space and time. The models described in this 
book can be applied to experimental or non-experimental data; but the final causal 
inferences will differ. Nevertheless, most of the examples used are from non-experimental 
studies in the human sciences and a few words on causal inferences from such data may be 
useful. 

If we wish to answer questions about a possible causal relationship between class size and 
educational achievement, an experimental study would need to assign different numbers of 
level 1 units (students) randomly to level 2 units (class - teachers) and study the results over 
a time period of several years. This would be time consuming and could create ethical 
problems. In addition to such practical problems, any single study would be limited in time 
and place, and require extensive replication before results confidently could be generalised. 
The specific context of any study is important, for example the state of the educational 
system and the resources available at the time of the study. The difficulty from an 
experimental viewpoint is that it is practically impossible to allocate randomly with respect to 
all such possible confounding factors. 

This is not to say that randomised experiments should never be undertaken, rather that on 
their own they may have limited potential for making general statements about causality. 
Whether an experiment fails or succeeds in demonstrating a relationship, there will almost 
always be further explanations for the findings which require study. Even if an experiment 
appears to eliminate a possible relationship,  for example demonstrating a negligible 
relationship between class size and attainment, it may be legitimate to query whether a 
relationship nevertheless exists for specific subgroups of the population. Goldstein and 
Blatchford (1998) provide a further discussion. 

In the pursuit of causal explanations we require some guiding underlying principles or 
theories. It is these which will tell us what kinds of things to measure and how to be critical 
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of findings. For example, in studies of the relationship between perinatal mortality and 
maternal smoking in pregnancy (Goldstein, 1976) we can attempt to adjust for confounding 
factors, such as poverty, which may be responsible for influencing both smoking habits and 
mortality. We can also study how the relationship varies across groups and seek measures 
which explain such variation. we might also, in some circumstances, be able to carry out 
randomised experiments, assigning for example intensive health education to a randomly 
selected 'treatment' group and comparing mortality rates with a 'control' group. 

A multilevel approach could be useful here in two different ways. First, pregnant women will 
grouped hierarchically, geographically and by medical institution and the between-area and 
between-institution variation may affect mortality and the relationship between mortality and 
smoking. Secondly, we will  be able often to obtain serial measurements of smoking so 
allowing the kind of repeated measures 2-level modelling discussed earlier. This will allow us 
to study how changes in smoking are related to mortality, and permit a more detailed 
exploration of possible causal mechanisms.  

Multilevel models can often be used to identify units with extreme values. For example, in 
school effectiveness studies an exploration of school-level residual estimates (see Chapter 3) 
may identify those which are highly atypical, having adjusted for ‘contextual’ variables such 
as the intake characteristics of their students. These can then be selected for further scrutiny, 
for example by means of intensive case studies, so forming a link between the quantitatively 
based  multilevel  analysis and a more qualitatively based investigation which would seek to 
identify detailed causal processes. 

A discussion of some necessary conditions for causal inference in observational studies can 
be found, for example, in Holland (1986) and Cochran (1983 ). 

Finally, many of the concerns addressed by multilevel models are to do with prediction 
rather than causation. Thus, for example, in chapter 6 we use a 2-level model of children's 
growth for the purpose of predicting adult height. In studies of school effectiveness we may 
be interested in understanding the causes of school differences, but we may be concerned 
also with predicting which school is likely to produce the best (on average) examination 
result for a student with given initial characteristics and achievements. 

1.14 A caveat 

The purpose of this book is to bring together techniques for the analysis of  highly structured 
data, both hierarchies and cross classifications. The application of such techniques has 
already begun to yield new and important insights in a number of areas as the examples in 
the following chapters illustrate. As software becomes more widely available, the application 
of these techniques should become relatively straightforward, even routine.  

All this is welcome, yet despite their usefulness, models for multilevel analysis cannot be a 
universal panacea. In some circumstances, where there is little structural complexity, they 
may be hardly necessary, and traditional single level models may suffice, both for analysis 
and presentation. On the other hand multilevel analyses can bring extra precision to attempts 
to understand causality, for example by making efficient use of student achievement data in 
attempts to understand differences between schools. 
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They are not, however, substitutes for well grounded substantive theories, nor do they 
replace the need for careful thought about the purpose of any statistical modelling. 
Furthermore, by introducing more complexity they  can extend but not necessarily simplify 
interpretations.  

Multilevel models are tools to be used with care and understanding.. 
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Chapter 2 

The basic linear multilevel model and its estimation 

2.10  The 2-level model and basic notation 

In this chapter  we introduce the 2-level model together with the basic notation which we 
shall use throughout the book. We look at alternative ways of setting up and motivating the 
model and introduce procedures for estimating parameters, forming and testing functions of  
the parameters and constructing confidence intervals.  

To make matters concrete, consider the following  data. It is a dataset we shall use again 
and it consists of 728 pupils in 50 primary (elementary) schools in inner London, part of the 
'Junior School Project' (JSP). We consider two measurement occasions: the first when the 
pupils were in their fourth year of schooling, that is the year they attained their eighth 
birthday, and three years later in their final year of primary school. Our data are in fact a 
subsample from a more extensive dataset which is described in detail in Mortimore et al 
(1988). We use the scores from mathematics tests administered on these two occasions 
together with information collected on the social background of the pupils and their gender. 
In this chapter the data are used primarily to illustrate the development of  basic 2-level 
modelling. In chapter 3 we shall be studying more elaborate models which will enable us to 
handle these data more efficiently. 

Fig. 2.0 is a scatterplot of the 11-year-old mathematics test score by the eight-year-old test 
score. In this plot no distinction is made between the schools to which the pupils belong. 
Notice that there is a general trend, with increasing 8-year scores associated with increasing 
11-year scores.  Notice also the narrowing of the between pupil variation in the 11-year 
score with increasing 8-year score; an issue to which we shall return. 

 

In Fig. 2.2  the scores for two particularly different schools have been selected, represented 
by different symbols. 

Two things are apparent immediately. The school represented by the circles shows a steeper 
'slope' than the school represented by the filled triangles and for most 8-year scores, the 11-
year scores tend to be lower. Both these features are now addressed by  formally modelling 
these relationships. 
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Consider first a simple model for one school,  relating eleven-year-score to eight-year score. 
We write 

 

y x ei i i= + +α β  (2.1) 

 

where standard interpretations can be given to the intercept ( )α , slope ( )β  and residual 
( )ei . We follow the normal convention of using Greek letters for the regression coefficients 
and place a circumflex over any coefficient (parameter) which is a sample estimate. 
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Fig. 2.1 Scatterplot of 11-year by 8-year mathematics test scores. Some points 
represent more than one child. 
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Fig. 2.2 Scatterplot of 11-year by 8-year mathematics test scores for two schools. 
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 This is the formal model for figure 1.1 in the previous chapter and describes a single-level 
relationship. To describe simultaneously the relationships for several schools we write, for 
school j, 

 

y x eij j j ij ij= + +α β  (2.2) 

 

This is now the formal model for figure 1.2 where j refers to the level 2 unit and i to the level 
1 unit.  

As it stands, (2.2) is still essentially a single level model, albeit describing a separate 
relationship for each school. In some situations, for example where there are few schools 
and interest centres on just those schools in the sample, we may analyse (2.2) by fitting all 
the 2n+1 parameters, namely 

 

( , ) ,...,α β σj j j n        e
2= 1  

 

assuming a common 'within-school'  residual variance and separate lines for each school.  

If we wish to focus not just on these schools, but on a wider 'population' of schools then we 
need to regard the chosen schools as giving us information about the characteristics of all the 
schools in the population. Just as we choose random samples of individuals to provide 
estimates of population means etc., so a randomly chosen  sample of schools can provide 
information about the characteristics of the population of schools. In particular, such a 
sample can provide estimates of the variation and covariation between schools in the slope 
and intercept parameters and will allow us to compare schools with different characteristics. 

An important class of situations arises when we wish primarily to have information about 
each individual school in a sample, but where we have a large number of schools so that 
(2.2) would involve estimating a very large number of parameters. Furthermore, some 
schools may have rather small numbers of students and application of (2.2) would result in 
imprecise estimates. In such cases, if we regard the schools  as members of  a population 
and then use our population estimates of the mean and between-school variation, we can 
utilise this information to obtain more precise estimates for each individual school. This will 
be discussed later in the section dealing with 'residuals'. 

2.11 The 2-level model 

We now develop a general notation which will be used throughout this and later chapters, 
elaborated where necessary. We then discuss the estimation of model parameters and 
residuals and this is followed by illustrative examples. 

To make (2.2) into a genuine 2-level model we let  α βj j,  become random variables. For 
consistency of notation replace α βj j by 0  and β βj j by 1 and assume that 
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β β β β0 0 0 1 1 1j j j ju u= + = +,      

where u uj j0 1,   are random variables with parameters 

E u E u

u u u u

j j

j u j u j j u

( ) ( )

var( ) var( ) cov( , )

0 1

0 0
2

1 1
2

0 1 01

0= =

= = =σ σ σ,     ,     
 

 

(2.3) 
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We can now write (2.2) in the form 

 

y x u u x e

e

ij ij j j ij ij

ij e

= + + + +

=

β β

σ

0 1 0 1 0

0 0
2

( )

var( )
 

 

(2.4) 

 

We shall require the extra suffix in the level 1 residual term for the models introduced in 
Chapter 3. 

We have expressed the response variable yij  as the sum of a fixed part and a random part 

within the brackets. 

We shall also generally write the fixed part of (2.4) in the matrix form 

E Y X
Y y

E y X X X X
ij

ij ij ij ij

( )
{ }

( ) ( ) , { }

=
=

= = =

β

β β

with   

   
 

where {}  denotes a matrix, X is the design matrix for the explanatory variables and X ij  is 
the ij-th row of X . For model (2.4) we have X xij= { }1  .Note the alternative 

representation for the i-th row of the fixed part of the model. 

The random variables are referred to as 'residuals' and in the case of a single level model the 
level 1 residual e ij0  becomes the usual linear model residual term. To make the model 
symmetrical so that each coefficient has an associated explanatory variable, we can define a 
further explanatory variable for the intercept β0 0 and its associated residual ,  u j , namely 
x ij0 , which takes the value 1.0. For simplicity this variable may often be omitted. 

The feature of (2.4) which distinguishes it from standard linear models of the regression or 
analysis of variance type is the presence of more than one residual term and this implies that 
special procedures are required to obtain satisfactory parameter estimates.  Note that it is 
the structure of the random part of the model which is the key factor. In the fixed part the 
variables can be measured at  any level, for example in the JSP data we can measure 
characteristics of schools or teachers. We can also include so called 'compositional' 
variables such as the average 8-year mathematics test score for all pupils in each school. 
The presence of such variables does not alter the estimation procedure, although results  will 
require careful interpretation. 

2.12  Parameter estimation for the variance components model 

Equation (2.4) requires the estimation of  two fixed coefficients,  β β0 1, , and four other 
parameters, σ σ σ σu u u e0

2
1

2
01 0

2, ,  and . We refer to such variances and covariances as random 
parameters. We start, however, by considering the simplest 2-level model which includes 
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only the random parameters σ σu e0
2

0
2, . It is termed a variance components model because 

the variance of the response, about the fixed component, the fixed predictor, is 

var ( | , , ) var ( )y x u eij ij ij u eβ β σ σ0 1 0 0 0
2

0
2= + = +  

that is, the sum of a level 1 and a level 2 variance. For the JSP data this model implies that 
the total variance for each student is constant and that the covariance between two students 
(denoted by i i1 2, ) in the same school is given by 
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cov( , ) cov( , )u e u e u uj i j j i j j j u0 0 0 0 0 0
2

1 2
+ + = = σ  (2.5) 

since the level 1 residuals are assumed to be independent. The correlation between two such 
students is therefore 

ρ
σ

σ σ
=

+
u

u e

0
2

0
2

0
2( )

         

which is referred to as the 'intra-level-2-unit correlation'; in this case the intra-school 
correlation.2 This correlation measures the proportion of the total variance which is 
between-schools. In a model with 3 levels, say with schools, classrooms and students, we 
will have two such correlations; the intra-school correlation measuring the proportion of 
variance that is between-schools and the intra-classroom correlation measuring that between 
classrooms. 

The existence of a non-zero intra-unit correlation, resulting from the presence of more than 
one residual term in the model, means that traditional estimation procedures such as 
'ordinary least squares' (OLS) which are used for example in multiple regression, are 
inapplicable. A later section illustrates how the application of OLS techniques leads to 
incorrect inferences. We now look in more detail at the structure of a 2-level data set, 
focusing on the covariance structure typified by Figure 2.3. 
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Figure 2.3 Covariance matrix of three students in a single school for a variance components model. 

The matrix in figure 2.3 is the (3 x 3) covariance matrix for the scores of three students in a 
single school, derived from the above expressions. For two schools, one with three students 
and one with two, the overall covariance matrix is shown in Figure 2.4. This 'block-diagonal' 
structure reflects the fact that the covariance between students in different schools is zero, 
and clearly extends to any number of level 2 units. 

A
B
0

0






  

where 

                                                 
2 In the sample survey literature and elsewhere such as in genetics, the term 'intra-class correlation' is 
used, but this clearly is confusing in the present context. 
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Figure 2.4  The block-diagonal covariance matrix for the response vector Y for  a 2-level variance 
components model with two level 2 units. 
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A more compact way of presenting this matrix, which we shall use again is given in figure 2.5 

 

 

 

 

 

where I n( ) is the (n x n) identity matrix and J n( )  is the (n x n) matrix of ones. The subscript 2 
for V  indicates a 2-level model. In single-level OLS models σ u0

2  is zero and this covariance 
matrix then reduces to the standard form σ2I  where σ2  is the (single) residual variance. 

 

2.13  The general 2-level model including random coefficients 

We can extend (2.4) in the standard way to include further fixed explanatory variables 

 

y x x u u x eij ij h hij
h

p

j j ij ij= + + + + +
=
∑β β β0 1 1

2
0 1 1 0( )  

 

and more compactly as 

 

y X u z e zij ij hj hij ij ij
h

= + +
=
∑β 0 0

0

1

 
(2.6) 

 

where we use new explanatory variables for the random part of the model and write these 
more generally as 

Z Z Z

Z

x ij

=

=

=

{ }

{ }

{ }

0 1

0 1

1

 

 i.e. a vector of 1' s

Z1

 

The explanatory variables for the random part of the model are often a subset of those in the 
fixed part, as here, but this is not necessary and later we shall encounter cases where this is 
not so. Also, any of the explanatory  variables may be measured at any of the levels; for 
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Figure 2.5 Block-diagonal covariance matrix using general notation. 
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example we may have student characteristics at level 1 or school characteristics at level 2. 
Examples of both are used in the data analysis in a later section. 

This model, with the coefficient of X1 random at level 2, gives rise to the following typical 
block structure, for a level 2 block with two level 1 units. The matrix Ω2  is the covariance 
matrix of  the random intercept and slope at level 2. Note that we need to distinguish 
carefully between the covariance matrix of the responses given in figure 2.6 and the 
covariance matrix of the random coefficients. We also refer to the intercept as a  random 
coefficient. The matrix Ω1  is the covariance matrix for the set of level 1 random coefficients; 
in this case there is just a single variance term at level 1. We also write Ω Ω= { }i  for the set 
of these covariance matrices. 
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Figure 2.6  Response covariance matrix for a level 2 unit with two level 1 units for a 2-level model with a 
random intercept and random regression coefficient at level 2. 

 

We also see here the general pattern for constructing the response covariance matrix which 
generalises both to higher order models and, as we shall see in chapter 3, to complex 
variation at level 1. Appendix 2.1 sets out the details and describes procedures for obtaining 
estimates and carrying out significance tests and constructing confidence intervals for the 
parameters of the basic multilevel model. 

2.14  Estimation  for the multilevel model 

We now give an overview of the Iterative Generalised Least Squares (IGLS) method which 
also forms the basis for many of the developments in later chapters. 

We consider the simple 2-level variance components model 

y x u eij ij j ij= + + +β β0 1 0 0  (2.7) 

Suppose that we knew the values of the variances, and so could construct immediately the 
block-diagonal matrix V2 , which we will refer to simply as V  . We can then apply 
immediately the usual Generalised Least Squares (GLS) estimation procedure to obtain the 
estimator for the fixed coefficients 

$ ( )β = − − −X V X X V YT T1 1 1
        (2.8) 
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(2.9) 

with m level 2 units and n j  level 1 units in the j-th level 2 unit. When the residuals have 
Normal distributions (2.8) also yields maximum likelihood estimates. 

Our estimation procedure is iterative. We would usually start from 'reasonable' estimates of 
the fixed parameters. Typically these will be those from an initial OLS fit (that is assuming 
σu 0

2 0= ), to give the OLS estimates of the fixed coefficients $
( )β 0 . From these we form the 

'raw' residuals 

% $ $y y xij ij ij= − −β β0 1  (2.10) 

The vector of raw residuals is written 

% { % }Y yij=  

If we form the cross-product matrix % %Y Y T   we see that the expected value of this is simply 
V. We can rearrange this cross product matrix as a vector by stacking the columns one on 
top of the other which is written as vec YY T( ~ ~ )  and similarly we can construct the vector 
vec V( ) . For the structure given in figure 2.4  these both have 3 22 2+ = 13 elements. The 
relationship between these vectors can be expressed as the following linear model 
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(2.11) 

where R  is a residual vector. The left hand side of (2.11) is the response vector in the linear 
model and the right hand side contains two explanatory variables,  with coefficients σ σu e0

2
0

2,   
which are to be estimated. The estimation involves an application of GLS using the estimated 
covariance matrix of vec Y YT( % % ) , assuming Normality, namely 2 1 1( )V V− −⊗  where ⊗  is the 
Kronecker product. The Normality assumption allows us to express this covariance matrix 
as a function of the random parameters. Even if the Normality assumption fails to hold, the 
resulting estimates are still consistent, although not fully efficient, but standard errors, 
estimated using the Normality assumption and, for example confidence intervals will 
generally not be consistent. For  certain variance component models alternative distributional 
assumptions have been studied, especially for discrete response models of the kind  
discussed in Chapter 7 (see for example Clayton and Kaldor, 1987) and maximum 
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likelihood estimates obtained. For more general models, however, with several random 
coefficients, the assumption of multivariate Normality is a flexible one which allows a 
convenient  parameterisation for complex covariance structures at several levels. It is this 
assumption which forms the basis of the analyses in the remainder of the book.  

With the estimates obtained from applying GLS to (2.11) we return to (2.8) to obtain new 
estimates of the fixed effects  and so alternate between the random and fixed parameter 
estimation until the procedure converges, that is the estimates for all the parameters do not 
change from one cycle to the next. Essentially the same procedure can be used for the more 
complicated models in the following chapters and is incorporated in the program ML3 
(Prosser et al 1991) and its more general successor MLn (Rasbash et al, 1995). The 
maximum likelihood procedure produces biased estimates of the random parameters 
because it takes no account of the sampling variation of the fixed parameters. This may be 
important in small samples, and we can produce unbiased estimates by using a modification 
known as restricted maximum likelihood (REML). The IGLS algorithm is readily modified to 
produce these restricted estimates (RIGLS) (Goldstein, 1989a).  

2.15  Other estimation procedures 

Longford (1987) developed a procedure based upon a 'Fisher scoring' algorithm and 
Raudenbush (1994) shows that it is formally equivalent to IGLS. A program VARCL  
(Longford, 1987) uses this algorithm and also incorporates certain extensions, for  example 
to handle discrete response data (see chapter 7). A variation on IGLS is Expected 
Generalised Least Squares (EGLS). This focuses interest on the fixed part parameters and 
uses the estimate of  V  obtained after the first iteration merely to obtain a consistent 
estimator of the fixed part coefficients without further iterations. A variant of this separates 
the level 1 variance from V  as a parameter to be estimated iteratively along with the fixed 
part coefficients. 

A rather different approach is to view (2.2), and more general extensions, as a Bayesian 
linear model (Lindley and Smith, 1972) where the β j  are assumed to be exchangeable and 
to have a prior distribution with variance σ u0

2 . The full Bayes estimation then requires a prior 
distribution for the random parameters also, in this case the level 1 and level 2 variances. An 
alternative to  the full Bayes estimation, known as 'Empirical Bayes' , ignores the prior 
distributions of the random parameters, treating them as known for purposes of  inference. 
When Normality is assumed, these estimates are the same as IGLS or RIGLS. Bryk and 
Raudenbush (1992) describe the use of an EM algorithm to provide such estimates and the 
program HLM (see Chapter 11) uses this algorithm.  

Another approach which parallels all of these is that of Generalised Estimating Equations 
(GEE) introduced by Liang and Zeger (1986). The principal difference is that GEE obtains 
the estimate of V using simple regression or 'moment' procedures based upon functions of 
the actual calculated raw residuals. It is concerned principally with modelling the fixed 
coefficients rather than exploring the structure of the random component of the model. While 
the resulting coefficient estimates are consistent they are not fully efficient. In some 
circumstances, however, GEE coefficient estimates may be preferable, since they will usually 
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be quicker to obtain and they make weaker assumptions about the structure of V. The GEE 
procedure can be extended to handle most of the models dealt with in later chapters. 

More recently, the full Bayesian treatment has become computationally feasible with the 
development of 'Markov Chain Monte Carlo' (MCMC) methods, especially Gibbs 
Sampling (Zeger and Karim, 1991). This has the advantage, in small samples, that it takes 
account of the uncertainty associated with the estimates of the random parameters and can 
provide exact measures of uncertainty. The maximum likelihood methods tend to 
overestimate precision because they ignore this uncertainty. In small samples this will be 
important especially when obtaining 'posterior' estimates for residuals which we deal with 
later in the chapter. In Chapter 3 we present an alternative ‘bootstrap’ procedure for taking 
account of this uncertainty. Appendix 2.4 provides details of Gibbs Sampling and Appendix 
2.3 of empirical Bayes estimates. 

We shall have more to say about computational issues in Chapter 11. 

 

2.16  Residuals 

In a single level model such as (2.1) the usual estimate of the single residual term ei  is just %yi  
the raw residual. In a multilevel model, however, we shall generally have several residuals at 
different levels. We consider estimating the individual residuals along the following lines.  

Given the parameter estimates, consider predicting a specific residual, say u j0  in a 2-level 

variance components model. Specifically we require for each level 2 unit 

 

$ ( | , $ , $ )u E u Yj j0 0= β Ω  (2.12) 

 

We shall refer to these as estimated or predicted residuals or, using Bayesian terminology, 
as posterior residual estimates. If we ignore the sampling variation attached to the parameter 
estimates in (2.12) we have 
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(2.13) 

We regard (2.12) as a linear regression of  u j0  on the set of { % }yij  for the j-th level 2 unit 
and (2.13) defines the quantities required to estimate the regression coefficients and hence 
$u j0 . Details are given in appendix 2.2. For the variance components model we obtain 
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(2.14) 

where n j  is the number of level 1 units in the j-th level 2 unit. The residual estimates are not, 
unconditionally, unbiased but they are consistent. The factor multiplying the mean ( %y j ) of the 
raw residuals for the j-th unit is often referred to as a 'shrinkage factor' since it is always less 
than or equal to one. As n j  increases this factor tends to one, and as the number of level 1 
units in a level 2 unit decreases the 'shrinkage estimator' of u j0  becomes closer to zero. In 
many applications the higher level residuals are of interest in their own right and the 
increased shrinkage for a small level 2 unit can be regarded as expressing the relative lack of 
information in the unit so that the best estimate places the predicted residual close to the 
overall population value as given by the fixed part. 

These residuals therefore can have two roles. Their basic interpretation is as random 
variables with a distribution whose parameter values tell us about the variation among the 
level 2 units, and which provide efficient estimates for the fixed coefficients. A second 
interpretation is as individual estimates for each level 2 unit where we use the assumption 
that they belong to a population of units to predict their values. In particular, for units which 
have only a few level 1 units, we can obtain more precise estimates than if we were to ignore 
the population membership assumption and use only the information from those units. This 
becomes especially important for estimates of residuals for random coefficients, where in the 
extreme case of only one level 1 unit in a level 2 unit we lack information to form an 
independent estimate. In chapter 6 we shall illustrate this when we consider predictions 
based upon repeated measures growth models. 

As in single level models we can use the estimated residuals to help check on the 
assumptions of the model. The two particular assumptions that can be studied readily are the 
assumption of Normality and that the variances in the model are constant. Because the 
variances of the residual estimates depends in general on the values of the fixed coefficients it 
is common to standardise the residuals by dividing by  the appropriate standard errors. The 
formulae for these are given in appendix 2.2 where we refer to them as 'diagnostic' or  
'unconditional' standard errors.  

When the residuals at higher levels are of interest in their own right, we need to be able to 
provide interval estimates and significance tests as well as point estimates for them or 
functions of them.  For these purposes we require estimates of the standard errors of the 
estimated residuals, where the sample estimate is viewed as a random realisation from 
repeated sampling of the same higher level units whose unknown true values are of interest. 
The formulae for these 'conditional' or 'comparative' standard errors are also given in 
appendix 2.2. 
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The level 1 residuals are generally not of interest in their own right but are used rather for 
model checking, having first been standardised using the diagnostic standard errors..    

 

2.17  The adequacy of Ordinary Least Squares estimates. 

In appendix 2.1 we give the formulae for estimating the true standard errors for OLS 
estimates when a multilevel model applies. When the intra-unit correlations are small we can 
expect reasonably good agreement between the multilevel estimates and the simpler OLS 
ones. While it is difficult to give general guidelines about when OLS is an adequate 
alternative we can readily derive an explicit formula for the balanced 2-level variance 
components model using a simple regression equation with an intercept and a single 
explanatory variable 

 

y x u eij ij j ij= + + +β β0 1  

 

Write ρ ρy x   for the intra-unit correlations for Y X,   respectively and n for the number of 
level 1 units in the j − th level 2 unit. To obtain an estimate of the correct standard error for 
the estimate of β1  we multiply the usual OLS estimate of the standard error by the quantity 

 

[ ]{ }1 11 1
1

2
+ −− −∑ρ ρy x j

m n( )  

where m is the number of level 2 units. Thus if  there is exactly one level 1 unit per level 2 
unit or either of the intra-unit correlations are zero, this expression is equal to 1.0 and the 
usual expression is correct. As n increases so the OLS estimator increasingly underestimates 
the true standard error. Thus with ρ ρy x= = 0 20.  and 76 level 1 units per level 2 unit the 
true standard error is, on average, twice the OLS estimate. Hence confidence intervals 
based on the OLS estimate will be too short and significance tests will too often reject the 
null hypothesis. By designing a study where n is small we may be able to rely on OLS 
procedures to give adequate estimates for the fixed coefficients, but this does then not allow 
us to study any multilevel structures.  

 

2.18  A 2-level example using longitudinal educational achievement data 

We shall fit the simple 2-level variance components model (2.7) to the JSP data with the 
11-year maths score as response and a single explanatory variable, the 8-year maths score, 
in addition to the constant term, equal to 1 and defining the intercept. . The parameter values 
are displayed in table 2.1 with the Ordinary Least Squares estimates given for comparison.. 
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Table 2.1 Variance components model applied to JSP data 

 

Parameter Estimate (s.e.) OLS Estimate (s.e.) 

Fixed:   

Constant 13.9 13.8 

8-year score 0.65 (0.025) 0.65 (0.026) 

   

Random:   

σ u0
2  (between schools) 3.19 (1.0)  

σ e0
2  (between students) 19.8 (1.1) 23.3 (1.2) 

Intra-school correlation 0.14  

 

Comparing the OLS with the multilevel estimates we see that the fixed coefficients are 
similar, but that there is an intra-school correlation of 0.14. The estimate of the standard 
error of the between school variance is less than a third of the variance estimate, suggesting 
a value highly significantly different from zero. This comparison, however, should be treated 
cautiously, since the variance estimate does not have a Normal distribution and the standard 
error is only estimated, although the size of the sample here will make the latter caveat less 
important. It is generally preferable to carry out a likelihood ratio test by estimating the 
'deviance' for the current model and the model omitting the level 2 variance (see McCullagh 
and Nelder, 1989). The next section will deal  more generally with inference procedures. 
The deviances are, respectively, 4294.2 and 4357.3 with a difference of 63.1 which is 
referred to tables of the chi-squared distribution with one degree of freedom, and is highly 
significant. Note that if we use the standard error estimate given in Table 2.1 to judge 
significance we obtain the corresponding value of ( . / . ) .3 19 1 0 10 22 =  which is very much 
smaller than the likelihood ratio test statistic. 

We elaborate the model first by adding two more explanatory variables, gender and social 
class. The results are set out in the first column of table 2.2 
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Table 2.2 Variance components model applied to JSP data with gender and social class 

 

Parameter Estimate (s.e.) Estimate (s.e.) 

Fixed:   

Constant 14.9 32.9 

8-year score 0.64 (0.025)  

Gender (boys - girls) -0.36 (0.34) -0.39 (0.47) 

Social Class (Non Man. - Manual) 0.72 (0.39) 2.93 (0.51) 

   

Random:   

σ u0
2  (between schools) 3.21 (1.0) 4.52 (1.5) 

σ e0
2  (between students) 19.6 (1.1) 37.2 (2.0) 

Intra-school correlation 0.14 0.11 

 

The random parameter estimates are hardly changed, nor is the coefficient of the 8-year 
maths score. The gender difference is very small and in favour of the girls, but is far from the 
conventional 5% significance level. The social class difference favours the children of non-
manual parents. When we are judging the fixed effects, a simple comparison of  the estimate 
with its standard error is usually adequate. Because the model adjusts for the earlier maths 
score we can interpret the social class and gender differences is in terms of the relative 
progress of  girls versus boys or non-manual versus manual children. The second column in 
table 2.2 shows the effects when 8-year maths score is removed from the model and the 
interpretation is now in terms of the actual differences found at 11 years. Note that the level 
1 and level 2 variances are increased, reflecting the importance of the earlier score as a 
predictor, and the intra-school correlation is slightly reduced. The social class difference is 
much larger, suggesting that most of the difference is that existing at 8 years with a somewhat 
greater progress made between 8 and 11 years by those in the non-manual social group. 
The gender difference remains small. 

The 8-year score has been used as it stands, without centring it in any way. This is 
acceptable in the present case, although the strict interpretation of the intercept is the 
predicted score at an 8 year score of zero, which is outside the range of the observed 
values. If we were to measure the 8-year-score from its mean, the intercept would be 
interpreted as the predicted value at the mean 8-year-score. When we introduce random 
coefficients in chapter 3 we shall see that this becomes an important consideration.  

2.18.1 Checking model assumptions 

We now check some assumptions of the model by looking at the residuals. Figure 2.7 is a 
plot of the standardised level 1 residuals against the fixed part predicted value and figure 2.8 
is a plot of these residuals against their equivalent Normal scores. Figure 2.7 shows the 
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same pattern as figure 2.1 of a decreasing variance with increasing 8-year score, so that the 
assumption of a constant level 1 variance is clearly untenable. 
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Figure 2.7 Standardised level 1 residuals by predicted values for Table 2.2 

 

In chapter 3 we shall be looking at ways to deal with this. The Normal score plots, on the 
other hand, are fairly straight, suggesting that the Normal distribution assumption is 
reasonable for both level 1 and level 2. 

2.18.2 Checking for influential units 

Inspection of Figure 2.9 shows one school, identified as number 38, with the largest 
standardised residual and unstandardised value of 3.5 compared with 2.9 for the next 
largest. It is often useful to study the effect of omitting one or more units from an analysis to 
see what difference this makes to the parameter estimates. Efficient techniques, known as 
'influence analysis', for deciding which units 
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Figure 2.8 Standardised level 1 residuals by Normal equivalent scores for Table 2.2 
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Figure 2.9 Standardised level 2 residuals by Normal equivalent scores for Table 2.2 

 

to treat in this way are well developed for single level models (Cook and Weisberg, 1982). 
Techniques for multilevel models are now available (Langford and Lewis, 1998), and we 
shall look at one procedure which involves studying the effect of omitting specific units. We 
illustrate this for school 38. Table 2.3 shows the parameter estimates associated with two 
different procedures. 

In analysis A school 38 is simply omitted. The principal effect is to reduce the level 2 
variance by about 14%, with little effect on the other parameters. In analysis B we have 
retained all the data in  the analysis, but removed school 38 from the level 2 variation by 
fitting a separate constant in the fixed part of the model. For the explanatory variable 
defining the level 2 variance we fit Z0

* rather than Z0, where 

Z0

0* =








 if school 38
1 otherwise    
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Table 2.3 As Table 2.2. Analysis A omitting school 38. analysis B fitting a constant for 
school 38. 

 

  

Parameter Estimate (s.e.) Estimate (s.e.) 

 A B 

Fixed:   

Constant 14.5 14.7 

8-year score 0.65 (0.026) 0.64 (0.025) 

Gender (boys - girls) -0.40 (0.34) -0.37 (0.34) 

Social Class (Non Man. - Manual) 0.74 (0.39) 0.72 (0.38) 

School 38  6.1 (1.5) 

   

Random:   

σ u0
2  (between schools) 2.74 (0.9) 2.75 (0.9) 

σ e0
2  (between students) 19.6 (1.1) 19.6 (1.1) 

Intra-school correlation 0.12 0.12 

and the constant fitted in the fixed part is simply 1 0− Z* . The relatively small number of 
students, 9, in school 38 accounts for the fact that its shrunken residual mean of 3.5 is 
considerably less than the directly fitted mean of 6.1. Although it makes little difference to 
the parameter estimates in this example, in general it seems preferable to fit separate 
parameters for influential units and retain as much data as possible in the analysis. 

 

2.19 Higher level explanatory variables and compositional effects 

We have already mentioned that from the point of view of estimating parameters, the 
explanatory variables can be defined or measured at any level. For substantive 
interpretations, however, explanatory variables measured at levels 2 or above often have 
particular interpretations. We illustrate some of these using the JSP dataset and forming the 
explanatory variable which is the mean 8-year-old maths score. This is often known as a 
'compositional' variable since it measures an aspect of the composition of the school to 
which the individual student belongs. We are interested in whether the average 8-year score 
has an effect on the eleven year score, after having adjusted for the student's own 8-year 
score. For this analysis all the eight year scores are measured about the sample mean value 
of 25.98, see Table 2.4.. Analysis A adds the average school 8-year score. Its coefficient is 
very small and not significant. Analysis B uses the school centred 8-year score. This is often 
advocated  on the grounds that it is the difference between a student's score and the average 
score for that student's school which is likely to be the most relevant predictor of later 
achievement. Bryk and Raudenbush (1992, Chapter 5) give a detailed discussion of this 
issue for models where the compositional variable, as here, is a mean computed for all the 
students in the school, or more generally all the level 1 units in the relevant level two unit. 
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Analyses A and B are, of course, formally equivalent and analysis A indicates directly that a 
simpler model omitting the school mean score is adequate. It is analysis C, as discussed 
below, which introduces a more complex model. 

 

 

Table 2.4 Variance components model for JSP data with mean 8-year score measured about sample 
mean and centring about school mean. 

 

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 

 A B C 

Fixed:    

Constant 31.5 31.5 31.7 

8-year score 0.64 (0.025)  0.63 (0.025) 

8-year score centred on school mean  0.64 (0.026)  

Gender (boys - girls) -0.36 (0.34) -0.36 (0.34) -0.37 (0.34) 

Social Class (Non Man. - Manual) 0.72 (0.38) 0.72 (0.31) 0.79 (0.31) 

School mean 8-year score  -0.01 (0.13) 0.63 (0.12) -0.03 (0.12) 

8-year score x school mean 8-year score   -0.02 (0.01) 

    

Random:    

σ u0
2  (between schools) 3.21 (1.0) 3.21 (1.0) 3.13  (1.0) 

σ e0
2  (between students) 19.6 (1.1) 19.6 (1.0) 19.5 (1.1) 

Intra-school correlation 0.14 0.14 0.14 

 

In fact, the mean score for students in a school is only one particular summary statistic 
describing the composition of the students. Another summary would be the spread of 
scores, measured for example by their standard deviation. We can also consider measures 
such as the proportions of high or low scoring students and in general any set of such 
measures. When using the average score we can also consider using the median or modal 
score rather than the mean. With any of these other measures we may wish to retain the 
deviation from the school mean as an explanatory variable, and we could even consider 
introducing a more complex  function of this, for example by adding higher order terms. 
There is here a fruitful area for further study. 

Analysis C looks at the possibility of an interaction between student score and school mean 
and we do find a significant effect which we can interpret as follows. The higher the school 
mean 8-year score the lower the coefficient of the student's 8-year score. One implication of 
this is that for two relatively low scoring student's at 8 years, the one in the school with a 
higher average is predicted to do better at 11 years. To study this further we now need to 
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introduce a model with random coefficients where we explicitly allow each school's 
coefficient to vary randomly at level 2, as in equation  (2.6), see Table 2.5. 

The addition of the 8-year score coefficient as a random variable at level 2 somewhat 
increases the social class difference and somewhat decreases the gender difference, but 
within their standard errors. The level 1 variance is reduced and we have significant 'slope' 
variation at level 2; the likelihood ratio test criterion is  52.4 which is referred to chi squared 
tables with 2 degrees of freedom and is highly significant. 

Table 2.5 Random coefficient model for JSP data. 

 

 

Parameter Estimate (s.e.) 

  

Fixed:  

Constant 31.7 

8-year score 0.62 (0.036) 

Gender (boys - girls) -0.25 (0.32) 

Social Class (Non Man. - Manual) 0.96 (0.36) 

School mean 8-year score  -0.04 (0.13) 

8-year score x school mean 8-year score -0.02 (0.01) 

  

Random:  

Level 2  

σ u0
2  (Intercept) 3.67 (1.03) 

σu01 (covariance) -0.34 (0.09) 

σu1
2  (8-year score) 0.03 (0.01) 

Level 1  

σ e0
2   17.8 (1.0) 

 

If we calculate the correlation between the intercept and slope at level 2 we obtain a value 
of -1.03! This sometimes happens as a result of sampling variation and implies that the 
population correlation is very high. We shall see in chapter 3 we can constrain this 
correlation to be exactly -1.0 and thus admissible. Alternatively, by suitably elaborating the 
model or by carrying out certain transformations we can avoid this problem. For now, 
however, in order to illustrate what this means in the present data we can compute residuals 
for each school, for the slope and intercept. With these estimates we can then predict the 
11-year score for any set of values of the explanatory variables. Figure 2.10 shows the 
predicted values for manual girls by 8-year score. 
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Figure 2.10 Plot of predicted 11-year score by 8-year score for JSP schools  

 

The predicted lines for the high scores at 8 years are very close together separating as the 8-
year score decreases. The slope residual is almost uncorrelated  (-0.02) with the mean 8-
year score and the compositional coefficient of mean 8-year score is little changed. We can 
add, therefore, to the previous compositional effect, the statement that some schools are 
differentially 'effective' for pupils with low 8-year scores, with little difference for high 8-year 
scores. In chapter 3 we shall continue to analyse this dataset and show how further 
elaboration of the variance structure of the model leads to certain simplifications of 
interpretation. 

 

2.20 Hypothesis testing and confidence intervals 

In this section we deal with large sample procedures for constructing interval estimates for 
parameters or linear functions of parameters and for hypothesis testing. Hypothesis tests are 
used sparingly throughout this book, since the usual form of a null hypothesis, that a 
parameter value or a function of parameter values is zero, is usually implausible and also 
relatively uninteresting. Moreover, with large enough samples a null hypothesis will almost 
certainly be rejected. The exception to this is where we are interested in whether a 
difference is positive or negative, and this is discussed in the section on residuals below. 
Confidence intervals emphasise the uncertainty surrounding the parameter estimates and the 
importance of their substantive significance. 

 

2.20.1 Fixed parameters 

In the analyses of 2.11 we presented parameter estimates for the fixed part parameters 
together with their standard errors. These are adequate for hypothesis testing or confidence 
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interval construction separately for each parameter. In many cases, however, we are 
interested in combinations of parameters. For hypothesis testing, this most often arises for 
grouped or categorised explanatory variables where n group effects are defined in terms of 
n −1  dummy variable contrasts and we wish simultaneously to test whether these contrasts 
are zero. In the case of the analysis in table 2.2 we may be interested in the hypothesis that 
the gender and social class effects taken jointly, are zero. We may also be interested in 
providing a pair of confidence intervals for the parameter estimates. We proceed as follows. 

Define a (r x p) contrast matrix C. This is used to form linearly independent functions of the 
p fixed parameters in the model of the form f C= β, so that each row of C defines a 
particular linear function. Parameters which are not involved have the corresponding 
elements set to zero. Suppose we wish to test the hypothesis in table 2.2 that the gender and 
social class coefficients are jointly zero. We define  

 

C f=






 =









0 0 1 0
0 0 0 1

2

3

,    
β
β  

 

and the general null hypothesis is 

 

{ }H f k k0 0: ,      =  here=  

 

We form 

  

R f k C X V X C f k

f C

T T T= − −

=

− − −( $ ) [ ( $ ) ] ( $ )
$ $

1 1 1

β
 

 

(2.15) 

 

If the null hypothesis is true this is distributed as approximately χ2  with r degrees of 
freedom. Note that the term ( $ )X V XT − −1 1 is the estimated covariance matrix of the fixed 
coefficients. 

If we find a statistically significant result we may wish to explore which particular linear 
combinations of  the coefficients involved are significantly different from zero. The common 
instance of this is where we find that n groups differ and we wish to carry out all possible 
pairwise comparisons. A simultaneous comparisons procedure which maintains the overall 
type I error at the specified level involves carrying out the above procedure with either a 
subset of the rows of C or a set of  (less than r) linearly independent contrasts. The value of 
R obtained is then judged against the critical values of the chi-squared distribution  with r 
degrees of freedom. 
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We can also obtain an α%  confidence region for the parameters by setting $R equal  to the 
α%  tail region of the χ2  distribution with r degrees of freedom in the expression 

 

$ ( $) [ ( $ ) ] ( $)R f f C X V X C f fT T T= − −− − −1 1 1

 

This yields a quadratic function of  the estimated coefficients, giving an r-dimensional 
ellipsoidal region. For table 2.2 we obtain the following results. 

The null hypothesis test gives a value for chi squared on 2 degrees of freedom of 4.51 with a 
corresponding P-value of 0.10. The 95% confidence region is  the ellipse 

 

8 3 0 36 0 22 0 36 0 72 6 7 0 72 5 991
2

1 2 2
2. ( . ) . ( . )( . ) . ( . ) .β β β β+ + + − + − =  

 

where the subscripts (1,2) refer to gender and social class respectively and 5.99 is the 5% 
point of the χ2

2  distribution. Figure 2.10 displays this region. 

 

Gender

Social Class

 
Figure 2.11 95% confidence region for coefficients of Social Class and Gender 

 

In some situations we may be interested in separate confidence intervals for all possible 
linear functions involving a subset of q parameters or q linearly independent functions of the 
parameters, while maintaining a fixed probability that all the intervals include the population 
value of these functions of the parameters. As before, this may arise when we have an 
explanatory variable with several categories and we are interested in intervals for sets of 
contrasts. For a ( )%1− α  interval write Ci  for the i-th row of C, then a simultaneous 
( )%1− α  interval for Ciβ, for all Ci is given by  
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( $ , $ )C d C di i i iβ β− +  

where  

d C X V X Ci i
T

i
T

q= − −[ ( $ ) ],( )
.1 1 2 0 5χ α  

 

where χ αq,( )
2  is the α%  point of the χq

2  distribution. 

For model A of table 2.2 we obtain the following 95%  intervals for the coefficients of 
gender and social class, first the separate intervals then the simultaneous ones which are 
some 25% wider. 
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We can also use the likelihood ratio test criterion for testing hypotheses about the fixed 
parameters, although generally the results will be similar. The difference arises because the 
random parameter estimates used in (2.15) are those obtained for the full model rather than 
those under the null hypothesis assumption, although this modification can easily be made. 
For example the likelihood ratio test for gender and social class yields a value of 5.5 
compared with the above value of 4.5. We shall discuss the likelihood ratio test in the next 
section dealing with the random parameters.  

2.20.2 Random parameters 

In very large samples it is possible to use the same procedures for hypothesis testing and 
confidence intervals as for the fixed parameters. Generally, however, procedures based 
upon the likelihood statistic are preferable. To test a null hypothesis H0against an alternative 
H1  involving the fitting of additional parameters we form the log likelihood ratio or deviance 
statistic 

 

D e01 0 12= − log ( / )λ λ  (2.16) 

 

where λ λ0 1,  are the likelihoods for the null and alternative hypotheses and this is referred to 
tables of the chi squared distribution with degrees of freedom equal to the difference (q) in 
the number of parameters fitted under the two models. We have already quoted this statistic 
for testing the level 2 variance in table 2.1 where the value of 63.1 compares with the 
statistic formed by taking the variance estimate and dividing by its standard error and then 
squaring the result to give a value of  11.0.  
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We can also use (2.16) as the basis for constructing a ( )%1− α  confidence region for the 
additional parameters. If D01 is set to the value of theα%  point of the chi squared 
distribution with q degrees of freedom, then a region is constructed to satisfy (2.16), using a 
suitable search procedure. This is a computationally intensive task, however, since all the 
parameter estimates are recomputed for each search point.  

If we carry out these calculations for the level 2 variance in table 2.1 we obtain a 95% 
confidence interval of (1.78, 5.65). Likewise we can obtain an interval for the intra-school 
correlation by searching in two dimensions and computing the value at each search point. 
This gives a 95% confidence interval of (0.09, 0.22). A review of some approximate 
procedures is given by Burdick et al (1988). 

An alternative is to use the ‘profile likelihood’ (McCullagh and Nelder,1989). In this case 
the likelihood is computed for a suitable region containing values of the random parameters 
of interest, for fixed values of the remaining random parameters. For the level 2 variance of 
table 2.1 this gives a 95% confidence interval of (1.77, 5.69) which is very close to the full 
likelihood interval. 

In Chapter 3 we shall see how bootstrap simulations can provide interval estimates. 

 

2.20.3 Residuals 

In our JSP variance components analysis we estimated level 2 residuals, one for each 
school. In studies of school effectiveness, one requirement is sometimes to try to identify 
schools with residuals which are substantially different. From a significance testing 
standpoint, we will often be interested in the null hypothesis that school A has a smaller 
residual than school B against the alternative that the residual for school A is larger than that 
for school B (ignoring the vanishingly small probability that they are equal). In the case when 
a standard significance test accepts the alternative hypothesis (at a chosen level) of some 
difference against the null hypothesis of no difference, this is equivalent to accepting one of 
the alternatives (A  > B, A < B) at the same level of significance and we shall use this 
interpretation. 

Where we can identify two particular schools then it is straightforward, using the results of 
appendix 2.1 to construct a confidence interval for their difference or carry out a significance 
test. Often, however, the results are made available to a number of individuals, each of 
whom are interested in comparing their own schools of interest. This may occur, for example 
where policy makers wish to select a few schools within a small geographical area for 
comparison, out of a much larger study. In the following discussion, we suppose that 
individuals wish to compare only pairs of schools, although the procedure can be extended 
to multiple comparisons of three or more residuals. Further details are given by Goldstein  
and Healy(1994).  

Consider the JSP data where we have 48 estimated residuals together with their 
comparative standard errors. Since the sample size is fairly large, we can also assume that 
these estimates are uncorrelated.  
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First, we order the residuals from smallest to largest. We construct an interval about each 
residual so that the criterion for judging statistical significance at the ( )%1 − α level for any 
pair of residuals is whether their confidence intervals overlap. For example, if we consider a 
pair of residuals with a common standard error (se) , and assuming Normality, the 
confidence interval width for judging a difference significant at the 5% level are given by 
±1 39. ( )se . 

The general procedure defines a set of confidence intervals for each residual i as 

$ ( )u ci i± se  (2.17) 

For each possible pair of intervals, (2.17) there is a significance level associated with the 
overlap criterion, and the value c is determined so that the average, over all possible pairs is 
( )%1 − α . A search procedure can be devised to determine c. When the ratios of the 
standard errors do not vary appreciably, say by not more than 2:1, the value 1.4 can be 
used for c. As this ratio increases so does the value of c. In the present case all but 2 of 
these ratios are greater than 2 and we have used the common value of 1.4.  

The results are presented in figure 2.11. As is clear, apart from some of the extreme 
intervals, each interval overlaps with most of the other intervals. If we wished the basic 
comparison to take place among triplets of schools, with simultaneous confidence intervals, 
then using the results of section 2.11.1 we replace the Normal upper 2.5% value of 1.96 by 

χ2 0 05
2
,( . ) = 2.45. This will give a similar display but with intervals 25% wider. In reality the 

complete set of schools typically will be compared in overlapping subsets of different sizes, 
and a value for c can be determined by averaging over all such possibilities. 
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Fig 2.12 Simultaneous confidence intervals for JSP school residuals 

 

Presentations such as that in 2.12 are useful for conveying the inherent uncertainty 
associated with estimates for individual level 2 (or higher) units, where the number of level 1 
units per higher level unit is not large. This uncertainty in turn places inherent limitations upon 
such comparisons. 
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Appendix 2.1  

The general structure and estimation for a multilevel model 

 

We illustrate the general structure using a 2-level model. We have 
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(2.1.1) 

We will also write simply 

e e e u

u Z e

ij ij j j
( ) ( )

( )

,1 2

1

= =

+

    

Y = X + Z(2)β
 

The residual matrices E E1 2,      have expectation zero with  

  
E E E V E E E V

E E E V V V

T T

T

( ) ( )

( ) ,
( ) ( )

( ) ( )

1 1 2 1 2 2 2 2

1 2 2 2 1 2 20

= =

= = +

,     

       
 

 

(2.1.2) 

In the standard model the level 1 residuals are assumed independent across level 1 units, so 
that V2 1( )  is diagonal with ij-th element 

 var( ) , cov( )( ) ( ) ( )e z z eij eij ij e ij e h

T

= = =σ 2 1 1 1Ω Ω    

The level 2 residuals are assumed independent across level 2 units and V2 2( )  is block-

diagonal with j-th block 

V z z ej j u j u h

T

2 2
2 2 2

( )
( ) ( ) ( ), cov( )= =Ω Ω   

The j-th block of V2  is therefore given by 

V Vj i eij j2
2

2 2= ⊕ +σ ( )  (2.1.3) 

where ⊕  is the direct sum operator. 

For some of the models dealt with in later chapters, such as the time series models of 
chapter 6,  the requirement of independence among the residuals for the level 1 units is 
relaxed. In this case the first term on the right hand side of  (2.1.3)  is replaced by the 
particular structure of V2 1( )  .  
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For known V2  and omitting the subscript for convenience, the generalised least squares 
estimate of the fixed coefficients is 

$ ( )β = − − −X V X X V YT T1 1 1  (2.1.4) 

with covariance matrix 

( )X V XT − −1 1  

For known β  we form 

Y YY Y Y X E ET* ~~
,

~= = − = +  β 1 2   (2.1.5) 

and we have E Y V( )* = . We now write  

Y vec Y** *( )=  

where vec  is the vector operator stacking the columns of  Y *  underneath each other. We 
can now write a linear model involving the random parameters, that is the elements of 
Ω Ωu e,  , as follows 

E Y Z( )** *= θ  (2.1.6) 

Where Z*  is the design matrix for the random parameters. An example of such a design 
matrix for a simple variance components model is given in Chapter 2. We now carry out a 
generalised least squares analysis to estimate θ  , namely 
$ ( )* * * * * ** *θ = = ⊗

− −−Z V Z Z V Y V V V
T T1 11 ,     (2.1.7) 

where ⊗  is the Kronecker product. The covariance matrix of  $θ  is given by 

( ) cov( ) ( )* * * * * ** * * * * *Z V Z Z V Y V Z Z V Z
T T T− − − −− −1 1 1 11 1  

Now we have  

Y vec YY Y YT** ( ~ ~ ) ~ ~= = ⊗  

Using a standard result ( for example Searle et al., 1992 sect 12.3) we have 

cov( ~ ~) ( )( )Y Y V V I S N⊗ = ⊗ +  

where  V V V⊗ = *  and  SN   is the vec permutation matrix. 

As Goldstein and Rasbash (1992) note, the matrix A  where  Z vec A* ( )= , is symmetric and 
hence 

V Z V V vec A vec V AV* * ( ) ( ) ( )
−

= ⊗ =− − − −1 1 1 1 1
 

and  V AV− −1 1  is symmetric so that, using a standard result, we have 

S V Z V ZN
* * * *− −

=
1 1

 

and after substituting in the above expression for  cov( $)θ  we  obtain 
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cov( $) ( )* * *θ =
− −2
1 1Z V Z

T

 (2.1.8) 

The iterative generalised least squares (IGLS) procedure (Goldstein, 1986) iterates between 
(2.1.4) and (2.1.7) using the current estimates of the fixed and random parameters. Typical 
starting values for the fixed parameters are those from an ordinary least squares analysis. At 
convergence, assuming multivariate Normality, the estimates are maximum likelihood.  

The IGLS procedure produces biased estimates in general and this can be important in small 
samples. Goldstein (1989a) shows how a simple modification leads to restricted iterative 
generalised least squares (RIGLS) or restricted maximum likelihood (REML) estimates 
which are unbiased. If we rewrite (2.1.5) using the estimates of the fixed parameters $β  we 
obtain 

E Y V X X V X X V X XT T T( ) cov( $ ) ( )* = − = − − −
2 2 2

1 1β  (2.1.9) 

By taking account of the sampling variation of the $β  we can obtain an unbiased estimate of 
V2  by adding the second term in (2.1.9), the ‘hat’ matrix, from Y *  at each iteration until 
convergence. In the case where we are estimating a variance from a simple random sample 
this becomes the standard procedure for using the divisor n-1 rather than n to produce an 
unbiased estimate. 

Full details of  efficient computational procedures for carrying out all these calculations are 
given by Goldstein and Rasbash (1992). 
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Appendix 2.2  

Multilevel residuals estimation 

Denote the set of mh  residuals at level  h in a multilevel model by 

 

p p p p p ph h hm hi
T

hi hinh h
= ={ ,... } { ,... }1 1,      (2.2.1) 

 

where nh  is the number of level h units. Since the residuals at any level are independent of 
those at any other level for each residual vector we require the posterior or predicted 
residual estimates given by 

$ ( | ~, )p E p Y Vhi hi=  

where ~Y Y X= − β . We consider the regression of  the set of all residuals ph  on ~Y  which 
gives the estimator 

$ ~p R V Yh h
T= −1

   (2.2.2) 

where Rh  is block-diagonal, each block corresponding to a level h unit and for the j-th   
block given by 

Z j
h

h( )Ω  

where Z j
h
( )  is the matrix of explanatory variables for the random coefficients at level h. We 

obtain consistent estimators by substituting sample estimates of the parameters in (2.2.2). 
These estimates are linear functions of the responses and their unconditional covariance 
matrix is given by 

 

R V V X X V X X V Rh
T T T

h
− − − −−1 1 1 1( ( ) )   (2.2.3) 

The second term in (2.2.3) derives from considering the sampling variation of the estimates 
of the fixed coefficients and can be ignored in large samples and we obtain a consistent 
estimator by substituting parameter estimates in 

R V Rh
T

h
−1  

Note that there are no covariances across units. Where we wish to study the distributional 
properties of standardised residuals for diagnostic purposes then the unconditional 
covariance matrix (2.2.3) should be used to standardise the estimated residuals. If, however, 
we wish to make inferences about the true phi  for example to construct confidence intervals 
or test differences then we require the conditional or ‘comparative’ covariance matrix of  
$ |p ph h  or E p p p ph h h h

T[( $ ) ( $ ) ]− −  which is given by substituting parameter estimates in 
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S R V V X X V X X V Rh h
T T T

h− −− − − −1 1 1 1( ( ) )  (2.2.4) 

 

where Sh  is the block-diagonal matrix where each block corresponds to a level h  unit is 
Ωh . We note that no account is taken of the sampling variability associated with the 
estimates of the random parameters in (2.2.3) or (2.2.4). Thus with small numbers of  units, 
a procedure such as bootstrapping should be used to estimate these covariance matrices 
(Chapter 3). 
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Appendix 2.3  

The EM algorithm 

To illustrate the procedure, consider the 2-level variance components model 

y X u e eij ij j ij ij u= + + = =( ) var( ) , )β σ σ,          var(ue j
2 2

 (2.3.1) 

The vector of level 2 residuals is treated as missing data and the 'complete' data therefore 
consists of the observed vector Y  and the u j  treated as observations. The joint distribution 

of these, assuming Normality, and using our standard notation is  
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(2.3.2) 

 

This generalises readily to the case where there are several random coefficients. If we 
denote these by β j  we note that some of them  may have zero variances. We can now 

derive the distribution of β j Y|  in appendix 2..2, and we can also write down the Normal 

log likelihood function for (2.3.2) with a general set of random coefficients, namely 

 

log( ) log( ) log| |

cov( )

L N J ee e ij j
T

j
u j

ij

u j

∝ − − − −

=

− −∑∑σ σ β β
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(2.3.3) 

  

Maximising this for the random parameters we obtain 

 

$
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e ij
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∑
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(2.3.4) 

 

where m is the number of level 2 units. We do not know the values of the individual random 
variables. We require the expected values, conditional on the Y  and the current parameters, 
of the terms under the summation signs, these being the sufficient statistics. We then 
substitute these expected values in (2.3.4) for the updated random parameters. These 
conditional values are based upon the 'shrunken' predicted values  and their (conditional) 
covariance matrix, given in appendix 2..2. With these updated values of the random 
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parameters we can form V  and hence obtain the updated estimates for the fixed parameters 
using generalised least squares. We note that the expected values of the sufficient statistics 
can be obtained using the general result for a random parameter vector θ . 

 

E E ET T( ) cov( ) [ ( )][ ( )]θθ θ θ θ= +  (2.3.5) 

 

The prediction is known as the E (expectation) step of the algorithm and the computations in 
(2.3.4) the M (maximisation) step. Given starting values, based upon OLS, these 
computations are iterated until convergence is obtained. Convenient computational formulae 
for computing these quantities at each iteration can be found in Bryk and Raudenbush 
(1992). 

Using the general procedures for estimating residuals in Appendix 2.2, at each iteration we 
would define the level 2 estimated residuals as explanatory variables and then regress the 
response variable on these. In the present case this would be an OLS regression to obtain 
the fixed coefficients. Note, however, that we require the matrix given by (2.3.5) in the 
estimation rather than the usual ( ) ( )θ θ θ θT TV − ∝1  which in this case is just the second term 
in (2.3.5), the first term being the (estimated) covariance matrix of the residuals.  Using 
(2.3.4) for the level 2 random parameters we then estimate new residuals and iterate. 
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Appendix 2.4    

Markov Chain Monte Carlo estimation 

Markov Chain Monte Carlo algorithms exploit the properties of Markov chains where the 
probability of an event is conditionally dependent on a previous state. The procedure is 
iterative and at each stage from the full multivariate distribution the distribution of each 
component conditional on the remaining components is computed and used to generate a 
random variable. The components may be variates, regression coefficients, covariance 
matrices etc. After a suitable number of iterations, we obtain a sample of values from the 
distribution of any component which we can then use to derive any desired characteristic 
such as the mean, covariance matrix, etc. The most common procedure is that of Gibbs 
Sampling and Gilks et al. (1993) provide a comprehensive discussion with applications and 
an application to a 2-level logit model is given by Zeger and Karim (1991). It allows the 
fitting of Bayesian models where prior distributions for the parameters are specified. 

We outline a Gibbs Sampling procedure for a 2-level model. 

Write  

Y X Z u Z e= + +β ( ) ( )2 1
 

We first consider the distribution  β| ,( )u Yk  where  k refers to the k-th iteration. 

Given u k( ) , Z u( )2  is just an offset so that we can regress y xij ij on  to estimate 

$ var( $ )( ) ( )β βk k and  

We can then select a random vector from this distribution, assumed to be multivariate 
normal ( $ ( $ ))( ) ( )β βk k , var . 

We now consider the distribution of  Ω2 | ( )u k . We have (with a non-informative prior) that 
the (posterior) distribution of Ω2

1−  is a Wishart distribution with parameter (i.e. covariance) 
matrix 

 

 S u u with d J qk
j
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j
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j

J
T( ) ( ) ( )= = − +

=
∑

1

1     d. f.  

 

where J  is the number of level 2 units and q is the number of random coefficients. 

 

A simple way of generating such a Wishart distribution  is to generate d multivariate normal 
vectors from N S k( , )( )0  and form their SSP matrix. This provides $ ( )Ω2

k . 

Finally we consider the distribution u Yj | , ,β Ω2 . These are the usual level 2 residuals, for 

which we have standard expressions for their expected values and covariance matrix. We 
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note that for a 2-level model (but not within a three level model) these are block-
independent. Assuming Normality we can now generate a set of u j

k( )  and this completes an 
iterative cycle. 

There are some particular computational details to be noted. For example 'rejection 
sampling' at each cycle can be used and we can do several cycles for Ω2 ,u j  for each β  
since the former tend to have higher autocorrelations across cycles.  

The procedure can be applied to any existing models, e.g. logit models, where the 
conditional distributional assumptions are explicit. Gibbs Sampling tends to be  
computationally demanding, with hundreds if not thousands of iterations required and this 
can be particularly burdensome when several different models are being explored for their fit 
to the data. It is perhaps most useful for small and moderate sized samples and when used in 
conjunction with likelihood based EM or IGLS algorithms. 
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Chapter 3 

Extensions to the basic multilevel model 

3.21 Complex variance structures 

In all the models of chapter 2 we have assumed that  a single variance describes the random 
variation at level 1. At level 2 we have introduced a more complex variance structure, as 
shown in figure 2.7, by allowing regression coefficients to vary across level 2 units. The 
modelling and interpretation of this complex variation, however, was solely in terms of 
randomly varying coefficients. Now we look at how we can model   the variation explicitly 
as a function of explanatory variables and how this can give substantively interesting 
interpretations. We shall consider mainly the level 1 variation, but the same principles apply 
to higher levels. We shall also in this chapter consider extensions of the basic model to 
include constraints on parameters, unit weighting, standard error estimation and aggregate 
level analyses. 

In the analysis of the JSP data in chapter 2 we saw that the level 1 residual variation 
appeared to decrease with increasing 8-year maths score. We also saw how the estimated 
individual school lines appeared to converge at high 8-year scores. We consider first the 
general problem of modelling the level 1 variation. 

Since we shall now consider several random variables at each level  the notation used in 
chapter 2 needs to be extended. For a 2-level model we continue to use the notation 
u ej ij,     for  the total variation at levels 2 and 1 and we write 
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(3.3) 

 

where the z 's are explanatory variables. Normally z zj ij0 0,   refer to the constant (=1) 
defining a basic or intercept variance term at each level.  

For three level  models we will use the notation v u ek kj ijk, ,  where i refers to level 1 
units, j to level 2 units, and k to level 3 units and h indexes the explanatory variables and 
their coefficients within each level.. 

One simple model for the level 1 variation is to make it a linear function of a simple 
explanatory variable. Consider the following extension of (2.1) 
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,       

      
 

(3.4) 

so that the level 1 contribution to the overall variance is the linear function of  zij  
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σ σe e ijz0
2

012+  

This device of constraining a variance parameter to be zero in the presence of a non zero 
covariance is used to obtain the required variance structure. Thus it is only the specified 
functions of the random parameters in (3.2) which have an interpretation in terms of the 
level 1 variances of the responses yij . This will generally be the case where the coefficients 
are random at the same level at which the explanatory variables are defined. Thus for 
example, in the analyses of the JSP data in chapter 2, we could model the average school 8-
year-score, which is a level-2 variable, as random at level 2. If the resulting variance and 
covariance are non-zero, the interpretation will be that the between-school variance is a 
quadratic function of the 8-year score namely 

σ σ σu u j u jz z0
2

01 1
2 22+ +  

where z j  is the average 8-year score. 

Furthermore, we can allow a variance parameter to be negative, so long as the total level 1 
variance remains positive within the range of the data In chapter 5 we discuss modelling the 
total level 1 variance as a nonlinear function of explanatory variables, for example as a 
negative exponential function which automatically constrains the variance to be positive. 

Where a coefficient is made random at a level higher than that at which the explanatory 
variable itself is defined, then the resulting variance (and covariance) can be interpreted as 
the between-higher-level unit variance of the within-unit relationship described by the 
coefficient. This is the interpretation, for example, of the random coefficient model of  table 
2.5 where the coefficient of the student 8-year score varies randomly across schools. In 
addition, of course, we have a complex variance  (and covariance) structure at the higher 
level. 

The model (3.2) does not constrain the overall level 1 contribution to the variance in any 
way. In particular, it is quite possible for the level 1 variance and hence the total response 
variance to become negative. This is clearly inadmissible and will also lead to numerical 
estimation problems. To overcome this we can consider elaborating the model by adding a 
quadratic term, most simply by removing the zero constraint on the variance. In chapter 5 
we consider the alternative of modelling the variance as a nonlinear function of explanatory 
variables.  

In table 3.0 we extend the model of table 2.5 to incorporate a such a quadratic function for 
the level 1 variance. If we attempt to fit a linear function we indeed find that a negative total 
variance is predicted. 

The results from model A  show a significant complex level 1 variation (chi squared with 2 
degrees of freedom = 123). Furthermore, the level 2 correlation between the intercept and 
slope is now reduced to -0.91 and with little change among the fixed part coefficients. The 
predicted level 1 standard deviation varies from about 9.0 at the lowest 8-year score value 
to about 1.9 at the highest, reflecting the impression from the scatterplot in figure 2.1.  
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Table 3.1 JSP data with level 1 variance a quadratic function of 8-year score measured about the 
sample mean. Model A with original scale; models B and C with Normal score transform of 11-year 
score. 
 
Parameter Estimate(s.e.) Estimate (s.e.)  Estimate (s.e.) 
 A  B  C 
Fixed:    
Constant 31.7 0.13 0.14 
8-year score 0.58 (0.029) 0.097 (0.004) 0.096 (0.004) 
Gender (boys - girls) -0.35 (0.26) -0.04 (0.05) -0.03 (0.05) 
Social class (Non Man - Man) 0.74 (0.29) 0.16 (0.06) 0.16 (0.06) 
School mean 8-year score  0.02 (0.11) -0.008 (0.02)  
8-yr score x school mean 8-yr score  0.02 (0.01) 0.0006 (0.02)  
    
Random:    
Level 2    
σ u0

2   2.84 (0.88) 0.084 (0.024) 0.086 (0.024) 

σu 01  -0.17 (0.07) -0.0024 (0.0015) -0.0030 (0.0015) 

σu1
2  0.012 (0.007) 0.00018 (0.00016) 0.00021 (0.00016) 

    
Level 1    
σ e0

2   16.5 (1.02) 0.413 (0.029) 0.412 (0.022) 

σ e01  -0.90 (0.02) -0.0032 (0.0017)  

σe1
2  0.06 (0.02) 0.0000093(0.00041)  

 

One of the reasons for the high negative correlation between the intercept and slope at the 
school level may be associated with the fact that the 11-year score has a 'ceiling' with  a 
third of the students having scores of 35 or more out of 40. A standard procedure for 
dealing with such skewed distributions is to transform the data, for example to normality, 
and this is most conveniently done by computing Normal scores; that is by assigning Normal 
order statistics to the ranked scores. The results from this analysis are given under model B 
in table 3.1. Note that the scale has changed since the response is now a standard normal 
variable with zero mean and unit standard deviation. We now find that there is no longer any 
appreciable complex variation at level 1; the chi squared test yields a value of 3.4 on 2 
degrees of freedom. Nor is there any effect of the compositional variable of mean  school 8-
year score; the chi squared test for the two fixed coefficients associated with this give a 
value of 0.2 on 2 degrees of freedom. The reduced model is fitted as  C. The parameters 
associated with the random slope at level 2 remain significant (χ2

2=7.7, P=0.02) and the 
level 2 correlation is further reduced to -0.71. Figure 3.1 shows the level 1 standardised 
residuals plotted against the predicted values from which it is clear that now the variance is 
much more nearly constant. This example demonstrates that interpretations may  be sensitive 
to the scale on which variables are measured. It is typical of many measurements in the 
social sciences that their scales are arbitrary and we can justify nonlinear, but monotone, 
order preserving, transformations if they help to simplify the statistical model and the 
interpretation.  
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Figure 3.1 Level 1 standardised residuals by predicted values for analysis C in table 3.1 

 

We are not limited to making the variance a function of a single explanatory variable, and we 
can consider general functions of these combined. Some may be absent from the fixed part 
of the model, or equivalently have their fixed coefficients constrained to zero. A traditional, 
single level, example is 'regression through the origin' in which the fixed intercept term is zero 
while a level 1 variance associated with the intercept is fitted. 

We can consider any particular function of explanatory variables as the basis for modelling 
the variance. One possibility is to take the fixed part predicted value $yij  and define the level 

1 random term as e yij ij1 $ , assuming the predicted value is positive, so that the level 1 

variance becomes σe ijy1
2 $ , that is proportional to the predicted value; often known as a 

'constant coefficient of variation' model. Other functions are clearly possible, and as we shall 
see in chapter 7 often there are  natural choices associated with distributional assumptions 
made about the responses. 

3.21.1 Variances for subgroups defined at  level 1 

A common example of complex variation at level 1 is where variances are specific for 
subgroups. For example, for many measurements there are gender or social class 
differences in the level 1 variation. A straightforward way to model this situation in the case 
of a single such grouping is by defining the following version of (3.2) for a model with 
different variances for children with manual and with non-manual social class backgrounds. 

y x u e z e z
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(3.5) 
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Table 3.2 JSP data with normal score of 11-year maths as response. Subscript 1 refers to 8-year 
maths score, 2 to manual group, 3 to non manual group and 4 to boys. 
 
Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 
 A B C 
Fixed    
Constant 0.13 0.13 0.13 
8-year score 0.096 (0.004) 0.096 (0.004) 0.096 (0.004) 
Gender (boys-girls) -0.03 (0.05) -0.03 (0.05) -0.03 (0.05) 
Social Class (Non Man - Man) 0.16 (0.05) 0.16 (0.05) 0.16 (0.05) 
    
Random    
level 2    
σ u0

2  0.086 (0.025) 0.086 (0.025) 0.086 (0.024) 

σu01 -0.0029 (0.0015) -0.0029 (0.0015) -0.0028 (0.0015) 

σu1
2  0.00018 (0.00015) 0.00018 (0.00015) 0.00018 (0.00015) 

    
level 1    
σ e0

2   0.37 (0.04) 0.36 (0.04) 

σe02   0.03 (0.02) 0.03 (0.02) 

σ e2
2  0.43 (0.03)   

σe3
2  0.37 (0.04)   

σe04    0.004 (0.02) 
    
-2 (log likelihood) 1491.8 1491.8 1491.7 

If we do this for model C in table 3.1 then we obtain the estimates in column A of table 3.2. 

The estimates of the fixed parameters have changed little and the level 2 parameters are also 
similar. At level 1 the variance for the manual students is higher than that for the non manual 
students, but not significantly so since the likelihood ratio test statistic, formed by differencing 
the values of (-2 log likelihood)  for the model with a single level 1 variance (1493.7) and 
that given in analysis A of table 3.2, gives a chi-squared test statistic of  1.9 on 1 degree of 
freedom. 

We now look at an alternative method for specifying this type of complex variation at level 1 
which has certain advantages. We now write 

y x u e z

z

e e e e

ij ij j ij ij

ij

ij e ij ij ij e

= + + +

=

= = =

β β

σ σ

0 1 0 2 2

2

0 0
2

2 0 2 02

1 0

0

( )

var ( ) , var ( ) cov( , )

 for manual ,   for non - manual

  ,    
 

and the level 1 variance is given by σ σe e ijz0
2

02 22+  because we have constrained the 
variance of  the manual coefficient to be zero. Thus, for manual children (z ij2 1= ) the level 1 
variance is σ σe eo0

2
22+  and for non manual children the level 1 variance is σ e0

2 . The second 
column in table 3.2 gives the results from this formulation and we see that, as expected, the 
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covariance estimate is equal to half the difference between the separate variance estimates in 
the first column. 

Suppose now that we wish to model the level 1 variance as a function both of social class 
group and gender. One possibility is to fit a separate variance for each of the 4 possible 
resulting groups, using either of the above procedures. Another possibility is to consider a 
more parsimonious 'additive' model for the variances as follows 

e e e z e z

z

e e e e e

ij ij ij ij ij ij

ij

ij e ij ij e ij ij e

= + +

=

= = =

0 2 2 4 4

4

0 0
2

0 2 02 0 4 04

 1 if a boy,  0 if a girl

  ,   var ( ) , cov( ) cov( )σ σ σ
 

 

(3.6) 

with the remaining two variances and covariance equal to zero. Thus (3.4) implies that the 
level 1 variance for a manual boy is σ σ σe e e0

2
02 042 2+ +  etc. The third column of table 3.2 

gives the estimates for this model and we see that there is a negligible difference in the level 1 
variance for boys and girls. 

We can extend such structuring to the case of multicategory variables and we can also 
include continuous variables as in table 3.1. Suppose we had a 3 category variable: we 
define two dummy variables, say z zij ij5 6,    corresponding to the second and third categories, 
just as if we were fitting the factor in the fixed part of the model. With z ij1  representing the 
continuous variable an additive model for the level 1 random variation can be written as 

e e e z e z

e e e e

e e e e

ij ij ij ij ij ij

ij e ij e ij ij e

ij ij e ij ij e
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var ( ) , var ( ) , cov( )

cov( ) , cov( )

σ σ σ

σ σ

    

  
 

This model can be elaborated by including one or both the covariances between the dummy 
variable coefficients and the continuous variable coefficient, namely  σ σe e15 16,  . These 
covariances are analogous to interaction terms in the fixed part of the model and we see 
that, starting with an additive model, we can build up models of increasing complexity. The 
only restriction is that we cannot fit covariances between the dummy variable categories for 
a single explanatory variable. Thus if social class had three categories, we could fit two 
covariances corresponding to, say, categories 2 and 3 but not a covariance between these 
categories.  

Residuals can be estimated in a straightforward manner for these complex variation models. 
For example, from (3.4) the estimated residual for a manual boy is $ $ $e e eij ij ij0 2 4+ +  where the 
estimates of the individual residuals are computed using the formulae in appendix 2.2 with 
the appropriate zero variances.  

3.1.2 Variance as a function of predicted value 

The level 1 variance can be modelled as a function of any combination of explanatory 
variables and in particular we can incorporate the estimated coefficients themselves in such 
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functions. A useful special case is where the function is the fixed part predicted value $yij . 
Thus (3.2) becomes 

y x u e e yij ij j ij ij ij= + + + +β β0 1 0 0 1( $ )  
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with level 1 variance given by σ σ σe e ij e ijy y0
2

01 1
2 22+ +$ $ . A special case of this model is the so 

called 'constant coefficient of variation model' where the two variance terms are constrained 
to zero. The estimation of the random parameters is straightforward: at each iteration of the 
algorithm a new set of predicted values are calculated and used as the level 1 explanatory 
variable.  

 

Fixed A B 
Constant 0.13  0.14 
Reading score 0.50 (0.03) 0.49 (0.03) 
Gender  (boys - girls) -0.19 (0.06) -0.22 (0.06) 
Social class (Non Man. - Man.) -0.07 (0.06) -0.06 (0.06) 
   
Random   
Level 2:   
σ u0

2  0.03 (0.02) 0.02 (0.01) 

level 1:   
σ e0

2  0.66 (0.04) 0.63 (0.04) 

σe01   0.16 (0.04) 

σe1
2   0.11 (0.09) 

   
-2 log(likelihood) 1929.5 1905.0 

 

Table 3.3 illustrates the use of this model where the level 1 variance shows a strong 
dependence on the predicted value. The data are the General Certificate of Secondary  
Examination (GCSE ) scores at the age of 16 years of the Junior School Project students. 
This score is derived by assigning values to the grades achieved in each subject examination 
and summing these to produce a total score (See Nuttall et al, 1989 for a detailed 
description). There are 785 students in this analysis in 116 secondary schools to which they 
transferred at the age of 11 years. The students have a measure of reading achievement, the 
London Reading Test (LRT) taken at the end of their junior school and this  is used as a 
pretest baseline measure against which relative progress is judged. Both the reading test 
score and the examination score have been transformed to Normal equivalent deviates.  

Analysis A is a variance components analysis and figure 3.2 shows a plot of the 
standardised level 1 residuals against the predicted values. It is clear that the variation is 
much smaller for low predicted values. 

One possible extension of the model to deal with this is the use the LRT score as an 
explanatory variable at level 1, so that the level 1 variance becomes a quadratic function of 
LRT score. This does not, however, entirely eliminate the relationship and instead we model 
the predicted value as a level 1 explanatory variable, and the results are presented as 
analysis B of Table 3.3. If we now plot the standardised residuals associated with the 
intercept against the predicted values we obtain the pattern in figure 3.3 from which it is 
clear that much of the relationship between the variance and the predicted value has been 

Table 3.3 GCSE scores related to secondary school intake achievement. 
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accounted for. We could go on to fit more complex functions of the predicted value, for 
example involving nonlinear or higher order polynomial terms. 
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Figure 3.2  Standardised residuals for variance components analysis. 

3.21.3 Variances for subgroups defined at higher levels 

The random slopes model in table 3.1 has already introduced complex variation at level 2 
when the coefficient of a level 1 explanatory variable is allowed to vary across level 2 units. 
Just as with level 1 complex variation, we can also allow coefficients of variables defined at 
level 2 to vary at level 2. Exactly the same considerations apply for categorical level 2 
variables as we had for such variables at level 1 and complex additive or interactive 
structures can be defined.  
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Figure 3.3 Standardised residuals with level 1 variance a function of predicted value. 
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In addition, the coefficient of a level 2 variable can vary randomly at either level 1 or level 2 
or both. For example, suppose we have three types of school; all boys schools, all girls 
schools and mixed schools. We can allow different variances, at level 2, between boys 
schools, between girls  schools and between mixed schools. We can also allow different 
between-student variances for each type of school.  

To further illustrate complex level 1 variation and also to introduce a three level model we 
turn to another data set, this time from a survey of social attitudes. 

3.22 A 3-level complex variation model. 

The longitudinal or panel data come from the British Social Attitudes Survey and cover the 
years 1983 - 1986 with a random sample of  264 adults measured a year apart on four 
occasions and living at the same address. This panel was a subsample of a larger series of 
cross sectional surveys. The final sample was intended to be self weighting with each 
household as represented by a single person having the same inclusion probability. A full 
technical account of the sampling procedures is given by McGrath and Waterton (1986). 
The sampling procedure was at the first stage to sample parliamentary constituencies with 
probability proportional to size of electorate, then to sample a single 'polling district' within 
each constituency in a similar way and finally to sample an equal number of addresses within 
each polling district.  

Because only one polling district was sampled from each constituency, we cannot separate 
the between-district from the between-constituency variation; the two are 'confounded'. 
Likewise we cannot separate the between-individuals from the between-households 
variation. The basic variation is therefore at two levels, between-districts (constituencies) 
and between-individuals (households). The longitudinal structure of the data, with four 
occasions, introduces a further level below these two, namely a between-occasion-within-
individual level, so that occasion is level 1, individual is level 2 and district is level 3. In 
chapter 5 we shall study longitudinal data structures in more depth, both at level 1 and higher 
levels. 

The response variable we shall use is a scale, in the range 0 - 7, concerned with attitudes to 
abortion. It is derived by summing the (0,1) responses to seven questions and can be 
interpreted  as indicating whether the respondent supported or opposed a woman's right to 
abortion with high scores indicating strong support. Explanatory variables are political party 
allegiance (4 categories), self-assessed social class (3 categories), gender, age (continuous), 
and religion (4 categories) and year (4 categories). A number of preliminary analyses have 
been carried out and the effects of party allegiance, social class, gender, and age, were 
found to be small and not statistically significant. We therefore examine the basic 3-level 
model which can be written as follows. 

 

y x x x

x x x v u e
ijk ijk ijk ijk

ijk ijk ijk k jk ijk

= + + +

+ + + + + +

β β β β

β β β
0 1 1 2 2 3 3

4 4 5 5 6 6

( )

( ) ( )  
(3.7) 
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with the explanatory variables with  subscripts 1-3 being dummy variables for religious 
categories 2-4 and those with subscripts 4-6 being dummy variables for years 1984-1986. 
We have three variances, one at each level in the random part of the model. The response 
variable in the following analyses has only 8 categories, with 32% of the sample having the 
highest value of 7. The response has been transformed by assigning Normal scores to the 
overall distribution and we shall treat the response as if it was continuously distributed. In 
chapter 7 we shall look at other models which retain the categorisation of the response 
variable. 

 

Table 3.4 Repeated measurements of Attitudes to Abortion. Response is Normal score 
transformation.  Religion estimates are contrasted with none. Age is measured about the mean 
of 37 years. 

 
Parameter Estimate(S.E.) Estimate (S.E.) Estimate (S.E.) 
        A         B        C 
Fixed:    
Constant 0.32 0.33 0.33 
Religion:       R. Catholic -0.80(0.18) -0.80(0.18) -0.69(0.18) 
                      Protestant -0.27(0.10) -0.26(0.10) -0.25(0.10) 
                      Other -0.63(0.13) -0.63(0.13) -0.54(0.14) 
    
Year:               1984 -0.29(0.05) -0.29(0.48) -0.29(0.05) 
                      1985 -0.06(0.05) -0.07(0.05) -0.07(0.05) 
                      1986 0.06(0.05) 0.05(0.04) 0.05(0.04) 
    
Age                    0.013(0.005) 
Age x R. Catholic   -0.036(0.010) 
Age x Protestant   -0.014(0.007) 
Age x Other   -0.023(0.008) 
    
    
Random:    
Level 3     
σv

2  0.03(0.02) 0.03(0.02) 0.03(0.02) 

Level 2    
σu

2  0.37(0.04)  0.34(0.04) 

Level 1    
σ e0

2  0.31(0.02) 0.21(0.08) 0.21(0.03) 

σe01   0.11(0.05) 0.10(0.04) 

σe02   0.03(0.16) 0.03(0.02) 

σe03   0.04(0.02) 0.04(0.02) 

σe04   0.05(0.02) 0.05(0.02) 

σe05   0.05(0.02) 0.05(0.02) 

σe06   0.00(0.02) 0.00(0.02) 
    
-2 (log likelihood) 2233.5 2214.2 2198.7 

Table 3.4 gives the results of fitting (3.5). The between-occasion and between-individual 
variances are similar.  The level 3 variance is small, and the likelihood ratio chi-squared is 
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2.05 (compared with a value of 1.64 obtained from comparing the estimate with its standard 
error), which is not significant at the 10% level.  

For the religious differences we have χ3
2 33 7= .  for the overall test with all those having 

religious beliefs being less inclined to support abortion, the Roman Catholic and other 
religions being least likely of all. The Roman Catholic  and other  religions are significantly 
less likely than the Protestants to support abortion. The simultaneous test (3 d.f.) chi-
squared statistics respectively are  9.7 and 9.0 (P=0.03). For the year differences we have 
χ3

2 59 7= .  and simultaneous comparisons show that in 1984 there was a substantially less 
approving attitude towards abortion. It is likely that this is an artefact of the way questions 
were put to respondents.3 No significant interaction exists between religion and year.  

We now look at elaborating the random structure of the model. At level 1 we fit an additive 
model as in section 3.1.1 for the categories of religion and for year. Year is the variable 
defining level 1, but religion is defined at level 2 and is an example of a higher level variable 
used to define complex variation at a lower level.  

The results are given as analysis B in table 3.3. For year we obtain  χ3
2 8 3= .  (P=0.04) and 

for religion χ3
2 = 11.0 (P=0.01). There is a greater heterogeneity within the Roman 

Catholics, from year to year, and within the other religions than within Protestants and those 
with no religion. The addition of these variances to the model does not change substantially 
the values for the other parameters.  

Fitting complex variation at level 2 (between individuals) and level 3 (between districts) does 
not yield statistically significant effects, although there is some suggestion that there may be 
more variation among Roman Catholics. 

For the final analysis  we look again at the fixed part and explore interactions. None of the 
interactions have important effects except for that of age with religion, although age on its 
own had a negligible effect. We see from analysis C that those with no religion show an 
increasing approval of abortion with age, whereas the Roman Catholics and to a smaller 
extent other religions show a decreasing approval with age. The overall chi-squared for 
testing the interactions is 16.1 with 3 degrees of freedom. 

3.23 Parameter Constraints 

In the example of the previous section some of the fixed and random parameters for year 
and religious groups were similar. This suggests that we could fit a simpler model by forcing 
or 'constraining' such parameters to take the same values and also so decreasing the 
standard errors in the model. We illustrate the procedure using the fixed part estimates for 
the abortion attitudes data.  

                                                 
3In 1984 seven questions making up the attitude scale were put to respondents in the reverse order, that 
is with the most 'acceptable' reasons for having an abortion (e.g. as a results of rape) coming first. This 
illustrates an important issue in surveys of all kinds which collect data for comparisons over time, 
namely to maintain the same questioning procedure. 
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We consider the general linear constraint for the fixed parameters in the form C kβ = , 
where C is a (n x p) constraint matrix and k is a vector which can have quite general values 
for their elements.  

Suppose that, in analysis C of table 3.4, we wished to constrain the main effects and 
interaction terms of the Roman Catholic and Other religions to be equal. This implies two 
constraint functions, and we have 

C

k

=
−

−








=








0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1

0
0

 

which implies $ $ $ $β β β β1 3 8 10= =,    . 

The constrained estimator of  β  is 
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        (3.8) 

where $β  is the unconstrained estimator. The covariance matrix of the constrained estimator 
is MLM  where 

M I LC C LC CT T= − −( ) 1
. 

There is an analogous formula for constrained random parameters.  

Using the above constraints for analysis C in Table 3.4, the random parameters are little 
changed, the main effects for Roman Catholic and Other religion become -0.57 and the 
interaction terms become -0.026 and the remaining main effects are virtually unaltered. The 
standard errors, as expected, are smaller being 0.121 for the main effect estimate and 0.007 
for the interaction. 

In addition to linear constraints we can also apply nonlinear constraints. To illustrate the 
procedure we consider the analysis in table 2.5, where the estimated correlation between 
the slope and intercept was -1.03. To constrain this to be exactly -1.0, after each iteration 
of the algorithm we compute the covariance as a function of the variances to give this 
correlation. Thus, after iteration t we compute σ σ σu

t
u
t

u
t

01
1

0 1
+ = $ $  and then constrain the 

covariance to be equal to this value, a linear constraint, for iteration t+1. This procedure is 
repeated until convergence is obtained for the unconstrained values. For more general 
nonlinear constraints we may require several such constraints to apply simultaneously. 

If we constrain the model of Table 2.5 to give a correlation of -1.0 we find that the fixed 
effects and the level 1 variance are altered only slightly, with a small reduction in standard 
errors. The level 2 parameters, however, are reduced by about 50% and are closer to those 
in analysis A of Table 3.1 where the estimated correlation is -0.91.   

We can also temporarily constrain values during the iterative estimation procedure if 
convergence is difficult or slow. Some parameters, or functions of them, can be held at 
current values, other parameter values allowed to converge and the constrained parameters 
subsequently unconstrained. 

3.24 Weighting  units 

It is common in sample surveys to select level 1 units, for example household members, so 
that each unit in the population has the same probability of selection. Such self-weighting 
samples can then be modelled using any of the multilevel models of this book. Likewise, if 
the model correctly specifies the population structure, non-self weighting samples can be 
modelled similarly: the differential selection probabilities contain no extra information for the 
model parameters. If we wished to form predictions for the whole population on the basis of 
the model estimates, we could cobine weights from each level of the data hierarchy (typically 
inverses of selection probabilities) into composite level 1 weights and apply these to the 
predicted values for each level 1 unit and then form a weighted sum over these units.  
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In general we can carry out the following procedure for assigning weights. Two cases need 
to be distinguished. In the first the weights are independent of the random effects at the level. 
In this case we adopt the following procedure. 

Consider the case of a 2 level model. Denote by w j  the weight attached to the j-th level 2 

unit and by wi j|  the weight attached to the i-th level 1 unit within the j-th level 2 unit such 

that 

∑ ∑ ==
i j

jjji Jwnw     ,|        

 (3.7) 

where J is the total number of level 2 units and N n j
j

= ∑  the total number of level 1 units. 

That is, the lower level weights within each immediate higher level unit are scaled to have a 
mean of unity, and likewise for higher levels. For each level 1 unit we now form the final, or 
composite, weight 

w Nw w w w Nw w n wij i j j i j j
i j

i j j j j
j

= =∑ ∑| |
,

|/ /      

 (3.8) 

Denote by Z Zu e,   respectively the sets of explanatory variables defining the level 2 and 
level 1 random coefficients and form  

Z W Z W diag w

Z W Z W diag w
u j u j j

e ij e ij ij

* .

* .

, { }

, { }

= =

= =

−

−

   

   

0 5

0 5
      

 (3.9) 

We now carry out a standard estimation but using Z Zu e
* *,    as the random coefficient 

explanatory variables.  

For a 3 level model, with an obvious extension to notation, we have the following 

w n w J w K N n J J

w Nw w w w w w w Jw w w w

i jk jk j k k k jk k
kjkkji

ijk i jk j k k i jk j k k
ijk

jk j k k j k k
jk

| |

| | | | | |

, , , ,

,

= = = = =

= =

∑∑∑∑∑

∑ ∑

            

   
 

Denote by V *  the weighting matrix in this analysis. The fixed part coefficient estimates and 
their covariance matrix are given by 

$ ( ) ,

cov( $ ) ( ) ( )

* *

* * * *

β

β

=

=

− −

− − − −

−

− −

X V X X V Y

X V X X V VV X X V X

T T

T T T

1 1

1 1 1 1

1

1 1

    
    

 (3.10) 

with an analogous result for the random parameter estimates. MLwiN  does not allow the 
computation of the covariance matrix estimates directly, but robust or sandwich estimators 
(see below) may be used. 
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In survey work analysts often have access only to the final level 1 weights wij . In this case, 

say for a 2-level model, we can obtain the w j  by computing 

′ = =∑ ∑w W J W W w nj j j
j

j ij
i

j/ , ( ) /   . For a 3-level model the procedure is carried out for 

each level 3 unit and the resulting ′wjk  are transformed analogously. 

A number of features are worth noting. 

First, for a single level model this procedure gives the usual weighted regression estimator. 
Secondly, suppose we set a particular level 1 weight to zero. This is not equivalent to 
removing that unit from the analysis in a 2 level model since the level 2 (weighted) 
contribution remains. Nevertheless, this weighting may be appropriate if we wish to remove 
the effect of the unit only at level 1, say if it were an extreme level 1 outlier. If, however, we 
set a level 2 weight to zero then this is equivalent to removing the complete level 2 unit. If we 
wished to obtain estimates equivalent to removing the level 1 unit we would need to set all 
the level 2 (random coefficient) explanatory variables for that level 1 unit to zero also. This 
is easily done by defining an indicator variable for the unit (or units) with a zero 
corresponding to the unit in question and multiplying all the random explanatory variables by 
it. 

In calculating residuals we may also wish to use the weights. This leads to the following 
results for the level 2 residuals 

$ ~,

cov( $ ) ( )

( ~ ~ )

* *

* * * *

p Z V Y

p Z V V V Z

V E YY

u

u u

T

T

T

2 2

2 2 2

1

1 1

=

=

=

−

− −

Ω

Ω Ω

   

                  

 (3.11) 

This provides a consistent estimator of the covariance matrix. Alternatively, we may use  a 
sandwich estimator for the covariance matrix. For many purposes an unweighted estimator 
for the residuals is adequate, in which case the usual formulae apply. 

A similar procedure applies for multilevel generalised linear models (Chapter 7). Here the 
weighted explanatory variables at levels 2 and higher are as above. For the quasilikelihood 
estimators (PQL and MQL) at level 1 the vector Ze is that which defines the binomial 
variation. Thus, for binomial data, at level 1 a method of incorporating the weight vector is to 
use Ze but to work with w nij ij  instead of nij  as the denominator. 

The second situation is where the weights are not independent of the random effects at a 
level. This leads to complications which are discussed by Pfefferman et al. (1997). These 
authors conclude that, in this situation, the above procedure produces acceptable results in 
many cases but can give biased results in some circumstances and should be used with 
caution. 

3.25 Robust, Jacknife and Bootstrap Uncertainty Estimates 

Until now we have assumed that the response variable has a Normal distribution, and where 
the departure from Normality is substantial we have considered a transformation, using 
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Normal scores. As we saw in the abortion data set, however, such transformations may be 
only approximate where the original score distribution is highly discrete or very skew. The 
estimates of the fixed and random parameters will still be consistent when the Normality 
assumption is untrue, but the standard error estimates cannot be used to obtain confidence 
intervals or to test significance except in large samples. 

One way of attempting to deal with this problem is to develop estimators which are based 
upon alternative distributional assumptions, and in later chapters we shall adopt this 
approach when dealing with discrete and ordered response data. Seltzer (1993) gives an 
example, using Gibbs sampling, based on the assumption that the response variable has a t-
distribution, and this approach can be extended  to other continuous but skew distributions. 

An alternative procedure is to modify the standard error and confidence interval estimates so 
that they are less dependent on distributional assumptions, of whatever kind. One of the 
penalties of this is that the resulting significance tests and confidence intervals will tend be 
wider, or more 'conservative',  than those derived under a particular distributional 
assumption. 

Consider first the fixed part of the model and the usual IGLS estimate of the fixed 
parameters based upon the random parameter estimates 

$ ( $ ) $β = − − −X V X X V YT T1 1 1
 

The covariance matrix of these estimates is 

cov( $) ( $ ) $ {cov( )} $ ( $ )β = − − − − − −X V X X V Y V X X V XT T T1 1 1 1 1 1
               

where  cov( )Y V=  and is unknown. The usual procedure is to substitute the estimated $V , 
but this will generally lead to standard errors which are too small. A robust estimator is 
obtained by replacing cov( )Y  by % %Y Y T , namely the cross product matrix of the raw 
residuals, which is a consistent estimator of V. This is done for each highest level block of V 
in order to satisfy the block diagonality structure of the model. This estimator is a 
generalisation of the estimator given by Royall (1986) for a single level model which uses 
only the diagonal elements of % %Y Y T . 

For the random parameters an analogous result holds. It is also possible to derive robust 
estimators for residuals, but these generally are not useful because the estimate for each 
residual corresponding to a higher level unit uses the corresponding value of % %Y Y T  and this 
can give very unstable estimates. 

We now apply 3.11 to the abortion data analyses and Table 3.5 shows the result for 
analysis A of Table 3.4 and an OLS analysis. The major change is in the estimate of the 
standard error for level 1, with only moderate changes for the fixed parameters. 

Another approach to providing robust standard errors is to use jacknifing (Miller, 1974). 
Thus, if we wished to calculate the standard error for a level 2 variance in a model with p 
level 2 units, the jacknife procedure would involve recomputing the variance for p 
subsamples, each one formed by omitting one level 2 unit, and using the set of these to form 
the standard error estimate. The procedure also gives a revised estimate of the parameter 
itself. Longford (1993, chapter 6) gives an example in the analysis of  a complex matrix 



    81

sample design and suggests that there may be often a considerable loss of efficiency using 
the jacknife method, and it is also computationally intensive. 

 

 
Table 3.5 Robust standard errors for analysis A in table 3.4 

 
Parameter Estimate Model based s.e. Robust s.e. 

    
Fixed:    
Constant 0.32   
Religion:          R. Catholic -0.80 0.176 0.225 
                      Protestant -0.27 0.098 0.102 
                      Other -0.63 0.127 0.121 
    
Year:               1984 -0.29 0.048 0.050 
                      1985 -0.06 0.048 0.061 
                      1986 0.06 0.048 0.047 
    
Random:    
Level 3     
σv

2  0.03 0.030 0.020 

Level 2    
σu

2  0.37 0.043 0.039 

Level 1    

σ e0
2  0.31 0.016 0.022 

 

A more flexible method is that of  bootstrapping (See Efron and Gong, 1983 for an 
introduction and Laird and Louis, 1987, 1989 for more extensive discussions in the context 
of a multilevel model). The basic nonparametric bootstrap procedure involves simple 
random resampling with replacement of  the response variable values (or residuals in a linear 
model) to generate a single bootstrap sample. The model parameter estimates are then 
reestimated for this sample. This procedure is repeated a large number (N) of times yielding 
N sets of  parameter estimates which are then treated as a simple random sample and used 
to derive standard errors or confidence intervals. For a multilevel model, however, such a 
procedure is inadequate since it assumes identically distributed responses, although for 
certain models it may be possible to adapt this procedure (see for example Moulton and 
Zeger, 1989). 

The fully parametric bootstrap utilises the distributional assumptions of the model in order to 
generate simulated values which are used to estimate bootstrap sets of parameters. Consider 
the simple 2-level model assuming Normality 

y X u e u eij ij j ij j u ij e= + + = =( ) var( ) var( )β σ σ,    ,    2 2
 

To generate a bootstrap sample we select at random from N u( , )0 2σ  a set of  level 2 values 

u j
*  and for each level 2 unit a set of  eij

*  from  N e( , )0 2σ . These are added to ( )X ijβ  to 
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generate a set of pseudo values yij
*  which are then treated as a set of responses from which 

a new set of  bootstrap parameter values, $ , $ , $* * *β σ σu e

2 2

 is obtained. 

Once the set of bootstrap values is available we can use these to estimate the parameter 
covariance matrices or standard errors using the usual sample procedures. Confidence 
intervals for the original parameter estimates or functions of them can be constructed from 
these by assuming Normality. Alternatively we can construct intervals nonparametrically 
from the percentiles of the set of empirical bootstrap values and where the median value for 
a parameter or function of parameters deviates substantially from the original parameter 
estimate a bias correction procedure should be used. This involves smoothing the bootstrap 
distribution using a standard Normal distribution. We first estimate z0  which is the standard 
Normal score corresponding to the percentile position of the original parameter estimate. 
Writing z z( ) ( ),1−α α  for the standard Normal deviates corresponding to the required 
(symmetric) percentiles ( for example 5% and 95%) we transform back to the bootstrap 
distribution from the standard Normal distribution values 

2 20
1

0z z z z+ +−( ) ( ),α α   

Efron (1988) discusses this and a further correction based on skewness to improve 
accuracy. 

If we wish to obtain bootstrap estimates for estimated level 2 residuals then for each 
bootstrap sample we also estimate the residuals, $*u j . To estimate the ‘comparative’ variance 

of  the residuals for each level 2 unit we need to work with ~ $* * *u u uj j j= −  and then use these 

directly to estimate the required variance, or covariance matrix where there are several 
random coefficients. They can also be used to construct nonparametric confidence intervals 
as above. 

The parametric bootstrap procedure can be extended straightforwardly to nonlinear models 
as discussed in Chapter 5 and especially to the discrete response models of Chapter 7. The 
only difference is that with, say, a binary response model, we generate binary (0,1) random 
variables to produce the pseudo responses rather than Normally distributed ones. 
Waclawiw and Liang (1994) give an example of this using the GEE procedure for obtaining 
parameter estimates. 

Table 3.6 gives parametric bootstrap estimates of standard errors and a central 90% 
confidence interval based upon a Normality assumption and also a nonparametric estimation 
from 500 bootstrap samples for the model of  Table 3.5. 

The bootstrap standard errors agree quite well with the model based ones, except for the 
level 3 variance. This parameter is based upon only 54 level 3 units as opposed to 264 level 
2 and 1056 level 1 units. This is reflected also in the bootstrap confidence intervals where 
the nonparametric intervals are fairly close to the Normal theory ones except for the level 3 
variance. In general, despite the computational overhead, bootstrap intervals will be 
desirable where effective sample sizes are small, especially for the random parameters. 
Where distributions are markedly non Normal the nonparametric intervals are to be 
preferred, although these will require considerably more bootstrap samples, typically more 



    83

than the 500 used here, than are necessary to estimate standard variances and covariances 
of the bootstrap distribution, where 100 will often suffice. 

3.26 Aggregate level analyses 

As we discussed in Section 1.12, there are sometimes occasions when the only data 
available for analysis have already been aggregated to a higher level. 

  

Table 3.6 Bootstrap standard errors and 90%  confidence intervals for Analysis A in Table 3.4 
Parameter Model based s.e. Bootstrap s.e. Normal  C.I. Nonparametric 

Adjusted C.I. 
     
Fixed:     
Religion:        R. Catholic 0.176 0.173 (-1.084, -0.516)) (-1.128, -0.532) 
                      Protestant 0.098 0.100 (-0.429, -0.101) (-0.420, -0.106) 
                      Other 0.127 0.132 (-0.846, -0.414) (-0.805, -0.377) 
     
Year:              1984 0.048 0.048 (-0.365, -0.209) (-0.374, -0.216) 
                      1985 0.048 0.047 (-0.140, 0.014) (-0.141, 0.012) 
                      1986 0.048 0.048 (-0.015, 0.141) (-0.019, 0.141) 
     
Random:     
Level 3      
σv

2  0.030 0.022 ([0], 0.066) (0, 0.080) 

Level 2     
σu

2  0.043 0.041 (0.302, 0.436) (0.308, 0.438) 

Level 1     
σ e0

2  0.016 0.015 (0.284, 0.334) (0.288, 0.336) 

 

For example, we may have information on student achievement only in terms of the mean 
achievement for each school, or information on utilisation of health services only in terms of 
the total number of episodes for each administrative area. We examine the possibilities for 
carrying out analyses with aggregate level data and explore how far these can provide 
information about the parameters of a more disaggregated model. 

Consider the simple model used in chapter 2 for the Junior School Project data with a 
response mathematics test score and the earlier mathematics score as a covariate 

 y x u eij ij j ij= + + +β β0 1  (3.12) 

Suppose that we now aggregate to the school level by averaging over all pupils in each 
school to obtain 

y x u ej j j j. . .= + + +β β0 1  (3.13) 

If we treat this as a single level model, then the level 1 variance is σ σu j en2 1 2+ −  and we can fit 
the model by specifying two explanatory variables for the random part, namely 

z z nj j0 1
051= = −, .       
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with random coefficients e ej j0 1,    having variances and zero covariance. In many surveys the 
same number of level 1 units will be sampled from each level 2 unit, in which case a single 
explanatory variable z0  will suffice. The main problem with such an analysis is that the 
estimates will be inefficient compared with those from a 2-level model based on individual 
student data. Analysis A in Table 3.6 gives the results of an analysis using just the single 
explanatory variable z0  and analysis B additionally uses z j1  and so is equivalent to a single 
level weighted regression model. In both analyses we have included the proportion of non-
manual students and the proportion of girls as explanatory variables, that is the average 
values of the corresponding (0.1) dummy variables. 

 

Table 3.7 School level analysis of JSP data. 
Parameter Estimate (s.e.) Estimate (s.e.)  Estimate (s.e.) 
 A B C 
Fixed    
Constant 0.18 0.16 0.16 
8-year score 0.091 (0.019) 0.092 (0.020) 0.094 (0.021) 
Gender( Propn. boys) -0.34 (0.30) -0.31 (0.30) -0.29 (0.29) 
S. Class (Propn. N.M.) 0.00 (0.20) 0.00 (0.28) -0.01 (0.27) 
    
Random    

σu0
2  0.11 (0.021) 0.11 (0.040) 0.08 (0.024) 

σe0
2   0.08 (0.37)  - 

σu01   0.00 (0.01) 

σu1
2    0.004 (0.004) 

    
-2(log likelihood) 31.33 31.28 29.44 

 

In comparison with analysis C in table 3.1 while the coefficient of the 8-year maths score 
remains unchanged, those for gender and social class change markedly. We also see how 
the standard errors are substantially greater. In fact, although the number of students per 
school varies between 3 and 49, the inclusion of  z j1   has little effect. 

For these data we know that the slope of the 8-year score is random across schools. In this 
case model (3.13) becomes 

y x u u x ej j j j j j. . . .= + + + +β β0 1 0 1  (3.14) 

and we obtain the additional contributions to the variance of the aggregated level 2 units 

σ σu j u jx x1
2 2

01. .,     2  

Analysis C in table 3.6 shows the results of fitting this model. This is directly comparable 
with analysis C in 3.1 and we can see that although the estimate of the level 2 variance is 
similar, we have a poor estimate of the random coefficient variance, and unlike analysis B it 
is not possible to estimate a separate level 1 variance because of the small number of units in 
the analysis. 
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If there is complex variation at level 1, such as we fitted in table 3.2, then for such an 
explanatory variable, say z ij2 , we would obtain the further contributions to the variance for 
the aggregated model for unit j 

2 02 2 2
2

2
2 2σ σe j j e ij

i
jz n z n. / , /    ∑  

The first of these terms can be fitted as a covariance and the second as a variance, by 
defining appropriate explanatory variables. In the present case the data are not extensive 
enough to allow us to fit these additional variables. We also note that the values of the 
squared explanatory variables in the second of these expressions will often not be available 
for aggregated data. 

If we have an initial 3-level model, and data are aggregated to level 2, we need to specify 
properly the level 2 random variation resulting from the aggregation process. Failure to do 
this, may allow us to fit random variation at level 3, but any interpretation of this may be 
problematic because it may have arisen solely as a result of misspecifying the variation at 
level 2.  For example, if we have an explanatory variable which is strongly correlated with 
the size of the level 2 units, and we fail to include a random coefficient for z j1  at level 2, we 
may well be able to fit a random coefficient for it at level 3, but the usual interpretation of 
such a coefficient would be inadmissible. 

We now look at what happens to the fixed part coefficients when aggregation takes place 
and we have already seen that the values of the coefficients for gender and social class 
change. Consider the model 

y x x u eij ij j j ij= + + + +β β β0 1 2 .  (3.95) 

where the coefficient for x j.  in the aggregated model is now β β1 2+ . We saw in table 3.1 
that the coefficient for the school mean 8-year score was very small, so that we would 
expect the coefficient for this in the aggregated model to be similar, which table 3.6 
confirms. For gender and social class the coefficients of the corresponding aggregated 
variables from a 2-level analysis are respectively -0.06 and -0.09, which when added to the 
(non-aggregated) coefficients for gender and social class give values of -0.09 and -0.06 
respectively. These are rather different from those in table 3.6, but the standard errors are 
very large. Where there is a contextual or compositional effect, whether through the mean 
aggregated value, or some other statistic derived from the student level distribution as 
discussed in section  2.9, then an aggregated analysis will not allow us to obtain separate 
estimates for the individual and compositional coefficients. 

In summary, we have seen that it is sometimes possible to model aggregated data, but this 
has to be carried out with care, and any interpretations will be constrained by the nature of 
the true, underlying, non-aggregated model. In addition, the precisions of the estimates 
obtained from an aggregated analysis will generally be much lower than those obtained from 
a full multilevel analysis. A discussion of the aggregation issue can also be found in Aitkin 
and Longford (1986). 
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3.27 Meta analysis 

The term Meta Analysis (Hedges and Olkin, 1985) refers to the pooling of results of 
separate studies, all of which are concerned with the same research hypothesis. The aim is 
to achieve greater accuracy than that obtainable from a single study and also to allow the 
investigation of  factors responsible for between-study variation. Each study typically 
provides an estimate for an ‘effect’, for example a group difference, for a ‘common’ 
response and the original data are unavailable for analysis. In general the response measure 
used will vary, and care is needed in interpreting 
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them as meaning the same thing. Furthermore, the scales of measurement will differ, so that 
the effect is usually standardised using a suitable within-study estimate of  between-unit 
standard deviation. If the study result derives from a multilevel model, then this estimate will 
be based on the level 1 variance, or where this is complex on an estimate pooled over the 
effect groups being compared. It is important that comparable estimates are used from each 
study. This implies that the specification of the level 1 units is comparable and that the 
sources of higher level variation are properly identified. For example where each study 
compares teaching methods using a number of schools the within-school between-student 
variation would be appropriate for standardisation, which implies that the studies concerned 
should provide estimates of this using suitable multilevel techniques. We consider the case 
where only a single effect is of interest, but the generalisation to the multivariate case is 
straightforward (see chapter 4). 

For the j-th study we define the standardised effect d j  where this is a dimensionless 
quantity. It may, for example, be a correlation coefficient, a standardised regression 
coefficient, a group difference, or a weighted group difference. We require an estimate of 
the variance of d j , say σ j

2 , and more generally we require the variance of a dimensionless 
function having the general form 

whj hj
h

ej
$ / $β σ∑  (3.16) 

where the $β hj  are parameter estimates from the j-th study. For moderately large numbers of 

level 1 units, we can ignore the variation in the estimate of the level 1 standard deviation 
( $σ ej ) and calculate the variance of the numerator of (3.16) using the estimated covariance 

matrix of the coefficients. Where the number of level 1 units is small, however, we will need 
to take into account the sampling variance of this estimate and, assuming independence, 
obtain the required variance using the standard formula for the variance of  a ratio of random 
variables. Hedges and Olkin (1985) discuss a number of procedures for providing such 
estimates in the single level case. We can now write a simple model as follows 

d v u u vj j j j j j v= + + = =δ σ σ,           var( ) , var( )2 2
 (3.17) 

where σ j
2  is now assumed known and treated as an offset in the random part of the model 

(see also appendix 5.1), δ  is the population parameter of interest and σv
2  is the between 

study variance of the standardised effect. We can add covariates representing study factors 
to 3.17 in an attempt to explain between-study differences which is a further aim of Meta 
Analysis studies. Bryk and Raudenbush (1992) present an analysis which compares studies 
of teacher expectations of student ability and attempts to explain study differences. 

There are a number of practical problems with Meta Analysis studies. One of these is where 
the sample of studies used is subject to systematic bias. This can occur, for example if some 
studies do not provide sufficient data to estimate a standardised difference and they are a 
special group. Another common problem arises where the analysis is based upon published 
studies and those studies which found ‘non statistically significant’ results tend to remain 
unpublished. This implies that the distribution of results is censored with the smaller ones 
tending to be missing, a situation known as the publication bias effect. Vevea (1994) 
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discusses the possibility of weighting the studies, that is the units in the model (3.17), using a 
suitable function of the statistical significance level associated with each effect, in order to 
compensate for the selective exclusion. Thus we could carry out a weighted analysis (section 
3.4) where the weights are, say, proportional to the significance level. Vevea also considers 
the possibility of estimating the weights. 
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Chapter 4 

The multivariate multilevel model 

4.1 Multivariate Multilevel models 

In chapters 2 and 3 we have considered only a single response variable. We now look at 
models where we wish simultaneously to model several responses as functions of 
explanatory variables. As we shall see, the ability to do this provides us with tools for 
tackling a very wide range of problems. These problems include missing data, rotation or 
matrix designs for surveys and prediction models. We develop the model using a dataset of 
examination results.  

The data consist of scores on two components of a science examination taken in 1989 by 
1905 students in 73 schools and colleges. The examination is the General Certificate of 
Secondary Education (GCSE) taken at the end of compulsory schooling, normally when 
students are 16 years of age. The first component is a traditional written question paper 
(marked out of a total score of 160) and the second consists of coursework (marked out of 
a total score of 108), including projects undertaken during the course and marked by each 
student's own teacher. The overall teachers' marks are subject to external 'moderation' using 
a sample of coursework. Interest in these data centres on the relationship between the 
component marks at both the school and student level, whether there are gender differences 
in this relationship and whether the variability differs for the two components. Creswell 
(1991) has a full description of the dataset. 

 

4.2 The basic 2-level multivariate model 

To define a multivariate, in the case of our example a 2-variate, model we treat the individual 
student as a level 2 unit and the 'within-student' measurements as level 1 units. Each level 1 
measurement 'record' has a response, which is either the written paper score or the 
coursework score. The basic explanatory variables are a set of  dummy variables that 
indicate which response variable is present. Further explanatory variables are defined by 
multiplying these dummy variables 
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Table 4.8 Data matrix for examination example. 
 
  Intercepts Gender  
Student Response Written Coursework Written Coursework 
1 (female) y11 1 0 1 0 
1  y21  0 1 0 1 

2 (male) y12  1 0 0 0 

2 y22 0 1 0 0 
3 (female) y13  1 0 1 0 

by individual level explanatory variables, for example gender. The data matrix for three 
individuals, two of who have both measurements and the third of who has only the written 
paper score, is displayed in Table 4.1. The first and third students are female (1) and the 
second is male (0). 

The model is written as 

y z z z x z x u z u z

z z z x

u u u u

ij ij ij ij j ij j j ij j ij

ij ij ij j

j u j u j j u

= + + + + +

=








= − =








= = =

β β β β

σ σ σ

01 1 02 2 11 1 12 2 1 1 2 2

1 2 1

1 1
2

2 2
2

1 2 12

1
0

1
1 if written

 if coursework
,    ,    

 if female
0 if male

 

,     ,    var( ) var( ) cov( )

 

 

 

(4.10
) 

 

There are several features of this model. There is no level 1 variation specified because level 
1 exists solely to define the multivariate structure. The level 2 variances and covariance are 
the (residual) between-student variances. In the case where only the intercept dummy 
variables are fitted, and since every student has both scores, the model estimates of these 
parameters become the usual between-student estimates of the variances and covariance. 
The multilevel estimates are statistically efficient even where some responses are missing, 
and in the case where the measurements have a multivariate Normal distribution they are 
maximum likelihood. Thus the formulation as a 2-level model allows for the efficient 
estimation of a covariance matrix with missing responses. 

In our example the students are grouped within examination centres, so that the centre is the 
level 3 unit. Table 4.2 presents the results of two models fitted to these data. 

The first analysis is simply (4.1) with variances and a covariance for the two components 
added at level 3. In the second analysis additional variance terms for gender have been 
added. 

In both analyses the females do worse on the written paper and better on the coursework 
assessment. There is a greater variability of marks on the coursework element, even though 
this is marked out of a smaller total, and the intra-centre correlations are approximately the 
same in the first analysis (0.28 and 0.30). This suggests that the 'moderation' process has 
been successful in maintaining a similar relative between-centre variation for the coursework 
marks. The correlation between the two components is 0.50 at the student level and 0.41 at 
the centre level. 
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Table 4.9 Bivariate models for written paper and coursework responses. 
 
Fixed Estimate (s.e.) Estimate (s.e.) 
Constant:  Written 49.5 49.5  
               Coursework 69.5 69.1 
Gender:     Written -2.5 (0.5) -2.5 (0.5) 
               Coursework 6.9 (0.7) 7.3 (1.1) 
   
Random   

Level 3: 
  

Level 2: 
  

σu1
2  124.3 (4.1) 124.2 (4.1) 

σ u12  74.6 (3.9) 73.6 (3.9) 

σ u2
2  183.2 (6.1) 189.1 (8.6) 

σu 24   -12.5 (4.7) 
   
-2 log(likelihood) 29718.8 29664.7 
The subscripts refer to the following explanatory variables: 1 = writing intercept, 2 = coursework 
intercept, 3 =  writing gender, 4 = coursework gender. 

In the second analysis we see that the between-student variance for coursework is smaller 
for the females (164.0) compared to that for the males (189.1) and for the centres the 
coursework variance for females is also smaller (73.3) than for males (106.6). There 
appears to be no difference in the variances for the written paper. 

Note how the standard error of the coursework gender coefficient increases with the more 
precise specification of  the coursework variation at both levels. This is another aspect of the 
effect we saw when fitting a multilevel model as opposed to a single level model. 

4.3 Rotation Designs 

We have already seen that fully balanced multivariate designs are unnecessary and randomly 
missing responses are  handled automatically. As Table 4.1 shows, the basic 2-level 
formulation does not formally recognise that a response is missing, since we only record 
those present. We now look at designs where responses are effectively missing by design 
and we see how this can be useful in a number of circumstances.  

In many kinds of surveys the amount of information required from respondents is so large 
that it is too onerous to expect each one to respond to all the questions or items. In 
education we may require achievement information covering a large number of areas, in 
surveys of businesses we may wish to have a large amount of detailed information, and in 
household questionnaires we may wish to obtain information on a wide range of topics. We 

σv1
2  48.9 (9.5) 49.6 (9.5) 

σv12  25.2 (9.1) 35.5 (11.3) 

σ v2
2  77.1 (14.8) 106.6 (21.7) 

σv14   -15.9 (7.8) 

σv24   -37.4 (13.2) 

σ v4
2   41.5 (11.7) 
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consider only measurements that are used as responses in a model. If we denote the total set 
of responses as { }N  then we choose p subsets { , ,... }N i pi = 1  each of which is suitable for 
administering to a subject (level 1).  

When choosing these subsets we can only estimate subject-level covariances between those 
responses that appear together in a subtest. It is therefore common in such designs to ensure 
that every possible pair of responses is present. If we wish to estimate covariances for 
higher level units such as schools it is necessary only to ensure that the relevant pair of 
responses are assigned to the some schools - a large enough number to provide efficient 
estimates. The subjects are assigned at random to subtest and higher level units are also 
assigned randomly, possibly with stratification. 

Each subset is  viewed formally as a multivariate response vector with randomly missing 
values, although the missing observations are produced by design. As we saw in the 
previous section, we can fit a multivariate response model for such data and obtain efficient 
estimates for the fixed part coefficients and covariance structures at any level. In this 
formulation, the variables to be used as explanatory variables should be measured for each 
level 1 unit. We shall discuss how to deal with missing explanatory variable values in chapter 
12. We give an example using educational achievement data. 

4.4 A rotation design example using Science test scores 

The data come from the Second International Science Survey carried out by the 
International Association for the Evaluation of Educational Achievement (Rosier, 1987). 
Table 4.3  shows how items from three science topic areas are distributed over test papers 
or forms and the numbers of items in each topic area. The tests consisted of a core form 
taken by all students plus a randomly selected pair out of the four additional forms. The 
study was carried out in 1984 in some 24 countries. We discuss here the results for 
Hungary. 

 

 

Because the number of items in the first additional form was very small, and likewise in some 
of the other forms for some subjects, only the subsets shown from additional forms 2 - 4 are 
used. We also divide each subtest score by the total numberof items in the subtest so as to 
reduce each score to the same scale. There are 99 schools with 2439 students and a total of 
10971 responses.  

 

Table 4.10 Numbers of items in topic areas:  Grade 8 
    
Form Earth Science Biology Physics 
1 (Core) 6 10 10 
2 - - 7 
3 - 4 - 
4 - 4 - 
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We see that the intercorrelations at the student level are low and higher at the school level. 
One reason for this is the fact that there are few items in each subtest so that the reliability of 
the tests is rather low. This will decrease the correlations at the student level but less so at 
the school level. In chapter 10 we shall see how we can make corrections for unreliability. 
Because of the low reliabilities the joint analysis does not result in a marked improvement in 
efficiency when we compare this analysis with an analysis for a single subtest. For example, 
if we fit a univariate model for the Physics R2 subtest, using the 1226 students responding to 
that subtest, we obtain fixed part estimates of  0.665 (0.0132) and -0.073 (0.0124) which 
are close to those above and with standard errors only slightly higher. 

In order to provide the most precise estimates we treated the subtests separately, although 
we would generally wish to make inferences for each subject area, combining over the tests. 

Table 4.11 Science attainment estimates for Hungary IEA study. 
 
Fixed Estimate (s.e.) 
  
Earth Science Core 0.838 (0.0076) 
Biology Core 0.711 (0.0100) 
Biology R3 0.684 (0.0109) 
Biology R4 0.591 (0.0167) 
Physics Core 0.752 (0.0128) 
Physics R2 0.664 (0.0128) 
  
Earth Science Core (girls - boys) -0.0030 (0.0059) 
Biology Core (girls - boys) -0.0151 (0.0066) 
Biology R3 (girls - boys)  0.0040 (0.0125) 
Biology R4 (girls - boys) -0.0492 (0.0137) 
Physics Core (girls - boys) -0.0696 (0.0073) 
Physics R2 (girls - boys) -0.0696 (0.0116) 
  
Random.  Variances on diagonal; correlations off-diagonal 
Level 2 (School) 

 

 

 E.Sc. core Biol. core Biol R3 Biol R4 Phys. core Phys. R2 
E.Sc. core 0.0041      
Biol. core 0.68 0.0076     
Biol R3 0.51 0.68 0.0037    
Biol R4 0.46 0.68 0.45 0.0183   
Phys. core 0.57 0.90 0.76 0.63 0.0104  
Phys. R2 0.54 0.78 0.57 0.65 0.78 0.0095 
  
Level 1 (Student) 

 

 

 E.Sc. core Biol. core Biol R3 Biol R4 Phys. core Phys. R2 
E.Sc. core 0.0206      
Biol. core 0.27 0.0261     
Biol R3 0.12 0.13 0.0478    
Biol R4 0.14 0.27 0.20 0.0585   
Phys. core 0.26 0.42 0.11 0.27 0.0314  
Phys. R2 0.22 0.33 0.14 0.37 0.41 0.0449 
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The natural way to do this is to form a weighted average of the subtest scores, in this case 
weighting by the number of items in each subtest. This, for the biology core and subtests we 
would form the weighted sum with weights 0.556, 0.222 and 0.222 respectively. This gives 
estimates for the boys and (girls - boys) of 0.68 (0.009) and -0.02 (0.007). We can 
compare this with the weighted combination of the core and two subtests, eliminating any 
students with missing data. This results in only 399 students with complete data and the 
corresponding estimates are 0.68 (0.013) and -0.008 (0.015). In this case, even though the 
individual level 1 correlations are relatively small,  the gain in efficiency is substantial, 
especially for inferences about the gender difference which in the second analysis is less than 
its standard error.  

Another way to combine the subtests would be to form, for each student, a score based 
upon the items which the student responded to. Thus, for Biology the 399 students taking 
the core and both rotated forms would have a score out of 18 items; and there would be 
823 and 807 students respectively with scores out of 14 items with 410 students having only 
a score out of the core test. Since the scores are out of different totals, we would expect the 
between student and between-school variances to differ and this is the case; the between 
student variance for the 10 core test score is 0.00013 compared to that for the 18 item core 
and two rotated forms score of 0.00021. Thus, we would need to fit separate variance and 
covariance terms in general for each of the combination and in effect treat the four 
combinations as separate responses in order to obtain efficient estimates. Furthermore, we 
would also tend to obtain high correlations between these combination scores that could 
lead to numerical estimation problems, so that in general this procedure is not 
recommended. 

4.5 Principal Components analysis 

We have already seen in section 4.1 that the covariance matrix for a multivariate response 
vector where there are missing data can be efficiently estimated by arranging for the 
multivariate structure to constitute a 'dummy' level 1. When the variables have a multivariate 
distribution the resulting estimates are maximum likelihood or restricted maximum likelihood.  

The aim of principal components analysis is to find a linear function of a set of variates which 
has the maximum variance, subject to a suitable constraint. In the single level case we 
require to maximise the variance of w yT  where w is the vector of weights defining the linear 
function of the variates y , and Ω  is the covariance matrix of y , namely 

Λ Ω= =w w w wT T,       1 

The solution is given by the eigenvector associated with the largest eigenvalue of Ω , that is 
the solution of  

Ω − =λI 0  (4.11) 

We define a second function by the set of weights that maximises the variance  subject to the 
function being uncorrelated with the first function. The solution is given by the eigenvector 
associated with the second largest eigenvalue, and subsequent functions can be defined 
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similarly (Lawley and Maxwell, 1971). The variates are usually standardised to have equal 
variances.  

We note that the covariance (or correlation) matrix Ω  can be a residual matrix, after 
regressing on explanatory variables. Thus, if we wished to form a principal component for 
the four science subjects of the previous section, we may wish to use the residual covariance 
matrix, after adjusting for gender differences. We now, however, have a choice of two 
covariance matrices, the between-student and the between-school one. If we choose the 
between-student matrix, then we would interpret the principal component as that which had 
been adjusted for school differences. In forming the derived summary variable(s) we would 
not use the actual observed variates but the level 1 estimates of them, that is the level 1 
residuals, the $ $u uj j01 02,   of (4.1).  

We could also choose to summarise the level 2 covariance matrix, and in this case we would 
use the school level residuals as the variates in the linear function. If the principal component 
analysis has been carried out on the residuals from a multivariate multilevel analysis  then we 
may wish to regard the school level principal component as a convenient summary measure 
of school differences.  

Table 4.5 shows the student level and school level principal component weights for the 
Science data. Since the measures are designed to be on the same scale we work directly 
with the covariance matrices. 

 Table 4.12 Principal Component weights for science test scores and percentage variation 
accounted for. 

Subject Between-student Between-school 

Earth Science Core 0.17 0.21 

Biology Core 0.29 0.40 

Biology R3 0.31 0.21 

Biology R4 0.63 0.59 

Physics Core 0.35 0.46 

Physics R2 0.52 0.43 

% variation 41% 72% 

As might be expected, the components both have positive weights. At the school level, the 
percentage variation accounted for by the first component is high suggesting that school 
Science performance may usefully be summarised by this weighted function of the individual 
school level subject residuals. Also, the two sets of weights are fairly similar. This suggests 
that if we wished to summarise the individual subject scores into a single index, we could do 
this using the student level weights, or even the weights obtained using the total covariance 
matrix. 

4.6 Multiple Discriminant analysis 

Given a set of variates we can seek a linear function of them that best discriminates among 
groups and this leads to the following definition. If y  is the vector of group means then we 
require a set of weights w such that w yT  has maximum variance, subject to the within-
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group variance of w yT  being constrained, for example equal to 1.0. The solution is the 
vector associated with the largest root of  

 

Ω ΩB W− =λ 0    

 

for the between-group (ΩB) and within-group (ΩW ) covariance matrices. For just two 
groups this gives the usual 'Fisher' discriminant function.  As in Principal Components 
analysis we can find further vectors that discriminate best, subject to being uncorrelated with 
all the previous vectors.  The function of the variates w yT  can then be used, for example, to 
classify a new unit into the 'nearest' group. 

In the 2-level case our groups are the level 2 units so that we require the covariance 
matrices from both levels. Using the Science data example the first vector is given by the 
weights 0.41 -0.07 1.00 0.26 0.31 0.13 and explains for about 48% of the variation. The 
next two vectors account for 19% and 13%. It is difficult to interpret these weights and the 
function would seem to have limited usefulness for discriminating between schools. 

 

4.7 Other Procedures 

There are other applications of multivariate models and we will be using many of the results 
of this chapter later. We shall also see in chapters 5 and 7 how mixtures of continuous and 
discrete response variables can be handled using extensions to the procedures of this 
chapter. The ability to model bivariate responses is used in chapter 9 to deal with event 
duration models. 
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Chapter 5 

Nonlinear multilevel models 

5.28 Nonlinear models 

The models of Chapters 1-4 are linear in the sense that the response is a linear function of 
the parameters in the fixed part and the elements of V are linear functions of the parameters 
in the random part. In many applications, however, it is appropriate to consider models 
where the fixed or random parts of the model, or both, contain nonlinear functions. For 
example, in the study of  growth, Jenss and Bayley (1937) proposed the following function 
to describe the growth in height of young children 

 

y t u u t e t u u t eij ij j j ij ij ij j j ij ij= + + + + − + + + +α α β βα α α β β β0 1 0 1 0 1 0 1exp ( )  (5.12) 

 

where tij  is the age of the j-th child at the i-th measurement occasion. Generalised linear 
models (McCullagh and Nelder, 1989) are a special case of nonlinear models where the 
response is a nonlinear function of a fixed part linear predictor. Models for discrete data, 
such as counts or proportions fall into this category and we shall devote chapter 7 to 
studying these. For example, a 2-level log linear model can be written  

 

E m Xij ij ij ij j( ) , exp( )= =π π β     (5.13) 

 

where mij  is  assumed typically to have a Poisson distribution, in this case across level 1 
units. Note here, that in the multilevel extension of the standard single level model, the linear 
predictor contains random variables defined at level 2 or above. 

In this chapter we consider a general nonlinear model. Later chapters will use the results for 
particular applications. 

 

5.29 Nonlinear functions of linear components 

The following results are an extension of those presented by Goldstein (1991) and appendix 
5.1 gives details. Where the random variables are not part of the nonlinear function, the 
procedure gives maximum likelihood estimates (see appendix 5.1). In the  case where the 
level 1 variation is non Normal the procedure can be regarded as a generalisation of 
quasilikelihood estimation (McCullagh and Nelder, 1989) and such models are discussed in 
chapter 7. 

Restricting attention to a 2-level structure we can write a fairly general model as follows 
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y X Z u Z e f X Z u Z eij ij ij j ij ij ij ij j ij ij= + + + + + +1 1 1
2

1 1
1

1 2 2 2
2

2 2
1

2β β( ) ( ) ( ) ( )( ) ... (5.14) 

where the function f  is nonlinear and where the +... indicates that additional nonlinear 
functions can be included, involving further fixed part explanatory variables X  or random 
part explanatory variables at levels 1 and 2, respectively Z Z( ) ( )1 2,  . The model is first 
linearised by a suitable Taylor series expansion and this leads to consideration of a linear 
model where the explanatory variables in f  are transformed using first and second 
derivatives of the nonlinear function. Note that the linear component of (5.3) is treated in the 
standard way, and that the random variables at a given level in the linear and nonlinear 
components may be correlated. 

Consider the  nonlinear function  f . Appendix 5.1 shows that we can write this as the sum 
of a fixed part component and a random part. The Taylor expansion for the random part up 
to a second order approximation for the ij-th unit is as follows  

f f H Z u Z e f H

Z u Z e f H

ij ij t ij j ij ij ij t

ij j ij ij ij t

= + + ′

+ + ′′

+( ) ( ) ( )

( ) ( ) /

( ) ( )

( ) ( )

1 2
2

2 2
1

2

2
2

2 2
1

2
2 2

 
 

(5.15) 

The first term on the right hand side is the fixed part value of f  at the current ((t+1)-th) 
iteration of the IGLS or RIGLS algorithm, that is ignoring the random part. The other two 
terms involve the first and second differentials of the nonlinear function evaluated at the 
current values from the previous iteration. We have 
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(5.16) 

We write the expansion for the fixed part value as 

f H f H X f Hij t ij t ij t t ij t( ) ( ) ( ) ( ), ,+ += + − ′1 1 1 1β β  (5.17) 

where β β1 1 1, ,,t t+   are the current and previous iteration values of  the fixed part coefficients.  

We can choose Ht  to be either the current value of the fixed part predictor, that is X ij2 2β , 
or we can add the current estimated residuals to obtain an improved approximation to the 
nonlinear component for each unit. The former is referred to as a 'marginal' (quasilikelihood) 
model and the latter as a 'penalised' or 'predictive' (quasilikelihood) model (see Breslow and 
Clayton, 1993,  for a further discussion). We can also choose whether or not to include the 
term in (5.4) involving the second derivative and we would expect its inclusion in general to 
improve the estimates. Its inclusion defines a further offset for the fixed part and one for the 
random part (see appendix 5.1). We shall illustrate the effect of these choices in the 
examples given in chapter 7. Further details of the estimation procedure are given in 
Appendix 5.1. In practice general models such as (5.1) may pose considerable estimation 
problems. We notice that  the same explanatory variables occur in the linear and nonlinear 
components and this can lead to instability and failure to converge. Further work in this area 
is required.  
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Table 5.1 gives expressions for the first and second differentials for some commonly used 
nonlinear models. 

 

Table 5.13 Differentials for some common nonlinear models. 

    

Model Function First differential Second differential 

 f x( )  ′f x( )  ′′f x( )  

loglinear ex  ex  ex  

logit ( )1 1+ − −e x  ( ) ( )1 11 1+ +− − −e ex x  ( ) ( ) ( )1 1 11 2+ + −− − −e e ex x x  

log-log e ex−  − −e ex ex

 ( )e e ex x ex

− −1  

inverse x−1  − −x 2  2 3x −  

     

5.30 Estimating  population means 

Consider the expected value of the response for a given set of covariate values. Because of 
the nonlinearity this is not in general equal to the predicted value when the random variables 
in the nonlinear function are zero. For example, if we write the variance components model 
(5.2)  

π β βij ij jx u= + +exp( )0 1  

and assuming Normality for u j  we obtain 

E x x e u du xi j ij ij
u

j j ij u
j( | ) exp( ) ( ) exp( / )π β β φ β β σ= + = + +

−∞

∞

∫0 1 0 1
2 2  

Where φ  is the density function of the Normal distribution. Zeger et al (1988) consider this 
issue and propose a ‘population average’ model  for directly obtaining population predicted 
values by eliminating random variables from the nonlinear component. In general, however, 
this approach is less efficient when the full model with random variables within the nonlinear 
function is the correct model. The population predicted values, conditional on covariates, 
can be obtained if required, as above, by taking expectations over the population. An 
approximation to this can be obtained from the second order terms in (5.1.4) with higher 
order terms introduced if necessary to obtain a better approximation. Alternatively we may 
generate a large number of simulated sets of values for the random variables and for each set 
evaluate the response function to obtain an estimate of the full population distribution.  

5.31 Nonlinear functions for variances and covariances 

We saw in chapter 3 how we could model complex functions of the level 1 variance. As 
with the linear component of the model, there are cases where we may wish to model 
variances or covariances as nonlinear functions. In principle we can do this at any level but 
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we restrict our attention to level 1 and to the variance only. In chapter 6 we give an example 
where the covariances are modelled in this way.  

Suppose that the level 1 variance decreases with increasing values of an explanatory variable 
such that it approaches a fixed value asymptotically. We could then model this for a 2-level 
model, say, as follows 

var( ) exp( )* *e xij ij= −β β0 1  

where β β0 1
* *,   are parameters to be estimated. Such a model also guarantees that the level 

1 variance is positive which is not the case with linear models, such as those based on 
polynomials. The estimation procedure is analogous to that described above and details are 
given in Appendix 5.1. 

5.32 Examples of nonlinear growth and nonlinear level 1 variance 

We give first an example of  a model with a nonlinear function for the linear component  and 
we then consider the case of a nonlinear level 1 variance function.  

We use an example from child growth, consisting of 577 repeated measurements of height 
on 197 French Canadian boys aged from 5 to 10 years (Demirjian et al, 1982) with 
between 3 and 7 measurements each. This is a 2-level structure with measurement 
occasions nested within children. We fit the following version of the Jenss-Bayley curve to 
illustrate the procedure 

y t t t u u t eij ij ij ij j j ij ij= + + + + + + +exp( )β β β β αβ β α0 1 2
2

3
3

0 1 0  (5.18) 

so that the fixed part is an intercept plus a nonlinear component and the random part 
variance at level 2 is part of the nonlinear component. The results are given in table 5.2, 
using the first order approximation with prediction based upon the fixed part only. We shall 
compare the performance of  the different approximations in chapter 7. 

The level 1 variance is small and of the order of the measurement error of height 
measurements. The starting values for this model need to be chosen with care, and in the 
present case the model was run to convergence without the linear intercept α0  which was 
then added with a starting value of 100. Bock (1992) uses an EM algorithm to fit a nonlinear 
2-level model to growth data from age 2 years to adulthood using a mixture of  three logistic 
curves. 

The second example uses the JSP dataset where we studied the level 1 variance in chapter 
3. We will fit model B of Table 3.1 with a nonlinear function of the level 1 variance instead 
of  the level 1 variance as a quadratic function of the 8-year-score. This level 1 variance for 
the ij-th level 1 unit is exp( )* *β β0 1 1+ x ij  and table 5.3 shows the model estimates.  

The estimates are almost identical to those of  model B of table 3.1 as is the likelihood value. 

Figure 5.1 shows the predicted level 1 variance for this model and model B of Table 3.1.  
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Fig 5.1 Level 1 variance as a function of  8-year Maths score 

 

Table 5.14 Nonlinear model estimates with first order fixed part prediction. Age is measured about 8.0 years. 
 
Fixed coefficient Estimate (s.e.) 
Intercept (linear) 90.3 
Intercept (nonlinear) 3.58 
Age 0.15 (0.10) 
Age squared -0.016 (0.02) 
Age cubed 0.002 (0.004) 
  

 
Nonlinear model level 2 covariance matrix  (s.e.) 
 Intercept Age  
Intercept 0.025 (0.003)  
Age -0.0027 (0.0003) 0.00036  (0.00005) 

Level 1 variance  = 0.25 

In these data the nonlinear function gives very similar results to the quadratic one. It is clear, 
however, that where the variance asymptotically approaches a constant value, for extreme 
values of an explanatory variable, a linear or even quadratic approximation may be expected 
to fail. In the present case a linear function does predict a negative level 1 variance within the 
range of the data. An example where a nonlinear function is necessary is in growth data, 
described in chapter 6, where the level 1 (within-individual) variation will decrease towards  
a constant value at the approach to adulthood. 
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Table 5.15 Nonlinear level 1 variance for JSP data. 

 

Parameter Estimate (s.e.) 

Fixed:  

Constant 31.7 

8-year score 0.58 (0.03) 

Gender (boys - girls) -0.34 (0.27) 

Social class (Non Man - Man) 0.76 (0.30) 

School mean 8-year score 0.01 (0.11) 

8-yr score x school mean 8-yr score 0.02 (0.01) 

Random:  

Level 2  

σ u0
2   2.87 (0.88) 

σu 01  -0.17 (0.07) 

σu1
2  0.012 (0.007) 

Level 1  

β0
*  2.74 (0.06) 

β1
*  -0.10 (0.01) 

 

5.6 Multivariate Nonlinear Models 

We can use the procedures of this chapter to fit multivariate models by a using level 1 to 
define the multivariate structure and using the linearisation procedures described in this 
chapter for higher levels. In general, the response variables will have different nonlinear link 
functions, some of which may be linear. Thus, for example we might fit a model where one 
response, say a mathematics test score, is a linear function of explanatory variables and a 
second response, say whether or not the student has a ‘positive’ attitude towards 
mathematics, is binary. For each level we will have variances for each response and 
covariances among the coefficients random at that level, where these are specified for the 
transformed model. Such a model is discussed in chapter 7.  

We may also have multivariate models where the level 1 variances are different nonlinear or 
linear functions of explanatory variables with covariances between the coefficients in the 
different nonlinear or linear functions.  
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Appendix 5.1.   

Nonlinear model estimation 

5.1.33 Modelling linear components 

We consider first only a single nonlinear term of the form 

y f X Z u Z eij ij ij j ij ij= + +( )( ) ( )
2 2 2

2
2 2

1
2β  (5.19.1) 

The addition of  linear terms to this model is discussed in chapter 5 

At the (t+1)-th iteration we expand (5.1.1) for both fixed and random parts as follows 

f H X f H

Z u Z e f H Z u Z e f H

ij t ij t t ij t

ij j ij ij ij t ij j ij ij ij t

( ) ( ) ( )

( ) ( ) ( ) ( ) /

, ,
/

( ) ( ) / ( ) ( ) //

+ − +

+ + +

+β β2 1 2

2
2

2 2
1

2 2
2

2 2
1

2
2 2

 

 

(5.1.20) 

in terms of parameter values estimated at the t-th iteration. The first line of (5.1.2) updates 
the fixed part of the model and in the special case of a single level quasilikelihood model 
provides the updating function. The quantity f H X f Hij t ij t ij t( ) ( ),

/− 2 2β  is treated as an offset 

to be subtracted from the response variable. The first term in the second line defines a linear 
random component based on the explanatory variables transformed by multiplying by the 
first differential. We need to specify Ht  and consider the distribution of the second term in 
the second line of (5.1.2). 

If we choose H Xt ij t= 2 2β , , this is equivalent to carrying out the Taylor expansion around 
the fixed part predicted value. If we choose H X Z u Z et ij t ij j ij ij= + +2 2 2

2
2 2

1
2β ,

( ) ( )$ $ , this expands 
around the current predicted value for the ij-th unit and we replace the second line of 
(5.1.2) by 

( ( $ ) ( $ )) ( )

( ( $ ) ( $ )) ( ) /

( ) ( ) /

( ) ( ) / /

Z u u Z e e f H

Z u u Z e e f H

ij j j ij ij ij ij t

ij j j ij ij ij ij t

2
2

2 2 2
1

2 2

2
2

2 2 2
1

2 2
2 2

− + −

+ − + −
  

We thus have the further offset from the linear term to be added to the response  

( $ $ ) ( )( ) ( ) /Z u Z e f Hij j ij ij ij t2
2

2 2
1

2+  

A discussion of these approaches in the context of multilevel generalised linear models is 
given by Breslow and Clayton (1993). Wolfinger (1993) synthesises some of the literature 
based upon  this ‘predictive’ approach. All these methods use only the first order terms in 
(5.1.2).  

From the  second line of (5.1.2), where the Taylor expansion is about zero, we have 

E Z u Z e Z u Z e

Z Z Z Z

ij j ij ij ij j ij ij zu ze

zu ij u ij
T

ze ij e ij
T

( ) , ( )

,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2

2 2
1

2 2
2

2 2
1

2
2 2 2

2
2

2
2

2 2
2
1

2
1

0+ = + = +

= =

    E

    

σ σ

σ σΩ Ω
 

 

(5.1.21) 
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To incorporate the second order terms we treat ( ) ( ) // /σ σzu ze tf H2 2 2+  as an additional 
offset in the fixed part and in the random part of the model we need to consider the variation 
of the second term in the second line of (5.1.2). If we assume Normality then all third 
moments, formed from the product of the two terms in the second line of (5.1.2), are zero 
and we have  

var( ) ( )( ) ( )Z u Z eij j ij ij zu ze2
2

2 2
1

2
2 4 42+ = +σ σ  (5.1.22) 

so that we need to define the additional  random variables 

Z f H f Hu zu t ze t
* / / / /( ) / , ( ) /= =σ σ2 22 2   Ze

*  

which are uncorrelated and with variances constrained to be equal to 1.0. Equivalently we 
can form Z Z Z Zu u e e

T T* * * *,    as offsets for the response vector vec Y YT( % % )  in the estimation of 
the random parameters. Having modified the response variable by removing the necessary 
offsets we are left in the fixed part with a modified response, say ′Y  with a modified 
explanatory variable matrix, say ′X . We do likewise for the random part of the model and 
then carry out a standard iterative procedure, updating the differential functions at each 
iteration. 

Where the Taylor expansion is taken about the current values of the residuals we require 

 E[Z u u E Z e eij j j i j ij ij2
2

2 2
2

2
1

2 2
2( ) ( )( $ )] [ ( $ )]− + −  

which leads to the ‘conditional’ variances described in Appendix 2.2, so that we substitute 
these variances, Ω Ω Ω Ω$ $u e u e  and    ,  for   and   in the above expressions for the fixed and 
random offsets. 

To estimate residuals we note that, having adjusted the response using the offsets, we have 
on the right hand side of the model, for the Taylor expansion about zero,  the fixed part 
together with the random terms 

( ) ( ) [( ) ( )] ( ) /( ) ( ) / ( ) ( ) / /Z u Z e f H Z u Z e f Hij j ij ij ij t ij j ij ij zu ze ij t2
2

2 2
1

2 2
2

2 2
1

2
2 2 2 2+ + + − +σ σ  

Each residual and its square appear in this expression, and since third order moments are 
zero, we can apply the usual linear estimation for the residuals as described in Appendix 2.2.  
The weight matrix V is based upon both the linear and quadratic terms of the above 
expression. We carry out an analogous procedure for the case where the Taylor expansion 
is based upon the current residual estimates. 

The above can be extended in a straightforward way to more than two levels and of course 
to multivariate models. For the first order approximation the procedure outlined here is 
closely related to that given by Lindstrom and Bates (1990) for 2-level repeated measures 
data who consider a first order expansion about the unit-specific predicted values.  
Gumpertz and Pantula (1992) consider a variance components model where the fixed part 
predictor is nonlinear.  

For generalised linear models Waclawiw and Liang (1993) consider a generalised estimating 
equations approach (see chapter 2), using a unit-specific predictor. A full likelihood based 
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method for a repeated measures model with binary responses is given by Garret et al. 
(1993). 

For small samples, as discussed in Appendix 2.1, we should use the unbiased (RIGLS, 
REML) procedure to obtain corresponding unbiased quasilikelihood estimates. 

5.1.34 Modelling variances and covariances as nonlinear functions 

In section 2.6 we saw that the random parameters were estimated by regressing the 
observed cross-product matrix of residuals on a set explanatory variables which defined the 
appropriate variances and covariances at each level. Using the notation in Appendix 2.2 we 
have the following linear model for the random parameters β*  

Y vec YY X E Y vec VT* * * *(~ ~ ) ( ) ( )= = =β ,       (5.1.23) 

We can now apply the same procedure for the specification and estimation of a nonlinear 
model as above. We illustrate this for the case where the level 1 variance is an exponential 
function of a covariate X1

* , defined in terms of the Kronecker product as in Appendix 2.2, 
namely for the t-th element of X* *β  (which is on the diagonal of V) the level 1 variance 
contribution is 

σ β β β β
β

βet t t tf x x X x2
0 0 1 1 1 1

0

1

= = + = =








( ) exp( ) { },* * * * * * * *

*

*
,              

 

(5.1.24
) 

As in the linear function case we form the first differential f f/ = , multiply x xt t0 1
* *,  by this 

and estimate the parameters of the resulting transformed linear model. This will involve 
introducing an offset for Y*  and constructing the following level 1 explanatory variables for 
the estimation of β * , setting their covariance to zero 

 

{ exp( ) , { exp( )}* * * * * * * * * * .x x x x x xt t t t t t0 0 0 1 1 1 0 0 1 1
0 5β β β β+ +}     0.5

 

 

Because we are estimating only nonlinear functions of linear components here and not 
adding approximations to a further random component, the estimates obtained are exact 
maximum likelihood or restricted maximum likelihood estimates. 

In chapter 5 we give an example of model (5.1,6) and in chapter 6 we develop a special 
case of a nonlinear model for covariances. We note that the parameters β β0 1

* *,   are not 
necessarily positive when modelling (5.1.6) and although we would normally regard such 
level 1 parameters as variances, in this case as in section 3.1 they are simply parameters to 
be estimated. As with nonlinear modelling in general it is important to have reasonable 
starting values. These might be obtained by trial and error or by making preliminary 
estimates of variances for various values of the relevant explanatory variable and regressing 
their logarithms on the level 1 explanatory variables.   
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5.1.35 Likelihood values 

The log likelihood for the general multilevel model, apart from a constant and assuming 
multivariate Normality is given (Appendix 2.2) by 

 

log ( ) log| | , % % , %L tr V S V S YY Y Y XT= − − = = −−1         β (5.1.25) 

 

An approximation to this for nonlinear models of a linear component is given by substituting  
the nonlinear function f X( )β  for Xβ in (5.1.7) with the transformed random parts of the 
model incorporated into V in the usual way. If we use the predicted residuals to form Ht  
then we omit these from the likelihood calculation but add the offset term defined in (5.1.2) 
to Xβ. Likewise, in the second order model, we have to add the corresponding offsets to V. 
This procedure is equivalent to computing the ordinary likelihood using the modified 
response and explanatory variables ′ ′Y X,   at convergence.  

The estimates of  −2 log L computed in this way can be used for approximate tests of 
hypotheses and for constructing confidence intervals. In chapter 7 when we consider 
discrete data models with non Normal level 1 random variation (for example binomial) we 
may often be able to treat this variation as approximately Normal and carry out the same 
procedure and such a procedure will give us an approximate log quasilikelihood which may 
be used similarly. In some cases, however, for example when the responses are binary (0,1) 
this statistic is too unreliable to use and we can base approximate inferences upon the 
estimated variances and covariances of the parameters. More accurate inferences based 
upon bootstrap confidence intervals can be obtained as described in Chapter 3. 

When modelling variances and covariances as nonlinear functions the estimates obtained are 
exact maximum likelihood as is the value of  −2 log L. 
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Chapter 6 

Repeated measures data 

6.36 Models for repeated measures 

When measurements are repeated on the same subjects, for example students or animals, a 
2-level hierarchy is established with measurement repetitions or occasions as level 1 units 
and subjects as level 2 units. Such data are often referred to as ‘longitudinal’ as opposed to 
‘cross-sectional’ where each subject is measured only once. Thus, we may have repeated 
measures of body weight on growing animals or children, repeated test scores on students 
or repeated interviews with survey respondents. It is important to distinguish two classes of 
models which use repeated measurements on the same subjects. In one, earlier 
measurements are treated as covariates rather than responses. This was done for the 
educational data analysed in chapters 2 and 3, and will often be more appropriate when 
there are a small number of discrete occasions and where different measures are used at 
each one. In the other, usually referred to as ‘repeated measures’ models, all the 
measurements are treated as responses, and it is this class of models we shall discuss here. 
A detailed description of the distinction between the former 'conditional' models and the 
latter 'unconditional' models can be found in Goldstein (1979) and Plewis (1985). 

We may also have repetition at higher levels of a data hierarchy. For example, we may have 
annual examination data on successive cohorts of 16-year-old students in a sample of 
schools. In this case the school is the level 3 unit, year is the level 2 unit and student the level 
1 unit. We may even have a combination of repetitions at different levels: in the previous 
example, with the students themselves being measured on successive occasions during the 
years when they take their examination. We shall also look  at an example where there are 
responses at both level 1 and level 2, that is specific to the occasion and to the subject. It is 
worth pointing out that in repeated measures models typically most of the variation is at level 
2, so that the proper specification of a multilevel model for the data is of particular 
importance. 

The link with the multivariate data models  of chapter 4 is also apparent where the occasions 
are fixed. For example, we may have measurements on the height of a sample of children at 
ages 11.0, 12.0, 13.0 and 14.0 years. We can regard this as having a multivariate response 
vector of 4 responses for each child, and perform an equivalent analysis, for example 
relating the measurements to a polynomial function of age. This multivariate approach has 
traditionally been used with repeated measures data (Grizzle and Allen, 1969). It cannot, 
however, deal with data with an arbitrary spacing or number of occasions and we shall not 
consider it further. 

In all the models considered so far we have assumed that the level 1 residuals are 
uncorrelated. For some kinds of repeated measures data, however, this assumption will not 
be reasonable, and we shall investigate models which allow a serial correlation structure for 
these residuals. 
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We deal only with continuous response variables in this chapter. We shall discuss repeated 
measures models for discrete response data in chapter 7. 

6.37 A 2-level repeated measures model 

Consider a data set consisting of repeated measurements of the heights of a random sample 
of children. We can write a simple model 

y x eij j j ij ij= + +β β0 1  (6.26) 

This model assumes that height (Y ) is linearly related to age ( X ) with each subject having 
their own intercept and slope so that  

E E

e
j j

j u j u j j u ij e

( ) , ( )

var( ) , var ( ) , cov( , ) , var( )

β β β β

β σ β σ β β σ σ
0 0 1 1

0 0
2

1 1
2

0 1 01
2

= =

= = = =

     

            

There is no restriction on the number or spacing of ages, so that we can fit a single model to 
subjects who may have one or several measurements. We can clearly extend (6.1) to 
include further explanatory variables, measured either at the occasion level, such as time of 
year or state of health, or at the subject level such as birthweight or gender. We can also 
extend the basic linear function in (6.1) to include higher order terms and we can further 
model the level 1 residual so that the level 1 variance is a function of age. 

We explored briefly a nonlinear model for growth measurements in chapter 5. Such models 
have an important role in certain kinds of growth modelling, especially where growth 
approaches an asymptote as in the approach to adult status in animals. In the following 
sections we shall explore the use of polynomial models which have a more general 
applicability and for many applications are more flexible (see Goldstein, 1979 for a further 
discussion). We introduce examples of increasing complexity, and including some nonlinear 
models for level 1 variation using the results of chapter 5. 

6.38 A polynomial model example for adolescent growth and the prediction 
of adult height 

Our first example combines the basic 2-level repeated measures model with a multivariate 
model to show how a general growth prediction model can be constructed. The data consist 
of  436 measurements of the heights of 110 boys between the ages of  11 and 16 years 
together with measurements of their height as adults and estimates of their bone ages at each 
height measurement based upon wrist radiographs. A detailed description can be found in 
Goldstein (1989b). We first write down the three basic components of the model, starting 
with a simple repeated measures model for height using a 5-th degree polynomial. 

y x u x eij h ij
h

hj ij
h

h
ij

h

( ) ( ) ( ) ( )1 1 1

0

2
1

0

5

= + +
==

∑∑β  
 

(6.27) 

where the level 1 term eij  may have a complex structure, for example a decreasing variance 
with increasing age.  
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The measure of bone age is already standardised since the average bone age for boys of a 
given chronological age is equal to this age for the population. Thus we model bone age 
using an overall constant to detect any average departure for this group together with 
between-individual and within-individual variation. 

y u x eij hj ij
h

ij
h

( ) ( ) ( ) ( )2
0
2 2 2

0

1

= + +
=
∑β  

 

(6.28) 

For adult height we have a simple model with an overall mean and level 2 variation. If we 
had more than one adult measurement on individuals we would be able to estimate also the 
level 1 variation among adult height measurements; in effect measurement errors. 

y uj j
( ) ( ) ( )3

0
3

0
3= +β  (6.29) 

We now combine these into a single model using the following indicators  
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(6.30
) 

At level 1 the simplest model, which we shall assume, is that the residuals for bone age and 
height are independent, although dependencies could be created, for example if the model 
was incorrectly specified at level 2.  Thus, level 1 variation is specified in terms of two 
variance terms. Although the model is strictly a multivariate model, because the level 1 
random variables are independent it is unnecessary to specify a 'dummy' level 1 with no 
random variation as in chapter 4. If, however, we allow correlation between height and bone 
age then we will need to specify the model with no variation at level 1, the variances and 
covariance between bone age and height at level 2 and the between-individual variation at 
level 3.  

Table 6.1 shows the fixed and random parameters for this model, omitting the estimates for 
the between-individual variation in the quadratic and cubic coefficients of the polynomial 
growth curve.  We see that  there is a large correlation between adult height and height and 
small correlations between the adult height and the height growth and the bone age 
coefficients. This implies that the height and bone age measurements can be used to make 
predictions of adult height. In fact these predicted values are simply the estimated residuals 
for adult height. For a new individual, with information available at one or more ages on 
height or bone age, we simply estimate the adult height residual using the model parameters. 
Table 6.2 shows the estimated standard errors associated with predictions made on the 
basis of varying amounts of information. It is clear that the main gain in efficiency comes with 
the use of height  with a smaller gain from the addition of bone age. 
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Table 6.16 Height (cm) for adolescent growth, bone age, and adult height for a sample of boys. 
Age measured about 13.0 years. Level 2 variances and covariances shown; correlations in  
brackets.  
     
Parameter  Estimate (s.e.)   
Fixed   
Adult Height   
Intercept 174.4  
Group (A-B) 0.25 (0.50)  

Height: 
  

Intercept 153.0  
Age 6.91 (0.20)  
Age 2  0.43 (0.09)  

Age 3  -0.14 (0.03)  

Age 4  -0.03 (0.01)  

Age 5  0.03 (0.03)  
   
Bone Age:   
Intercept 0.21 (0.09)  
Age 0.03 (0.03)  
     
Random     
Level 2     
 Adult Height Height intercept Age Bone Age Intcpt. 
Adult Height 62.5    
Height intercept 49.5 (0.85) 54.5   
Age 1.11 (0.09) 1.14 (0.09) 2.5  
Bone Age Intcpt. 0.57 (0.08) 3.00 (0.44) 0.02 (0.01) 0.85 
     
Level 1 variance     
Height  0.89     
Bone age  0.18     

 

The method can be used for any measurements, either to be predicted or as predictors. In 
particular, covariates such as family size or social background can be included to improve 
the prediction. We can also predict other events of interest, such as the estimated age at 
maximum growth velocity.  

 

Fig 6.17 Standard errors for height predictions for specified combinations of height and bone age 
measurements. 

     

   Height measures (age)  

   None 11.0 11.0  

     12.0  

Bone age measures       

None    4.3 4..2  

11.0   7.9 3.9 3.8  
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11.0 12.0  7.9 3.7 3.7  

 

6.39 Modelling an autocorrelation structure at level 1. 

So far we have assumed that the level 1 residuals are independent. In many situations, 
however, such an assumption would be false. For growth measurements the specification of 
level 2 variation serves to model a separate curve for each individual, but the between-
individual variation will typically involve only a few parameters, as in the previous example. 
Thus if measurements on an individual are obtained very close together in time, they will tend 
to have similar departures from that individual's underlying growth curve. That is, there will 
be 'autocorrelation' between the level 1 residuals. Examples arise from other areas, such as 
economics, where measurements on each unit, for example an enterprise or economic 
system, exhibit an autocorrelation structure and where the parameters of the separate time 
series vary across units at level 2.  

A detailed discussion of multilevel time series models is given by Goldstein et al (1994). 
They discuss both the discrete time case, where  the  measurements are made at the same 
set of equal intervals for all level 2 units, and the continuous time case where the time 
intervals can vary. We shall develop the continuous time model here since it is both more 
general and flexible. 

To simplify the presentation, we shall drop the level 1 and 2 subscripts and write a general 
model for the level 1 residuals as follows 

cov( ) ( )e e f st t s e− = σ2
 (6.31) 

Thus, the covariance between two measurements depends on the time difference between 
the measurements. The function f s( )  is conveniently described by a negative exponential 
reflecting the common assumption that with increasing time difference the covariance tends 
to a fixed value, ασe

2 , and typically this is assumed to be zero 

f s g z s( ) exp( ( , , ))= + −α β  (6.32) 

where β  is a vector of parameters for explanatory variables z. Some choices for g are given 
in Table 6.3. 

We can apply the methods described in Appendix 5.1 to obtain maximum likelihood 
estimates for these models, by writing the  expansion 

 

f s z z g H f H z g H f Hk t k t
k

t k t k t
k

t( , , ) { ( )} ( ) ( ) ( ), ,β β β= + −∑ ∑ +1 1  (6.33
) 

so that the model for the random parameters is linear. Full details are given by Goldstein et 
al (1994). 
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6.40 A growth model with autocorrelated residuals 

The data for this example consist of a sample of 26 boys each measured on nine occasions 
between the ages of 11 and 14 years (Harrison and Brush, (1990). The measurements were 
taken approximately 3 months apart. Table 6.4 shows the estimates from a model which 
assumes independent level 1 residuals with a constant variance. The model also includes a 
cosine term to model the seasonal variation in growth with time measured from the beginning 
of the year. If the seasonal component has amplitude α  and phase γ  we can write 

α γ α αcos( ) cos( ) sin( )t t t+ = −1 2  

In the present case the second coefficient is estimated to be very close to zero and is set to 
zero in the following model. This component results in an average growth difference between 
summer and winter estimated to be about 0.5 cm. 

We now fit in table 6.5 the model with g s= β0  which is the continuous time version of the 
first order autoregressive model.  

The fixed part and level 2 estimates are little changed. The autocorrelation parameter implies 
that the correlation between residuals 3 months (0.25 years) apart is 0.19. 

 
Table 6.18 Some choices for the covariance function g for level 1 residuals. 
 
g s= β0  For equal intervals this is a first order 

autoregressive series. 

 
g s t t t t= + + + +β β β0 1 1 2 2 1

2
2
2( ) ( ) For time points t t1 2,  this implies that the 

variance is a quadratic function of time. 

 

g
s

=




β
β

0

1

 if no replicate
 if replicate  

For replicated measurements this gives an 
estimate of measurement reliability 
exp( )−β1 . 

 
g z z sj ij= + +( )β β β0 1 1 2 2  The covariance is allowed to depend on an 

individual level characteristic (e.g. gender) 
and a time-varying characteristic (e.g. season 
of the year or age). 

 

g
s s s

s
=

+ >
=





−β β0 1
1 0

0 0
,

,
   

    

Allows a flexible functional form, where the 
time intervals are not close to zero. 
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Table 6.19 Height as a fourth degree polynomial on age, measured about 13.0 years. Standard errors 
in brackets; correlations in brackets for covariance terms. 

 
Parameter Estimate (s.e.)   
Fixed    
Intercept 148.9   
age 6.19 (0.35)   
age 2  2.17 (0.46)   

age 3  0.39 (0.16)   

age 4  -1.55 (0.44)   
cos (time) -0.24 (0.07)   
    
Random    
level 2    
 Intercept age age 2  
Intercept 61.6 (17.1)   
age 8.0 (0.61) 2.8 (0.7)  
age 2  1.4 (0.22) 0.9 (0.67) 0.7 (0.2) 
    
level 1    
σe

2 0.20 (0.02)   

Table 6.20 Height as a fourth degree polynomial on age, measured about 13.0 years. Standard errors 
in brackets; correlations in brackets for covariance terms. Autocorrelation structure fitted for level 1 
residuals. 
    
Parameter Estimate (s.e.)   
Fixed    
Intercept 148.9   
age 6.19 (0.35)   
age 2  2.16 (0.45)   

age 3  0.39 (0.17)   

age 4  -1.55 (0.43)   
cos (time) -0.24 (0.07)   
    
Random    
level 2    
 Intercept age age 2  
Intercept 61.5 (17.1)   
age 7.9 (0.61) 2.7 (0.7)  
age 2  1.5 (0.25) 0.9 (0.68) 0.6 (0.2) 
    
level 1    
σe

2 0.23 (0.04)   

β  6.90 (2.07)   
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6.41 Multivariate repeated measures models 

We have already discussed the bivariate repeated measures model where the level 1 
residuals for the two responses are independent. In the general multivariate case where 
correlations at level 1 are allowed, we can fit a full multivariate model by adding a further 
lowest level as described in chapter 4. For the autocorrelation model this will involve 
extending the models to include cross correlations. For example for two response variables 
with the model of table 6.5 we would write 

g se e= −σ σ β1 2 12exp( )   

The special case of a repeated measures model where some or all occasions are fixed is of 
interest. We have already dealt with one example of this where adult height is treated 
separately form the other growth measurements. The same approach could be used with, for 
example, birthweight or length at birth. In some studies, all individuals may be measured at 
the same initial occasion and we can choose to treat this as a covariate rather than as a 
response. This might be appropriate where individuals were divided into groups for different 
treatments following initial measurements. 

6.42 Scaling across time 

For some kinds of data, for example educational achievement scores, different 
measurements may be taken over time on the same individuals so that some form of 
standardisation may be needed before they can be modelled using the methods of this 
chapter. It is common in such cases to standardise the measurements so that at each 
measuring occasion they have the same population distribution. If this is done then we should 
not expect any trend in either the mean or variance over time, although there will still, in 
general, be between-individual variation. An alternative standardisation procedure is to 
convert scores to age equivalents; that is to assign to each score the age for which that score 
is the population mean or median. Where scores change smoothly with age this has the 
attraction of providing a readily interpretable scale. Plewis (1993) uses a variant of this in 
which the coefficient of variation at each age is also fixed to a constant value. In general, 
different standardisations may be expected to lead to different inferences. The choice of 
standardisation is in effect a choice about the appropriate scale along which measurements 
can be equated so that any interpretation needs to recognise this. A further discussion of this 
issue is given by Plewis (1994). 

6.43 Cross-over designs 

A common procedure for comparing the effects of two different treatments A, B,  is to 
divide the sample of subjects randomly into two groups and then to assign A to one group 
followed by B and B to the other group followed by A. The potential advantage of such a 
design is that the between-individual variation can be removed from the treatment 
comparison. A basic model for such a design with two treatments, repeated measurements 
on individuals and a single group effect can be written as follows 
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y x x u u x eij ij ij j j ij ij= + + + + +β β β0 1 1 2 2 0 2 2  (6.34) 

 

where X1 is a dummy variable for time period and X2  is a dummy variable for treatment. 
In this model we have not modelled the responses as a function of time within treatment, but 
this can be added in the standard fashion described in previous sections. In the random part 
at level 2 we allow between-individual variation for the treatment difference and we can also 
structure the level 1 variance to include autocorrelation or different variances for each 
treatment or time period.  

One of the problems with such designs is so called ‘carry over’ effects whereby exposure to 
an initial treatment leaves some individuals more or less likely to respond positively to the 
second treatment. In other words, the u j2  may depend on the order in which the treatments 
were applied. To model this we can add an additional term to the random part of the model, 
say u j ij3 3δ , where δ3ij  is a dummy variable which is 1 when A precedes B and the second 
treatment is being applied and zero otherwise. This will also  have the effect of allowing level 
2 variances to depend on the ordering of treatments. The extension to more than two 
treatment periods and more than two treatments is straightforward. 
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Chapter  7 

Discrete response data 

7.44 Models for discrete response data 

All the models of previous chapters have assumed that the response variable is continuously 
distributed. We now look at data where the response is essentially a count of events. This 
count may be the number of times an event occurs out of a fixed number of  ‘trials’ in which 
case we usually deal with the resulting proportion as response: an example is the proportion 
of  deaths in a population, classified by age. We may have a vector of counts representing 
the numbers of events of different kinds which occur out of a total number of events: an 
example is given in chapter 3 where we studied the number of responses to each, ordered, 
category of a question on abortion attitudes. 

Statistical models for such data are referred to as ‘generalised linear models’ (McCullagh 
and Nelder, 1989). A 2-level model can be written in the general form 

 

π βij ij jf X= ( )  (7.35) 

 

where π ij  is the expected value of the response for the ij-th level 1 unit and f is a nonlinear 
function of the ‘linear predictor’ X ij jβ . Note that we allow random coefficients at level 2. 
The model is completed by specifying a distribution for the observed response yij ij|π . 
Where the response is a proportion this is typically taken to be binomial and where the 
response is a count taken to be Poisson. Equation (7.1) is a special case of the nonlinear 
model studied in chapter 5 and we shall be using the results given there. It remains for us to 
specify the nonlinear ‘link’ function  f. Table 7.1 lists some of the standard choices, with 
logarithms chosen to base e. 

In addition to these we can also have the ‘identity’ function f − =1( )π π , but this can 
create difficulties since it allows, in principle, predicted counts or proportions which are 
respectively less than zero or outside the range (0,1). Nevertheless, in many cases, using the 
identity function produces acceptable results which may differ little from those obtained with 
the nonlinear functions.  In the following sections we consider each common type of model 
in turn with examples. 

 

Table 7.21 Some nonlinear link functions. 

 

Response f −1( )π  Name 

Proportion log{( ) / ( )}π π1−  logit 

Proportion log{ log( )}− −1 π  complementary log log 
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Vector of proportions log( / ) ( , ... , )π πs t s t  = −1 1  multivariate logit 

Count log( )π  log 

7.45 Proportions as responses 

Consider the 2-level variance components model with a single explanatory variable where 
the expected proportion is modelled using a logit link function 

π β βij ij jx u= + − + + −{ exp( [ ])}1 0 1 1 0
1  (7.36) 

The observed responses yij  are proportions with the standard assumption that they are 
binomially distributed 

y Bin nij ij ij~ ( , )π  (7.37) 

where nij  is the denominator for the proportion. We also have  

var( | ) ( ) /y nij ij ij ij ijπ π π= −1  (7.38) 

We now write the model in the standard way including the level 1 variation as 

( )y e z z nij ij ij ij ij ij ij ij e= + = − =π π π σ,     ,    1 12/    (7.39) 

Using this explanatory variable Z  and constraining the level 1 variance associated with this 
to be one we obtain the required binomial variance in equation (7.4). When fitting a model 
we can also allow the level 1 variance to be estimated and by comparing the estimated 
variance with the value 1.0 obtain a test for ‘extra binomial’ variation. Such variation may 
arise in a number of ways. 
 
If we have omitted a level in the model, for example ignored household clustering in a survey 
with one or more individuals sampled from a household, we would expect a greater than 
binomial  variation at the individual level. Likewise, suppose the individuals and households 
were nested within areas and we chose to classify individuals, say by gender and 3 social 
class groups giving 6 cells in each area. If we treat these as the level 1 units so that the 
response is a proportion, then we no longer have a binomial variance since these 
proportions are based upon the sum of separate binomial variables with differing 
probabilities. Here the variance for cell j within an area would have the form  
[ ( )( ( )) ] /E E nj j jπ π σ1 1

2− −  

where n j  is the cell size. To fit such a model we would specify an extra level 1 explanatory 

variable  equal to 1 n j  for the j-th cell, with variance parameter at level 1 which was 

allowed to be negative (see chapter 3). More generally, we can fit a model with an extra 
binomial parameter together with a further term such as above to give the following level 1 
variance structure (omitting subscripts) 

( )[ ] /σ π π σ0
2

1
21− + n 
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We do not, of course, know the true value of π ij or π j  so that at each iteration we use 
estimates based upon the current values of the parameters. Because we are using only the 
mean and variance of the binomial distribution to carry out the estimation, the estimation is 
known as ‘quasilikelihood’ (see appendix 5.1). 

Another way of modelling such extra binomial variation, which has certain advantages, is to 
insert a ‘pseudo level’ above level 1. Thus, for individuals sampled within households, level 
1 would be that of the individual and we would specify level 2 as that of the individuals also 
to give exactly 1 level 1 unit per level 2 unit. We specify binomial variation at level 1 and at 
level 2 we can now fit further random coefficients. For example, if we fit a random 
coefficient for the explanatory variable  with a variance which can be allowed to be negative 
this is equivalent to specifying an extra level 1 variable 1 n j  as above. In the above 

example where individuals are classified by gender and social class we can create a level 2 
unit coinciding with each level 1 unit, fit binomial variation at level 1 and add level 2 variation 
which is a function of gender and social class, for example an additive function with 4 
parameters (see chapter 3). We may wish to model the between-area variation of the cell 
proportions in terms of a simple variance term, rather as inversely proportional to n j . In this 

case we would choose a simple dummy variable structure rather than explanatory variables 
proportional to 1 n j . This ‘pseudo level’ procedure is rather similar to the way in which a 

meta analysis with known level 1 variation is modelled (chapter 3). 

In chapter 5 we made the distinction between models where the current level 2 residual 
estimates were added to the linear component of the nonlinear function  when forming the 
Taylor expansion in order to work with a linearised model, and those cases where they were 
not. The former is referred to as predictive quasilikelihood (PQL) and the latter marginal 
quasilikelihood (MQL). In many applications the MQL procedure will tend to underestimate 
the values of both the fixed and random parameters, especially where nij  is small. In 
addition we pointed out that greater accuracy is to be expected if the second order 
approximation is used rather than the first order based upon the first term in the Taylor 
expansion. Also, when the sample size is small the unbiased (RIGLS, REML) procedure 
should be used. Appendix 7.1 gives expressions for the second differentials required for the 
second order procedure.. To illustrate the difference table 7.2 presents the results of  
simulating the following model where the response is binary (0,1). The example assumes one 
moderate and one large level 2 variance. 

log ( )

~ ( , )

var( ) . , .

. , .

it x u

y Bin

u

ij ij j

ij ij

j

π β β

π

β β

= + +

=

= =

0 1 0

0

0

1

0 5 10

05 10

  

     1

 

There are 50 level 2 units with 20 level 1 units in each level 2 unit. The following results are 
based upon 400 simulations of the above model for each variance value. 
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Table 7.22 Mean values of 400 simulations. Empirical standard error in first bracket; mean of 
estimated standard errors in second bracket (IGLS). 

 

 True σu0
2 05= .  True σu0

2 10= .  

Parameter MQL first order PQL second order MQL first order PQL second order 

σu0
2  0.386(0.115)(0.130) 0.480(0.157)(0.152) 0.672(0.157)(0.188) 0.964(0.278)(0.255) 

β 0 0.448(0.126)(0.129) 0.499(0.139)(0.138) 0.420(0.145)(0.149) 0.500(0.171)(0.172) 

β1 0.934(0.154)(0.147) 1.018(0.168)(0.154) 0.875(0.147)(0.145) 1.017(0.171)(0.158) 
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Here, the denominator is 1.0 in all cases. It is clear that the MQL first order model 
underestimates all the parameter values, whereas the second order PQL model produces 
estimates close to the true values. The estimates given are based upon IGLS. In every case 
convergence was achieved in less than 10 iterations. Very similar estimates for the fixed 
coefficients are obtained using RIGLS, and for the level 2 variances the PQL estimates 
become 0.498 and 0.996 respectively, which are even closer to the true values. In addition, 
the averages of the standard errors given by both models are reasonably close to those 
calculated empirically from the replications. If we calculate 95% confidence intervals for the 
parameters in the second order PQL model using the estimated standard errors and 
assuming Normality then for the variance we find that about 91% of the intervals include the 
true value and for β 0  and β 1  about 95% do so. Hence, inferences about the true values 
would not be too misleading. The results of Table 7.2 are based upon a balanced data set 
with equal numbers of level 1 units within each level 2 unit. Further, limited, simulations 
suggest that even where the data are very unbalanced, for example with some level 2 units 
containing only a single level 1 unit, the PQL second order estimates remain close to the  
true values. These estimates appear to have good properties even with average observed 
probabilities as small as 0.1 or as large as 0.9 and a level 2 variance of 1.0 for the sample 
structure of this example.  

More generally, when the average observed probability is very small (or very large), if many 
of the level 2 units have few level 1 units and there are very few level 2 units with large 
numbers of level 1 units, we will often find that where the response is binary, there will be 
many level 2 units where the responses are all zero. In such a case convergence often may 
not be possible and even where estimates are obtained, in general they will not be unbiased. 
This problem can be avoided by having a sufficient number of large level 2 units where there 
is adequate response heterogeneity, and in such cases we can obtain satisfactory estimates 
even where the average probabilities are very small or large. Further work on this issue is 
reported by Goldstein and Rasbash (1996). In all the following examples of this chapter we 
shall use the second order PQL estimates, although in one case convergence could not be 
obtained so that second order MQL estimates have been used.  

7.46 An example from a survey of voting behaviour 

The data were collected as part of a series of surveys carried out in Britain between 1964 
and 1992 known as the British Election Studies (Heath et al, 1991). The respondents were 
interviewed following parliamentary general elections and here we use the data from the 
elections which took place in 1983, 1987 and 1992. The response is whether the 
respondent voted for the Conservative party as opposed to the Liberal or Labour parties. 
The response is either one (voted Conservative) or zero, with the denominator always equal 
to one. Those who didn’t vote or voted for other parties are excluded. The level 2 unit is the 
year and the level 3 unit is the parliamentary constituency Some constituencies were sampled 
in all three years. There are 8052 level 1 units, 780 level 2 units and 475 level 3 units. An 
alternative formulation is to specify a 2-level model fitting variances and covariances for each 
year at level 2. This uses 6 parameters, however, as opposed to  
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Table 7.23 Weighted analysis of Conservative voting preference.  Subscript v denotes level 3, subscript u 
denotes level 2.  Analysis D is equally weighted. Binomial variation at level 1. 

Model Estimates (s.e.) 

Parameter A B C D 

Intercept 0.173 0.188 0.153 0.172 

  Pet. Bourg.  (Class 2) 0.50 (0.09) 0.49 (0.09) 0.63 (0.16) 0.51 (0.09) 

. Manual       (Class 3) -0.88 (0.05) -0.91 (0.06) -0.85 (0.09) -0.89 (0.05) 

  1987 -0.05 (0.07) -0.06 (0.07) -0.04 (0.10) -0.05 (0.07) 

  1992 0.02 (0.08) 0.01  (0.07) 0.11 (0.10) -0.04 (0.08) 

Interactions     

Sc2 x 1987   -0.24 (0.21)  

Sc3 x 1987   0.02 (0.13)  

Sc2 x 1992   -0.14 (0.22)  

Sc3 x 1992   -0.21 (0.14)  

Random     

σv0
2  0.37 (0.05) 0.37 (0.07) 0.36 (0.07) 0.38 (0.05) 

σv02   -0.22 (0.09) -0.21 (0.09)  

σv2
2   0.33 (0.20) 0.33 (0.21)  

σv03  -0.02 (0.06) -0.02 (0.06)  

σv23  025 (0.11) 0.24 (0.11)  

σv3
2   0.18 (0.09) 0.19 (0.09)  

σu
2  0.04 (0.04) 0.03 (0.04) 0.03 (0.04) 0.05 (0.04) 

two for the present model. In fact the present model is equivalent to the 2-level model with 
the assumption of a constant covariance between years and equal between-constituency 
variance at each year. A preliminary test indicates that the 3-level model is an adequate fit.  

The explanatory variables used are year and social class (classified as Non-manual, Petty 
Bourgeoisie and Manual including foremen). Table 7.3 shows the results of 3 models of 
increasing complexity fitted to the data.  

Also, fitting extra-binomial variation at level 1 gives a variance estimate of 0.97 with a 
standard error of 0.16 indicating little departure from the binomial assumption.  

In 1992 Scotland was oversampled so that each voter in Scotland had four times the 
probability of inclusion as one in the rest of Britain. Weighted analyses have been carried out 
with voters in 1983 and 1987 having a weight of 1.0, those in Scotland in 1992 having a 
weight of 0.28 and those in the rest of Britain in 1992 having a weight of 1.12 so that the 
average weight in 1992 is 1.0. For comparison, the last column in Table 7.3 shows the result 
of the unweighted (equally weighted) analysis. The 1992 estimate is now larger, reflecting 
the fact that in 1992 Scotland was relatively more anti-Conservative. This illustrates the 
importance of weighting, as discussed in Chapter 3. If we include region as a factor in the 
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model, with Wales as the base category,  we see that the weighted and unweighted analyses 
again produce  

 

Table 7.4 Analysis of Conservative voting preference, including Region; differentially weighted and 
equally weighted. binomial variation at level 1. 

 

Parameter Differentially weighted Equally weighted 

Intercept -0.461 -0.483 

  Petit Bourg. 0.48 (0.09) 0.50 (0.09) 

  Manual -0.85 (0.05) -0.85 (0.05) 

   

  1987  -0.05 (0.07) -0.05 (0.07) 

  1992 -0.005 (0.07) 0.02 (0.07) 

   

 Scotland -0.05 (0.20) 0.07 (0.19) 

 North 0.33 (0.17) 0.34 (0.18) 

 Midlands 0.90 (0.18) 0.91 (0.18) 

 Southwest 1.00 (0.20) 1.01 (0.21) 

 Southeast 0.90 (0.17) 0.91 (0.18) 

   

Random   

σ v0
2  0.24 (0.04) 0.24 (0.04) 

σ u0
2  0.025 (0.04) 0.043 (0.04) 

 different results. This time the unweighted analysis overestimates support for the 
Conservatives in 1992 overall and especially in Scotland, although as in Table 7.3 the 
standard errors associated with these effects are large. Table 7.4 displays the results. 

Figure 7.1 shows the Normal score plot for the constituency (level 3) residuals. The extreme 
values represent constituencies with very high or very low proportions of Conservative 
voters. The smaller slope of the line in 7.1 at the extremes indicates a smaller variation 
among these constituencies. Since such constituencies are typically associated with high 
proportions of non-manual and high proportions of manual voters respectively, we next fit a 
model where we allow different between-constituency variances for these groups, and the 
results are shown as analysis B of 7.3. With (0,1) binary data the likelihood ratio test 
statistic is unreliable and so we carry out an approximate test on the random parameters for 
the null hypothesis that the additional variation for social class groups 2 and 3 is zero. We 
obtain an approximate chi squared of 13.3 on 5 degrees of freedom corresponding to a P 
value of 0.02. The between-constituency variance is the same for social class groups 1 and 
2 (0.36) but greater for the manual group (0.54). The remaining parameters in the model are 
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little changed and a normal residual plot for the basic constituency residuals shows a 
somewhat more linear relationship. 

For the fixed coefficients, in analysis B a test for equality of year effects produces a non-
significant result (χ2

2 077= . ). It is possible, however that there is an interaction between 
social class and year, that is there are year differences within social class groups. Analysis 
C shows the result of fitting the appropriate interaction terms. A test for the significance of 
these gives a chi squared of 4.9 with 4 degrees of freedom, so that there does in fact seem 
to be little evidence of any interaction. 
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Figure 7.4 Normal residual plot for constituencies: Analysis A in Table 7.3 

7.47 Models for multiple response categories 

In this section we extend the model for a single proportion as outcome to the case of a set of 
proportions, for example the proportions voting for all three political parties in the example 
of the previous section. The response is now multivariate and we can define a generalisation 
of the ordinary logit model to define a multivariate logit as follows for a simple 2-level 
variance components model 

log ,
( )

( )
( ) ( ) ( )π

π
β βij

s

ij
t

s s
ij j

sx u s t








 = + +0 1 1 1    = ,...., -  

 

(7.40) 

where there are t response categories. Choosing one category (t) as the base category 
avoids redundancy and a singular covariance matrix and hence the need to introduce 
generalised inverses into the estimation. There are cases where this procedure is 
inappropriate and we discuss these below. Thus (7.6) specifies the model for each of the  

remaining t −1  categories with π ij
h

h

t
( ) =

=
∑ 1

1
. When t=2 this reduces to the ordinary logit 

model.  

We treat the t −1  response categories as a multivariate response vector  as described in 
chapter 4 using dummy variables with no variation at level 1 and the true level 1 covariance 
matrix specified at level 2. For example, in the case of the three response categories of the 
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voting behaviour example, t=3 and we specify a bivariate model where level 2 describes the 
between-individual variation. If we make the standard assumption that the observed 
response proportions follow a multinomial distribution then the level 2 covariance matrix has 
the form 
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(7.41) 

where nij  is the total number of responses over all categories. In the voting behaviour 
example this is always one since each individual votes for just one party.  

We can create the covariance structure (7.7) as follows. Define the explanatory variables 
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(7.42) 

and specify Z1  to have a random coefficient at level 1 with variance constrained to 1.0 and 
Z Z2 3,  to have random coefficients at level 2 constraining their variances to zero and their 
covariance to 1.0. This produces the structure (7.7) and extra multinomial variation can be 
achieved by allowing the variance and covariance to be different from 1.0 but constraining 
them to be equal.  Level 3 then defines variation between higher level units, for example 
years or constituencies. 

The response vector itself is not restricted to a single classification. Thus, suppose we had a 
response which was an individual’s first voting preference crossclassified by their second 
preference. This produces 9 response categories of which just one contains the value 1 for 
each individual. A ‘main effects’ model extension to (7.6) would express the probability of  
any particular combination of first and second preferences as an additive function of  a term 
for the first and a term for the second preference as follows 

log ,
( , )
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( ) ( ) ( ) ( ) ( ) ( )π
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s s s
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


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For the random parameters it would be reasonable to attempt to fit a model where the 
covariances between the u uj

s
j
s( ) ( ),1 2  were zero in order to reduce the number of random 

parameters in the model.  

To see how we can interpret the parameters of  these models we write, from (7.6) 

log( / ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )π π β β β βij
r

ij
s r s r s

ij j
r

j
sx u u= − + − + −0 0 1 1  (7.9) 
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so that a unit change in xij  multiplies the ratio of the r-th and s-th response probabilities by 

exp( )( ) ( )β βr
r s− 1 . Likewise a difference of  d in the residuals or in the intercept terms 

multiplies this ratio by ed  

This formulation of the multicategory response model is adequate for models  such as (7.6) 
where coefficients are fitted for each response category (except the base). There are other 
models, however, where we may wish to fit a function defined across the categories. This 
will often be the case when there are a large number of ordered categories where we wish 
to study linear, quadratic, etc. trends across the categories, although as we point out later 
there will often be more satisfactory procedures for such cases based upon consideration of 
the cumulative probabilities π π πij ij

( ) ( ), ,...1 2 ij
(1) + . 

Where we do wish to treat the categories symmetrically and define a function across the 
response categories we replace the intercept term β 0

( )s  in (7.6) by such a function. If we 
assume a linear function then (7.6) can be written as 

log ( ) ,
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


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


 = + + + +0 1 0 1     s = 1,...., t -1  (7.10) 

where w s( )  is the score assigned to category s. We might also wish to structure the level 2 
variation, for example writing u u u wj

s
j j

s( ) ( )= +0 1 . Such a model will be especially useful 
where the number of categories becomes large. 

In (7.10) the choice of base category is no longer irrelevant since the score assigned to this 
category does not appear in the model. We can avoid this difficulty by defining the 
multivariate logistic over all the response categories (s=1,...,t) and in (7.10) the level 2 
resulting covariance matrix will not be singular so long as the set of response  category 
probabilities is predicted using fewer responses than there are categories. An alternative 
formulation, using the Poisson with a log link function as described below, will often be more 
convenient. 

7.48 An example of voting behaviour with multiple responses 

We now look at the voting data, with the response being the 3-category choice of party; 
Conservative, Liberal or Labour. Table 7.5 gives the results of the analysis using the same 
explanatory variables as in Table 7.3 but omitting year at level 2. We have chosen Labour, 
1983 and Non Manual as the base categories. The estimation uses the second order 
approximation without residuals. It was not possible to obtain convergence for the 
procedure using the expansion about the current residual estimates. 

The results for the Conservative voters are broadly in line with those from the analysis in 
Table 7.3. For the Liberals we see that there is greater support among the manual social 
class than the petit bourgeoisie and relatively more support in 1987 than either 1983 or 
1992. At the constituency level there appears to be little correlation between the 
Conservative and Liberal support. It should be remembered, however, that we have only 
fitted a variance components model at constituency level and there may be more substantial 
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correlations within social class groups or in different years, but we shall not pursue this 
further. 
Table 7.5  Analysis of Conservative and Liberal voting preferences. 
 

Model Estimates (s.e.) 
 Conservative  Liberal 

Intercept 0.86 (0.06) 0.22 (0.06) 
 Pet. Bourg. 0.29 (0.08) -0.36  (0.16) 
 Manual -1.07 (0.05) 0.46 (0.09) 
   
 1987  -0.09 (0.06) 0.20 (0.10) 
 1992 -0.25 (0.07) -0.13 (0.10) 
   
Random   
 Level  2:   
 variance 0.27 (0.04) 0.24 (0.04) 
 covariance 0.007 (0.03) 

 

7.49 Models for counts  

Instead of  using a set of proportions as the response we can consider the underlying event 
counts as the set of responses. Thus, for example in the voting data, suppose we classify 
individuals by three social class and three year categories. In each of the nine cells within 
each level 2 unit we have counts of the numbers voting for each party, which yields 27 
counts. The  expected number of individuals voting for each party can be written 

m Msij j ij
s= π ( )     

where s indexes the three parties, i indexes the nine cells within each level 2 unit and M j  is 
the number of individuals in the j-th level 2 unit. Our inferences are therefore conditional on 
these totals. We write corresponding to (7.6)  

log( ) log( ) , ,...( ) ( ) ( )m M x u s tsij j
s s

ij j
s= + + + =β β0 1 1     (7.11) 

The term log( )M j  is a fixed part offset and when using such offsets it may be better to 
centre them about their mean in order to avoid numerical instabilities. Corresponding to the 
multinomial assumption we now make the assumption of a Poisson distribution for the 
observed counts nsij , which are assumed conditionally independent with 

E n m n m msij sij sij sij sij( ) , var( | )= =      

For the voting data we can now define a two level model where at level 2 we have the 
constituency and the level 1 units are the set of  counts for the classification of party by year 
and social class. A basic additive model will have explanatory variables consisting of  an 
intercept, two dummy variables for party, two dummy variables for year and two for social 
class. We would normally also wish to include interactions between party and year and 
party and social class. 

The level 1 variation is specified using the predicted number for each level 1 unit and the 
estimation follows the same pattern as for the binomial model, using the corresponding 
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expressions given in Table 5.1. The level 1 random part will be defined by a dummy variable 
equal to the square root of the predicted count and with variance constrained to one where 
a Poisson distribution is assumed.. 

There are some applications where the response is a count and we do not require an offset, 
or where the offset is effectively constant. For example, if we were interested in the number 
of  times individuals visited their general practitioner or physician in a year, we could collect 
data over a one year period for all individuals and study the variation in counts across 
practitioners (level 2) according to individual  and practitioner characteristics. 

There are variations on the Poisson distribution assumption which we may wish to use. For 
example, the negative binomial distribution can be obtained from a process whereby the 
response is generated by counting the number of incidents for each level 1 unit and where, 
conditional on the fitted explanatory variables and higher level terms, the mean count for 
each level 1 unit has a gamma distribution with index v. This leads us to consider level 1 
variance functions of the general form k m k m1 2

2+ , where k1 1=  gives the negative binomial 
distribution with k v2 1= / . We could add further terms or consider even a nonlinear 
function. 

7.50 Ordered responses 

In chapter 3 we analysed a study where the response was a scale where the score ranged in 
value from 0 to 7, that is, there were 8 ordered categories. Such response scales are 
common and as in our example, are often analysed by assigning scores and then treating as if 
they were continuous. While this may often be satisfactory, there are situations, for example 
where the  distribution is very skew, where such a procedure is questionable. One possible 
alternative, mentioned in the preceding section, is to assign scores to the categories of the 
response variable and then carry out an analysis based upon the multinomial or Poisson 
model, using all the response categories in the analysis.  Such a procedure, however, 
typically relies on choosing a suitable scoring system, just as does the continuous response 
model. One possibility in these cases is to assign scores by minimising a measure of 
between-unit disagreement as in correspondence analysis or dual scaling (Greenacre, 1984, 
Goldstein, 1987c). In this section we shall look at procedures which avoid any of the 
arbitrariness of assumptions involved when assigning numerical scores. 

To exploit the ordering we shall base our models upon the cumulative response 
probabilities rather than the response probabilities for each category. We define these as  

E y s tij
s

ij
s

ij
h

h

s

( ) ,...,( ) ( ) ( )= = = −
=
∑γ π

1
1 1,          

     
 (7.12) 

where yij
s( )  are the observed proportions out of  a total nij  and s now indexes the ordered 

cumulative categories. If we assume an underlying multinomial distribution for the category 
probabilities the cumulative proportions have a covariance matrix given by 

cov( , ) ( ) /( ) ( ) ( ) ( )y y n s rij
s

ij
r

ij
s

ij
r

ij= − ≤γ γ1 ,      
    

 (7.13) 
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We can therefore fit models to these cumulative proportions (or counts conditional on a 
fixed total) in the same way as with the multinomial response vector, substituting the 
covariance matrix (7.13) for (7.7). A discussion of these and related models is given in 
McCullagh and Nelder (1989), 

A common model choice is the proportional odds model which uses a logit link namely 

γ α βij
s s

ijX( ) ( ){ exp [ ( ) ]}= + − + −1 1
 (7.14) 

where the negative coefficient of ( )X ijβ  implies that increasing values of this linear 
component are associated with  increasing probabilities with increasing s. We also require 
α α α( ) ( ) ( )....1 2 1≤ ≤ −t . 

Another choice is the proportional hazards model which uses a log log link to give 

γ α βij
s s

ijX( ) ( ){ exp [ ( ) ]}= − − +1  (7.15) 

An important special case of these models is where the categories are ordered in time so 
that α ( )s  can be modelled as a function of time, and satisfying the above order relationship 
among these parameters. Some choices would be 

α δ α δ( ) log( ),s
s st t= =     (s)

 
     

  (7.16) 

Such a model might be used in developmental studies where individuals pass through a set of 
time ordered stages. In studies of children, for example, it is possible to identify ‘milestones’ 
of development through which children pass, starting with none until all have been passed 
when developmental ‘maturity’ is reached. A repeated measures study would count the 
number passed at each time point so yielding a cumulative proportion in relation to time and 
other covariates. We would then be able to fit a 2-level model with variation between 
individuals involving any of the parameters in (7.14), (7.15) or (7.16). In the extreme case 
with just a single milestone, these models are equivalent to the event duration models we 
consider in chapter 9. 

Another example of longitudinal discrete response data is where, at each measurement 
occasion, we have a vector of  ordered categorical responses and each individual in the 
study responds to one category. The cumulative response vector for each individual at each 
occasion then contains zero for each response category less than the category to which the 
individual responds and a one for that category and each higher one. We can model the time 
dependence within the set of explanatory variables X, and we would normally wish to 
include the possibility of interactions between the α ( )s  and time. In such a model the basic 
covariance structure given by (7.13) represents the between-occasion covariation. Thus, 
although the data structure is represented by level 1 as the categories, level 2 as occasion 
and level 3 as individual, the higher level variation is only estimated at level 3. This can be 
compared to the simple binary response model where the binomial response variance is that 
between occasions, and the structure defines occasion as level 1 and individual as level 2 
since there is a single response for each occasion. We also note that similar considerations 
apply to all the multicategory response models, with higher level variation estimated at level 
3 and above, as pointed out also in section 7.4. 
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7.51 Mixed discrete - continuous response models 

An extension of the multivariate models considered in chapter 4 is where some of the 
responses are continuous and some are discrete. For example, in a repeated measures study 
we may have a response which is the (discrete) maturity stage that an individual has reached 
as well as continuous measurements such as height and weight. In some circumstances we 
may wish to treat, say, the maturity stage as the response, conditional on height and weight 
and further covariates, including age. In other situations, for example if we are interested in 
prediction systems as in chapter 6, then we would wish to consider all the measurements as 
responses, conditional on covariates. In another example, suppose we have measurements 
on smoking habit, including whether someone smoked and if so at what rate. We can 
consider this as a bivariate response model where each individual has a binary response for 
whether or not they smoke and if they do a further response for the number smoked per 
day.  

We shall develop the model for the case of individual smoking habits with one binary and 
one continuous response and then look at the more general case of several binary 
responses. The extension to several responses of each type is straightforward as is the 
extension to multicategory responses and count data.  

As in the standard multivariate multilevel model we have no variation at level 1 and at level 
2, that of the individual, we have a binomial variance associated with the smoking/no 
smoking response and a between-individual variance for the number smoked. The variance 
for the binary response is the usual binomial variance and that for the continuous response is 
a parameter to be estimated. At higher levels, the variances and covariances will be defined 
in the standard fashion using the linearisation procedure for the binomial response. For a 2-
level model with individuals nested within, say, households we write the following model 

y X u

e X u e

if binary if continuous

ijk i ijk k

i jk i k jk

i

= + − +

+ + − + +

−

=

δ β

δ δ β

δ

exp{ exp[( ) ]}

( )[( ) ]

1

1

1 0

1 1 1
1

1 2 2 2 2         

   ,    
 

 

(7.17) 

In the general case an individual can have any combination of responses, as in the maturity 
example and the individual level covariance will have the form of  a (adjusted) biserial 
covariance ( $ ) $ ( $ $ )1 1 2− −π πjk jk jk jky y , where $π jk  is the estimated probability of  a positive 

response, and $ , $y yjk jk1 2  are respectively the predicted values of the continuous response for 
a positive and negative binary response. We can fit this using an extra covariance term in the 
model at the individual level, constrained to have the above value. If we assume that 
$ $y yjk jk1 2−  is constant then we can fit this term by defining a further explanatory variable 

equal to the existing variable defining the binomial variation at the individual level, and fitting 
just a covariance term between this further explanatory variable and the existing binomial 
explanatory variable. This gives the required estimate of $ $y yjk jk1 2− . In the smoking 

example, since non-smokers do not have any number smoked, this covariance term does 
not exist. 
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A particular case of interest is where we have two responses which are proportions. 
Suppose, for example, that in an educational survey we know the proportion of students in 
each school who pass an English exam and also the proportion who pass a Mathematics 
exam, but we have no information about how many pass or fail one or both. In other words, 
for the 2 x 2 table containing the numbers in each pass/fail category we only have the 
numbers in the margins. The level 2 covariance, in terms of the predicted proportions has the 
form $ $ $( ) ( ) ( )π π π11 1 2jk jk jk− . If we are prepared to assume that $

( )π 11 jk  is a function of $
( )π 1 jk  

and $
( )π 2 jk , say proportional to their product, then with estimates of the marginal 

probabilities available from the model, the level 2 covariance estimate allows us to obtain an 
estimate of the joint probability of success on both Mathematics and English for a given set 
of explanatory variables. Note that the procedure depends upon the assumption of binomial 
variation. Of course, if  we had all the original information then we would fit a model where 
there was a  response for each cell of the table.  

This approach may also be of use where separate surveys are conducted within the same 
level 2 units and each one produces a proportion as response. If there is overlap between 
the samples used, then there will exist level 2 covariances, and if  information about the 
detailed nature of the overlap is available it will be possible in principle to obtain estimates of 
the joint probabilities. 
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Appendix 7.1  

Differentials for some discrete response models 

The Logit - Binomial model 
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The Logit - Multinomial (Multivariate Logit) model 
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The Log - Poisson model 
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The log log - Binomial model 
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Chapter 8 

Multilevel cross classifications 

8.9 Random cross classifications 

In previous chapters we have considered only data where the units have a purely 
hierarchical or nested structure. In many cases, however, a unit may be classified along more 
than one dimension. An example is students classified both by the school they attend and by 
the neighbourhood where they live. We can represent this diagramatically as follows for 
three schools and four neighbourhoods with between one and six students per 
school/neighbourhood cell. The cross classification is at level 2 with students at level 1. 

 

 School 1 School 2 School 3 

Neighbourhood 1 x x x x  x x  x 

Neighbourhood 2 x x x x x x x  x x x 

Neighbourhood 3  x x x x x x x 

Neighbourhood 4 x x x x x x x 
 

Figure 8.1 A random cross classification at level 2 

 

Another example is in a repeated measures study where children are measured by different 
raters at different occasions. If each child has its own set of  raters not shared with other 
children then the cross classification is at level 1, occasions by raters, nested within children 
at level 2. This can be represented diagramatically as follows for three children with up to 7 
measurement occasions and up to three raters per child. 

We see that the cross classification takes place entirely within the level 2 units. We note that, 
by definition, a level 1 cross classification has only one unit per cell. We can, however, also 
view such a cross classification as a special case of a level 2 cross classification with, at 
most, a single level 1 unit per cell. It seems appropriate to view such cases as level 1 cross 
classifications only where the substantive context determines that there is at most one unit 
per cell (see section 8.6). 

 

 Child 1 Child 2 Child 3 

Occasion: 1 2 3 4 5 6 7 1 2 3 4 6  1 4 7 

Rater 1 x x       x x x            

Rater 2          x   x  x x x   

Rater 3   x x x x x  

Rater 4              x x x x x                  

Rater 5    x  x x 



    134

Rater 6          x 
 

Figure 8.2  A random cross classification at level 1. 

If  now the same set of raters is involved with all the children the crossing is at level 2 as can 
be seen in the following diagram with three raters and three children and up to five 
occasions. 

 

 Child 1 Child 2 Child 3 

Occasion: 1 2 3 4 1 2 1 2 3 4 5 

Rater 1              x x x                   x                        x 

Rater 2                       x                              x x  

Rater 3                      x                   x x 
Figure 8.3  A random cross classification at level 2. 

Figure 8.3 is formally the same structure as Figure 8.1 with the level 1 variance being that 
between occasions.  

These basic cross classifications occur commonly when a simple hierarchical structure 
breaks down in practice. Consider, for example, a repeated measures design which follows 
a sample of students over time, say once a year, within a set of classes for a single school. 
We assume first that each class group is taken by the same teacher. The hierarchical 
structure is then a three level one with occasions grouped within students who are grouped 
within classes. If we had several schools then schools would constitute the level 4 units. 
Suppose, however, that students change classes during the course of the study. For three 
students, three classes and up to three occasions we might have the following pattern in 
Figure 8.4.. 

 Student 1 Student 2 Student 3 

Occasion: 1 2 3 1 2 1 2 3  

Class/teacher 1                x x                   x                      x 

Class/teacher 2                      x                                

Class/teacher 3                      x                x x 
 

Figure 8.4  Students changing classes/teachers. 

Formally this is the same structure as Figure 8.3, that is a cross classification at level 2 for 
classes by students. Such designs will occur also in panel or longitudinal studies of 
individuals who move from one locality to another, or workers who change their place of 
employment. If we now include schools these will be classified as level 3 units, but if 
students also change schools during the course of the study then we obtain a level 3 cross 
classification of students by schools with classes nested at level 2 within schools and 
occasions as the level 1 units. The students have moved from being crossed with classes to 
being crossed with schools. Note that since students are crossed at level 3 with schools they 
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are also automatically crossed with any units nested within schools and we do not need 
separately to specify the crossing of classes with students. 

Suppose now that, instead of the same teachers taking the classes throughout the study, the 
classes are taken by a completely new set of teachers every year and where new groupings 
of students are formed each year too. Such a structure with four different teachers at two 
occasions for three students is given in Figure 8.5. 

 

 Student 1 Student 2 Student 3 

Occasion: 1  2 1  2 1 2 

Teacher 1 1            x                      x  

Teacher 2              x 

Teacher 3 2      x                 x 

Teacher 4                 x  
Figure 8.5. Students changing teachers and groups  

This is now a cross classification of teachers by students at level 2 with occasion as the level 
1 unit. We note that most of the cells are empty and that there is at most one level 1 unit per 
cell so that no independent between occasion variance can be estimated as pointed out 
above. In fact we can also view this as a level 1 cross classification of teachers by students, 
with missing data, and occasion can be modelled in the fixed part, for example using a 
polynomial function of age. Raudenbush (1993) gives an example of such a design, and 
provides details of  an EM estimation procedure for 2-level 2-way cross classifications with 
worked examples. 

We can have a design which is a mixture of  those given by Figure 8.4 and Figure 8.5 where 
some teachers are retained and some are new at each occasion. In this case we would have 
a cross classification of teachers by students at level 2 where some of the teachers only had 
observations at one occasion. More generally, we can have an unbalanced design where 
each teacher is present at a variable number of occasions. Other examples of such designs 
occur in panel studies of households where, over time, some households split up and form 
new households. The total set of all households is crossed with individual at level 2 with 
occasion at level 1. The households which remain intact for more than one occasion provide 
the information for estimating level 1 variation.  

 

Occasion 2 

  Teacher 1 Teacher 2 Teacher 3 

 Teacher 1 x x x x x x x x 

Occasion 1 Teacher 2 x x x x x x   

 Teacher 3 x x x x x x x x 
Figure 8.6. Teachers cross classified by themselves at two occasions 

With two occasions where we have the same teachers or intact groups we can formulate an 
alternative cross classification design which may be more appropriate in some cases. Instead 
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of  cross classifying students by teachers we consider cross classifying the set of all teachers 
at the first occasion by the same set at the second occasion, as follows. 

We have 22 students who are nested within the cross classification of teachers at each 
occasion. The difference between this design and that in Figure 8.4 is analogous to the 
difference between a two-occasion longitudinal design where a second occasion 
measurement is regressed on a first occasion measurement and the two-occasion repeated 
measures design where a measurement is related to age or time. In Figure 8.6 we are 
concerned with the contribution from each occasion to the variation in, say, a measurement 
made at occasion 2. In Figure 8.4 on the other hand, although we could fit a separate 
between teacher variance for each occasion, the response variable is essentially the same 
one measured at each occasion. Designs such as that of Figure 8.6 are useful where, for 
example, measurements are made on the same set of students and schools at the start and 
end of schooling, as in school effectiveness studies, and where students can move between 
schools. In such cases we may also wish to introduce a ‘weight’ to reflect the time spent in 
each school, and we shall discuss this below. 
We now set out the structure of these basic models and then go on to consider extensions 
and special cases of interest. 

8.10 A basic cross classified model 

Goldstein (1987a) sets out the general structure of a model with both hierarchical and cross 
classified structures and Rasbash and Goldstein (1994) provide further elaborations. We 
consider first the simple model of Figure 8.1 with variance components at level 2 and a 
single variance term at level 1. 

We shall refer to the two classifications at level 2 using the subscripts j j1 2,   and in general 
parentheses will group classifications at the same level. We write the model as 

y X u u ei j j i j j j j i j j( ) ( ) ( )1 2 1 2 1 2 1 2
= + + +β  (8.1) 

The covariance structure at level 2 can be written  in the following form 
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(8.2) 

Note that if there is no more than one unit per cell, then model (8.1) is still valid and can be 
used to specify a level 1 cross classification as defined in Section 8.1. 

Thus the level 2 variance is the sum of the separate classification variances, the covariance 
for two level 1 units in the same classification is equal to the variance for that classification 
and the covariance for two level 1 units which do not share either classification is zero. If we 
have a model where random coefficients are included for either or both classifications, then 
analogous structures are obtained. We can also add further ways of classification with 
obvious extensions to the covariance structure. 
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Appendix 8.1 shows how cross classified models can be specified and estimated efficiently 
using a purely hierarchical formulation and we can summarise the procedure using  the 
simple model of  8.1. We specify one of the classifications, most efficiently the one with the 
larger number of units, as a standard hierarchical level 2 classification. For the other 
classification we define a dummy (0,1) variable for each unit which is one if the observation 
belongs to that unit and zero if not. Then we specify that each of these dummy variables has 
a coefficient random at level 3 and in addition constrain the resulting set of level 3 variances 
to be equal. The variance estimate obtained is that required for this classification and the 
level 2 variance for the other classification is the one we require for that.  

If we have a third classification at level 2 then we can obtain the third variance by defining a 
similar set of dummy variables with coefficients varying at level 4 and variances constrained 
to be equal. This procedure generalises straightforwardly to sets of several random 
coefficients for each classification, with dummy variables defined as the products of the basic 
(0,1) dummy variables used in the variance components case and with corresponding 
variances and covariances constrained to be equal within classifications. In general a p-way 
cross classification at any level can be modelled by inserting sets of random variables at the 
next p-1 higher levels. Thus in a 2-level model with two crossed classifications at level 1 we 
would obtain a three level model with the original level 2 at level 3 and the level 1 cross 
classifications occupying levels 1 and 2. 

8.11 Examination results for a cross classification of schools 

The data consist of  scores on school leaving examinations obtained by 3435 students who 
attended 19 secondary schools cross classified by 148 primary schools in Fife, Scotland 
(Paterson, 1991). Before their transfer to secondary school at the age of 12 each student 
obtained a score on a verbal reasoning test, measured about the population mean of 100 
and with a population standard deviation of 15. 

The model is as follows 

y x u u ei j j i j j j j i j j( ) ( ) ( )1 2 1 2 1 2 1 20 1 1= + + + +β β  (8.3) 

 

and the results are given in Table 8.1. Random coefficients for verbal reasoning were also 
fitted but the coefficients are estimated as zero.  

Ignoring the verbal reasoning score we see that the between-primary school variance is 
estimated to be more than three times that between secondary schools. The principal reason 
for this is that the secondary schools are on average far larger than primary schools, so that 
within a secondary school, primary school differences are averaged. Such an effect will often 
be observed where one classification has far fewer units than another, for example where a 
small number of schools is crossed with a large number of small neighbourhoods or a small 
number of teachers is crossed with a large number of students at level 1 within schools. In 
such circumstances we need to be careful about our interpretation of the relative sizes of the 
variances. 

 
Table 8.1 Analysis of Examination Scores by Secondary by Primary school attended. The 
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subscript 1 refers to primary and 2 to secondary school. 

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 

Fixed A B C 

Intercept 5.50 5.98 5.99 

Verbal Reasoning - 0.16 (0.003) 0.16 (0.003) 

Random    

σ u( )1 0

2
 

1.12 (0.20) 0.27 (0.06) - 

σu( )2 0

2
 

0.35 (0.16) 0.011 (0.021) 0.28 (0.06) 

σe
2

 8.1 (0.2) 4.25 (0.10) 4.26 (0.10) 

 

When the verbal reasoning score is added to the fixed part of the model the between 
secondary school variance becomes very small, the between primary school variance is also 
considerably reduced and the level 1 variance also. The third analysis shows the effect of 
removing the cross classification by primary school. The between secondary school variance 
is now only a little smaller than in analysis A without verbal reasoning score. Using analysis 
C alone, which is typically the case with school effectiveness studies which control for initial 
achievement, we would conclude that there were important differences between the 
progress made in secondary schools. From analysis B, however, we see that most of this is 
explained by the primary schools attended. Of course, the verbal reasoning score is only one 
measure of initial achievement, but these results illustrate that adjusting for achievement at a 
single previous time may not be adequate. 

8.12 Computational considerations 

Analysis A in Table 8.1 took about 40 seconds per iteration on a 66 Mhz 486 PC using the 
ML3 software, approximately ten times longer than analysis C. This relative slowness is due 
to the size of the single level 3 unit which contains all the 3435 level 1 units. For very much 
larger problems the computing considerations will become of greater concern, so that some 
procedure for speeding up the computations would be useful.  

In the present analysis there are 120 cells of the cross classification which contain only one 
student. If we eliminate these from the analysis we obtain two disjoint subsets containing 14 
and 5 secondary schools. There are a further 24 cells containing two students and if these 
are removed we obtain six disjoint subsets the largest of which contains eight secondary 
schools. Table 8.2 shows the estimates from the resulting  analyses. 

The only substantial difference is in the between secondary school variance which is anyway 
poorly estimated. The first analysis took about 15 seconds and the second about six 
seconds. Such computational advantages in some cases may well outweigh a slight loss in 
precision.  
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Table 8.2 Examination scores for Secondary by Primary school classification omitting small cells. 

   

Parameter Estimate (s.e.) Estimate (s.e.) 

Fixed ≤1 student ≤ 2 students  

Intercept 6.00 6.00 

Verbal reasoning 0.16 (0.003) 0.16 (0.003) 

   

Random   

σu( )1 0

2
 0.27 (0.06) 0.25 (0.06) 

σu( )2 0

2
 0.004 (0.021) 0.028 (0.030) 

σe
2  4.28 (0.11) 4.29 (0.11) 

 

8.13 Interactions in cross classifications 

Consider the following extension of  equation (8.1) 

y X u u u ei j j i j j j j j j i j j( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2
= + + + +β  (8.4) 

We have now added an ‘interaction’ term to the model which was previously an additive 
one for the two variances. The usual specification for such a random interaction term is that 
it has simple variance σu( )12

2  across all the level 2 cells (Searle et al, 1992). To fit such a 

model we would define each cell of the cross classification as a level 2 unit with a between 
cell variance σu( )12

2 , a single level 3 unit with a variance σu1
2  and a single level 4 unit with a 

variance σu 2
2 . The adequacy of such a model can be tested against an additive model using a 

likelihood ratio test criterion. For the example in Table 8.1 this interaction term is estimated 
as zero. While this indicates that the cross classification is adequate, because the between 
secondary school variance is so small we would not expect to be able to detect such an 
interaction. 

Extensions to this model are possible by adding random coefficients for the interaction 
component, just as random coefficients can be added to the additive components. For 
example, the gender difference between students may vary across both primary and 
secondary schools in the example of section 8.3 and we can fit an extra variance and 
covariance term for this to both the additive effects and the interaction. 

8.14 Level 1 cross classifications 

Some interesting models occur when units are basically cross classified at level 1. By 
definition  we have a design with only one unit per cell, as shown for example in  

Figure 8.2 and we can also have a level 2 cross classification which is formally equivalent to 
a level 1 cross classification where there is just one unit per cell as in Figure 8.5. This case 
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should be distinguished from the case where a level 2 cross classification happens to 
produce no more than 1 level 1 unit in a cell as a result of sampling, so that the confounding 
occurs by chance rather than by design. 

A 2-level variance components model with a cross classification at level 1 can be written as 

y X u e e ei i j i i j j i j i j i i j( ) ( ) ( )1 2 1 2 1 2 1 2
= + + + +β  (8.5) 

where for level 1 we use a straightforward extension of the notation for a level 2 cross 
classification. The term e i i j( , )1 2

 is analogous to the interaction term in (8.4). To specify this 

model we would define the u j  as random at level 4, the e ei j i j1 2,   as random at levels 3 and 2, 
each with a single unit and the interaction term random across the cells of the cross 
classification at level 1, within the original level 2 units.  

Suppose now that we were able to extend the design by replicating measurements for each 
cell of the level 1 cross classification. Then (8.5) would refer to a 3-level model with 
replications as level 1 units, and which could be written as follows where the subscript h 
denotes replications 

y X u e e eh i i j h i i j j i j i j h i i j( ) ( ) ( )1 2 1 2 1 2 1 2
= + + + +β  (8.6) 

Since (8.5) is just model (8.6) with one unit per cell, we could interpret the ‘interaction’ 
variance in (8.5) as an estimate of the extent to which the additive variances of thecross 
classification fail to account for the total level 1 variance.  

So called ‘generalisability theory’ models (Cronbach and Webb, 1975) can be formulated 
as level 1 cross classifications. The basic model is one where a test or other instrument 
consisting of a set of items, for example ratings or questions, is administered to a sample of 
individuals. The individuals are therefore cross classified by the items at level 1 and may be 
further nested within schools etc. at higher levels. In educational test settings the item 
responses are often binary so that we would apply the methods of chapter 7 to the present 
procedures in a straightforward way. Since each individual can only respond once to each 
item this an example of a genuine level 1 cross classification. 

8.15 Cross-unit membership models 

In some circumstances units can be members of more than one higher level unit at the same 
time. An example is friendship patterns where at any time individuals can be members of 
more than one friendship group. Another example is where children belong to more than one 
‘extended’ family which includes aunts and uncles as well as parents. In an educational 
system students may attend more than one institution. In all such cases we shall assume that 
for each higher level unit to which a lower level unit belongs there is a known weight, 
summing to 1.0 for each lower level unit, which represents, for example, the amount of time 
spent in that unit. We may also have data where, although there is no cross-unit 
membership, there is some uncertainty about which higher level unit some lower level units 
belong to. For example, in a survey of students information about their neighbourhood of 
residence may only be available for a few students for larger geographical units. For these 
cases it may be possible to assign a weight for each of the constituent neighbourhoods which 
is in effect a probability of belonging to each based upon available information. Such a 
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structure can be analysed formally as a cross-unit membership model with most students 
having a single weight of 1.0 and the remainder zero. 

Consider the 2-level variance components model (8.1) with each level 1 unit belonging to at 
most  two level 2 units where the j j1 2,   subscripts now refer to the same type of unit. 

y X w u w u e

w w
i j j i j j ij j ij j i j j

ij ij

( ) ( ) ( )1 2 1 2 1 1 2 2 1 2

1 2

1 2

1 2 1

= + + +

+ =

β
 

 

(8.7) 

The overall contribution at level 2 is therefore the weighted sum over the level 2 units to 
which each level 1 unit belongs. This leads to the following covariance structure 

var( ) ( )

cov( ) ( )

cov( )

( )

( ) ( )

( ) (

y w w

y y w w w w

y y w w

i j j ij ij u e

i j j i j j ij i j ij i j u

i j j i j j ij i j u

1 2 1 2

1 2 1 2 1 1 2 2

1 2 1 2 2 2

1
2

2
2 2 2

1 1 2 2
2

2 2
2

= + +

= +

=

′ ′ ′

′ ′ ′

σ σ

σ

σ
 

This has the structure of  a standard 2-level cross classified model with the additional 
constraint σ σ σu u u1

2
2

2 2= =  and where the explanatory indicator variables Z Z1 2,   described in 
Figure 8.1.1 in appendix 8.1 have the value 1 replaced by the relevant weights for each level 
1 unit. As with the standard cross classification this model can be extended to include 
random coefficients and general p-unit membership (see Appendix 8.1). 

8.16 Multivariate cross classified models 

For multivariate models the responses may have different structures. Thus in a bivariate 
model one response may have a 2-level hierarchical structure and the other may have a 
cross classification at level 2. Suppose, for example that we measure the height and the 
mathematics attainment of a sample of students from a sample of schools. The mathematics 
attainment is assessed by a different set of teachers in each school and the heights are 
measured by a single anthropometrist. For the mathematics scores there is a level 1 cross 
classification of students within each school whereas for height there is a 2-level hierarchy 
with students nested within schools. Height and mathematics attainment will be correlated at 
both the student and the school level and we can write a model for this structure as follows 

 

y X u e e X u e

u u e e

if mathematics if height

h i i j h i i j j i j i j h i j j i j

j j u i j i j e

h h h

( ) ( )( ) ( )

cov( ) cov( )

, ,

1 2 1 2 1 2 1 1

1 1

1 1 1 1 1 1 2 2 2 2 2

1 2 12 1 2 12

1 2 11 1

= + + + + + +

= =

= = −

δ β δ β

σ σ

δ δ δ

       

     0       
 

 

(8.8) 
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where all other covariances are zero. This will therefore be specified as a 4-level model with 
the bivariate structure as level 1 and level 2 units being individual students. There will be a 
single level 3 unit with the coefficients of the dummy variables for teachers having variances 
random at this level, with level 4 being that of the school. 

Finally, we have already mentioned that cross classified models can have a discrete 
response and the models of chapter 7 can be fitted. We can also fit, for example, time series 
models as discussed in chapter 6 and in general cross classified structures can incorporate 
all the types of models which can be fitted for purely hierarchical structures. 
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Appendix 8.1    

Random cross classified data structures 

We illustrate the procedure using a 2-level model with crossing at level 2.  

The 2-level cross classified model, using the notation in Appendix 2.1, can be written 

 

y X z u

z u e

i j j i j j hij hj
h

q

hij hj
h

q

i j j

( ) ( )

( )

1 2 1 2 1 1

1

2 2 1 2

1 1
1

2 2
1

2

= + ∑

+ ∑ +

=

=

β

 

 

(8.1.1) 

  

Parentheses group the ways of classification at each level.  We have two sets of explanatory 
variables, type 1 and type 2, for the random components defined by the columns of 
Z n p q n p q1 1 1 2 2( ), ( )× × Z2  where p p1 2,    are respectively the number of categories of each 
classification. 

 

Z z Z z

z z if j m for m th type level unit otherwise

z z if j m for m th type level unit otherwise

hij hij

hij him

hij him

1 1 2 2

1 1 1

2 2 2

1 2

1

2

1 2 0

2 2 0

= =

= = −

= = −

{ }, { }

,

,

    

               ,   

              ,   
 

 

These variables are dummy variables where for each level 2 unit of type 1 we have q1 
random coefficients with covariance matrix Ω( )1 2  and likewise for the type 2 units. To 
simplify the exposition we restrict ourselves to the variance component case where we have  

Ω Ω( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

( ~~ ) ( ) ( )

1 2 1 2
2

2 2 2 2
2

1 1 1 2
2

1 2 2 2
2

21 2

= =

= + +

σ σ

σ σ

   

E YY V Z I Z Z I ZT
p

T
p

T  

 

(8.1.2) 

  Consider figure 8.1 in chapter 8 where schools are ordered within 
neighbourhoods. The explanatory variables will have the following structure for the first 8 
students 

It is clear that the second term in (8.1.2) can be written as 

Z I Z J Jp
T T

1 1 2
2

1 1 2
2

1
( )( ) ( ) ( )σ σ=  

 

where J  is a (n x 1) vector of  ones. The third term is of the general form Z ZT
3 3 3Ω , namely a 

level 3 contribution where in this case there is only a single level 3 unit and with no 
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covariances between the random coefficients of the Z h2  and with the variance terms 
constrained to be equal to a single value, σ( )2 2

2 . 

 

i,j1 i,j2 Z11 Z12 Z13 Z14 Z21 Z22 Z23 

1,1 1,1 1 0 0 0 1 0 0 

2,1 2,1 1 0 0 0 1 0 0 

3,1 3,1 1 0 0 0 1 0 0 

4,1 4,1 1 0 0 0 1 0 0 

5,1 1,2 1 0 0 0 0 1 0 

6,1 2,2 1 0 0 0 0 1 0 

7,1 1,3 1 0 0 0 0 0 1 

1,2 2,1 0 1 0 0 1 0 0 

Figure 8.1.1 Explanatory variables for level 2 cross classification of Figure 8.1 

  

More generally we can specify a level 2 cross classified variance components model by 
modelling one of the classifications as a standard hierarchical component and the second as 
a set of dummy explanatory variables, one for each category, with the random coefficients 
uncorrelated and with variances constrained to be equal. If this second (type 2) classification 
has further explanatory variables with random coefficients as in (8.1.1) then we form 
extended dummy variable ‘interactions’ as the product of the basic dummy variables and the 
further explanatory variables with random coefficients, so that these coefficients have 
variances and covariances within the same type 2 level 2 unit but not across units. In 
addition the corresponding variances and covariances are constrained to be equal. 

To extend this to further ways of classification we add levels. Thus, for a three way cross 
classification at level 2 we choose one classification, typically that with the largest number of 
categories, to model in standard hierarchical fashion at level 2, the second to model with 
coefficients random at level 3 as above and the third to model in a similar fashion with 
coefficients random at level 4. The same principle applies to cross classifications at level 1 
nested within level 2 units. The level 1 cross classification is modelled as a 2-level hierarchy 
with the original level 2 units becoming level 3 units. We can also allow simultaneous 
crossing at more than one level. Thus for example, if there is a 2-way cross classification at 
level 1 and a 3-way cross classification at level 2, we will require five levels, the first two 
describing the level 1 cross classification and the next three describing the level 2 cross 
classification. 

Chapter 8 discusses the level 2 cross unit membership model where level 1 units can belong 
to more than one level 2 unit with predetermined weights. Because the structure imposed 
above level 2 replicates that at level 2 we need only in fact specify a single level 2 unit with 
explanatory variable design matrix  Z  containing dummy weight vectors and Ωu  as diagonal 

of order equal to the number of level 2 units, and elements equal to σ u
2 . 

 



    145

Chapter 9 

Multilevel event history models 

9.52 Event history models 

This class of models, also known as survival time models or event duration models, have as 
the response variable the length of time between 'events'. Such events may be, for example, 
birth and death, or the beginning and end of a period of employment with corresponding 
times being length of life or duration of employment. There is a considerable theoretical and 
applied literature, especially in the field of biostatistics and a useful summary is given by 
Clayton (1988). We consider two basic approaches to the modelling of duration data. The 
first is based upon 'proportional hazard' models. The second is based upon direct modelling 
of the log duration, often known as 'accelerated life models'. In both cases we may wish to 
include explanatory variables.  

The multilevel structure of such models arises in two general ways. The first is where we 
have repeated durations within individuals, analogous to our repeated measures models of 
chapter 5. Thus, individuals may have repeated spells of various kinds of employment of 
which unemployment is one. In this case we have a  2-level model with individuals at level 2, 
often referred to as a renewal process. We can include explanatory dummy variables to 
distinguish these different kinds of employment or states. The second kind of model is where 
we have a single duration for each individual, but the individuals are grouped into level 2 
units. In the case of employment duration the level 2 units would be firms or employers. If 
we had repeated measures on individuals within firms then this would give rise to a 3-level 
structure. 

9.2 Censoring 

A characteristic of duration data is that for some observations we may not know the exact 
duration but only that it occurred within a certain interval, known as interval censored data, 
was less than a known value, left censored data, or greater than a known value, right 
censored data. For example, if we know at the time of a study, that someone entered her 
present employment before a certain date then the information available is only that the 
duration is longer than a known value. Such data are known as right censored. In another 
case we may know that someone entered and then left employment between two 
measurement occasions, in which case we know only that the duration lies in a known 
interval. The models described in this chapter have procedures for dealing with censoring  In 
the case of the parametric models, where there are relatively large proportions of censored 
data the assumed form of the distribution of duration lengths is important, whereas in the 
partially parametric models the distributional form is ignored. It is assumed that the censoring 
mechanism is non informative, that is independent of  the duration lengths. 

In some cases, we may have data which are censored but where we have no duration 
information at all. For example, if we are studying the duration of first marriage and we end 
the study when individuals reach the age of 30, all those marrying for the first time after this 
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age will be excluded. To avoid bias we must therefore ensure that age of marriage is an 
explanatory variable in the model and report results conditional on age of marriage. 

There is a variety of models for duration times. In this chapter we show how some of the 
more frequently used models can be extended to handle multilevel data structures. We 
consider first hazard based models. 

9.3 Hazard based models in continuous time 

The underlying notions are those of survivor and hazard functions.  Consider the (single 
level) case where we have measures of  length of employment on workers in a firm. We 
define the proportion of the workforce employed for periods greater than t as the survivor 
function and denote it by  

S t F t f u du
t

( ) ( ) ( )= − = − ∫1 1
0

        

  

where f t( )  is the density function of length of employment. The hazard function is defined 
as 

 h t f t S t( ) ( ) / ( )=  

and represents the instantaneous risk, in effect the (conditional) probability of someone who 
is employed at time t, ending employment in the next (small) unit interval of time.  

The simplest model is one which specifies an exponential distribution for the duration time, 
f t e t( ) = ≥−λ λ  ( t 0) which gives h t( ) = λ , so that the hazard rate is constant and 
S t e t( ) = −λ .   In general, however, the hazard rate will change over time and a number of  
alternative forms have been studied (see for example, Cox and Oakes, 1984). A common 
one is based on the assumption of a Weibull distribution, namely 

g t t e et e t

( ) ( / ) ln( ) ln( )

= + − +

α α δ α δ

      

or the associated extreme value distribution formed by replacing t  by u et= . Another 
approach to incorporating time-varying hazards is to divide the time scale into a number of 
discrete intervals within which the hazard rate is assumed constant, that is we assume a 
piecewise exponential distribution. This may be useful where there are 'natural' units of time, 
for example based on menstrual cycles in the analysis of fertility, and this can be extended by 
classifying units by other factors where time varies over categories. We discuss such discrete 
time models in a later section 

The most widely used models, to which we shall devote our discussion, are those known as 
proportional hazards models, and the most common definition is h t t e( ; ) ( )η λ η= . The 
term η  denotes a linear function of explanatory variables which we shall model explicitly in 
section 9.5.  It is assumed that λ( )t , the baseline hazard function, depends only on time and 
that all other variation between units is incorporated into the linear predictor η . The 
components of η  may also depend upon time, and in the multilevel case some of the 
coefficients will also be random variables. 
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9.4 Parametric proportional hazard models 

For the case where we have known duration times and right censored data, define the 

cumulative baseline hazard function Λ( ) ( )t u du
t

= ∫ λ
0

 and a variable w with mean 

µ = Λ( )t eη , taking the value one for uncensored and zero for censored data. It can be 
shown (McCullagh and Nelder, 1987) that the maximum likelihood estimates required are 
those obtained from a maximum likelihood analysis for this model where w is treated as a 
Poisson variable. This computational device leads to the loglinear Poisson model for the i-th 
observation 

ln( ) ln( ( ))µ ηi i it= +Λ  (9.44) 

where the term Λ( )ti  is treated as an offset, that is, a known function of the linear 
predictor.. 

The simplest case is the exponential distribution, for which we have Λ( )t t= λ . Equation 
(9.1) therefore has an offset ln( )ti  and the term ln( )λ is incorporated into η . We can model 
the response Poisson count using the procedures of chapter 6, with coefficients in the linear 
predictor chosen to be random at levels 2 or above. This approach can be used with other 
distributions. For the Weibull distribution, of which the exponential is a special case, the 
proportional hazards model is equivalent to the log duration model with an extreme value 
distribution and we shall discuss its estimation in a later section. 

 9.5 The semiparametric Cox model 

The most commonly used proportional hazard models are known as semiparametric 
proportional hazard models and we now look at the multilevel version of the most common 
of these in more detail. 

Consider the 2-level proportional hazard model for the jk-th level 1 unit 

 

h t X t Xjk jk jk jk k( ; ) ( ) exp( )= λ β  (9.45) 

where X jk  is the row vector of explanatory variables for the level 1 unit and some or all of 
the βk  are random at level 2. We adopt the subscripts j,k for levels one and two for reasons 
which will be apparent below. 

We suppose that the times at which a level 1 unit comes to the end of its duration period or 
'fails'  are ordered and at each of these we consider the total 'risk set'. At failure time t jk  the 

risk set consists of all the level 1 units which have been censored or for which a failure has 
not occurred immediately preceeding time t jk . Then the ratio of the hazard for the unit which 
experiences a failure and the sum of the hazards of the remaining risk set units is 

 
exp( )

exp( )
,

X
X
j k k

jk k
j k

′ ′ ′

∑
β

β  
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which is simply the probability that the failed unit is the one denoted by ′ ′j k,  (Cox, 1972). 
It is assumed that, conditional on the X jk , these probabilities are independent.  

Several procedures are available for estimating the parameters of this model (see for 
example Clayton, 1991, 1992). For our purposes it is convenient to adopt the following, 
which involves fitting a Poisson or equivalent multinomial model of the kind discussed in 
chapter 7. 

At each failure time  l we define a response variate for each member of the risk set 

y
if i is the observed failure

if notijk l( ) =




1
0

      
   

where i indexes the members of the risk set, and j,k level 1 and level 2 units. If we think of 
the basic 2-level model as one of employees within firms then we now have a 3-level model 
where each level 2 unit is a particular employee and containing n jk  level 1 units where n jk is 
the number of risk sets to which the employee belongs. Level 3 is the firm. The explanatory 
variables can be defined at any level. In particular they can vary across failure times, 
allowing so called time-varying covariates. Overall proportionality, conditional on the 
random effects, can be obtained by ordering the failure times across the whole sample. In 
this case the marginal relationship between the hazard and the covariates generally is not 
proportional. Alternatively, we can consider the failure times ordered only within firms, so 
that the model yields proportional hazards within firms. In this case we can structure the data 
as consisting of firms at level 3, failure times at level 2 and employees within risk sets at level 
1.  In both cases, because we make the assumption of independence across failure times 
within firms, the Poisson variation is at level 1 and there is no variation at level 2. In other 
words we can collapse the model to two levels, within firms and between firms.  

A simple variance components model for the expected Poisson count is written as 

π α βjk l l jk kX u( ) exp ( )= + +  (9.46) 

where there is a 'blocking factor' αl  for each failure time. In fact we do not need generally to 
fit all these nuisance parameters: instead we can obtain efficient estimates of the model 
parameters by modelling αl  as a smooth function of the time points, using, say, a low order 
polynomial or a spline function (Efron, 1988) . 

For the model which assumes overall proportionality an estimator of the baseline surviving   
fraction for an individual in the k-th firm at time h, where X jk = 0, is  

$ exp( )$ $S eh
u

l h

l k= − +

≤
∑ α

 

and the estimate for an individual with specific covariate values X jk  is 

${exp( )}Sh
X jk β

 (9.47) 

For the model which assumes proportionality within firms these two expressions become 
respectively 
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$ exp( ) $$ {exp( ) $ }S eh
l h

h
X ul jk k= −

≤

+∑ α β,      S  

Where we fit polynomials to the blocking factors, the $α l  are estimated from the polynomial 
coefficients, and the surviving fraction can be plotted against the time associated with each 
interval. 

9.6 Tied observations 

We have assumed so far that each failure time is associated with a single failure. In practice 
many failures will often occur at the same time, within the accuracy of measurement. 
Sometimes, data may also be deliberately grouped in time. In this case all the failures at 
times l have a response equal to 1. This procedure for handling ties is equivalent to that 
described by Peto (1972) (see also McCullagh and Nelder, 1989). 

9.7 Repeated measures proportional hazard models 

As in the case of ordinary repeated measures models described in chapter 6 we can 
consider the case of multiple episodes or durations within individuals with between and 
within individual variation and possibly further levels where individuals may be nested within 
firms, etc.. The models of previous sections can be applied to such data, but there are 
further considerations which arise. Where each individual has the same fixed number n of 
episodes. We can treat these, as in chapter 5, as constituting n variates so that we have an 
n-variate model with an (n x n) covariance matrix between individuals. The variates may be 
either really distinct measurements or simply the different episodes in a fixed ordering. This is 
the model considered by Wei et al (1989) who define proportionality as within individuals. 
We can also model a multivariate structure where, within individuals, there are repeated 
episodes for a number of different types of interval. For each type of interval we may have 
coefficients random at the individual level  and these coefficients will generally also covary at 
that level.  
Often with repeated measures models the first episode is different in nature from subsequent 
ones. An example might be the first episode of a disease which may tend to be longer or 
shorter than subsequent episodes. If the first episode is treated as if it were a separate 
variate then the subsequent episodes can be regarded as having the same distribution, as in 
the previous section. 
Another possible complication in repeated measures data, as in chapter 5 is that we may not 
be able to assume independence between durations within individuals. This will then lead to 
serial correlation models which can be estimated using the procedures discussed in chapter 
6 for the parametric log duration models discussed below. 
 

9.8 Example using birth interval data 

The data are a series of repeated birth intervals for 379 Hutterite women living in North 
America (Larsen and Vaupel, 1993; Egger, 1992). The response is the length of time in 
months from birth to conception, ranging from 1 to 160, with the first birth interval ignored 
and no censored information. This gives 2235 births in all. 
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There is information available on the mother’s birth year, her age in years at the start of the 
birth interval, whether the previous child was alive or dead, and the duration of marriage at 
the start of the birth interval. Since we have a large number of women each with a relatively 
small number of intervals we have assumed overall proportionality, with failure times ordered 
across the whole sample. Table 1 gives the results for a variance components analysis and 
one where several random coefficients are estimated. A fourth order polynomial was 
adequate to smooth the blocking factors. 

 

Table 9.1 Proportional hazards model for Hutterite birth intervals. In the 
random part subscript 0 refers to intercept, 1 to previous death. 

Parameter Estimate (s.e.) Estimate (s.e.) 

Fixed A B 

Intercept -3.65 -3.64 

Mother’s birth year - 1900 0.026 (0.003) 0.026 (0.003) 

Mother’s age (year - 20) -0.008 (0.014) -0.004 (0.014) 

Previous death 0.520 (0.118) 0.645 (0.144) 

Marriage duration (Months) -0.003 (0.001) -0.004 (0.001) 

   

Random   

σ u0
2  0.188 (0.028) 0.188 (0.028) 

σ u01   0.005 (0.088) 

σ u1
2   0.381 (0.236) 

The only coefficient estimated with a non-zero variance at level 2 was whether or not the 
previous birth died, but a large sample chi squared test for the two random parameters for 
this coefficient gives a P-value of 0.01 on 2 degrees of freedom. An increase on the linear 
scale is associated with a shorter interval. Thus the birth interval decreases for the later born 
mothers and also if the previous birth is a death. The interval is somewhat shorter the longer 
the marriage duration with little additional effect of maternal age. This apparent lack of a 
substantial age effect seems to be a consequence of the high correlation (0.93) between 
duration of marriage and age. Higher order terms for duration and age were fitted but the 
estimated coefficients were small and not significant at the 10% level. The between-
individual standard deviation is about 0.4 which is comparable in size to the effect of a 
previous death. The between-individual standard deviation for a model which fits no 
covariates is 0.45 so that the covariates explain only a small proportion of the between-
individual variation. Figure 9.1 shows two average estimated surviving fraction curves for a 
woman aged 20, born in 1900 with marriage duration 12 months. The higher one is for 
those where there was a previous live birth and the lower where there was a previous death. 
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Figure 9.1 Probability of exceeding each birth interval length; live birth upper, previous death lower. 

9.9 The discrete time (piecewise) proportional hazards model 

Where time is grouped into preassigned categories we write the survivor function at time 
interval  l, the probability that failure occurs after this interval, as sl . This gives 

f s s h f s sl l l l l l= − = =− −1 1 0 1,      ,    /  

This gives 

s hl t
t

l

= −
=

∏ ( )1
1

 

which can be used to estimate the survivor function from a set of estimated hazards.  

For the proportional hazards model (9.2) and a 2-level model the expected hazard is given 
(Aitkin et al, 1989) by 

π

π β α

β α
jk l

X

jk l jk k l

e

X

jk k l
( )

( ) ( )

exp( )

log{ log( )}

( )= − −

− − = +

+1

1
 

where, as before, the α ( )l  are constants to be estimated, one for each time interval. This 

leads to a model where the response is a binomial variate,  being the number of deaths 
divided by the number in the risk set at the start of the interval (see also Egger, 1992). Any 
censored observations in an interval are excluded from the risk set. The estimation follows 
that for the logit binomial model described in chapter 7, except that we now require the first 
and second  differentials of the log log function, namely 
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 ′ = − ′′ = − −f e f e eexp( ), ( ) exp( )π ππ π π     1 . 

As in the Cox model, we can fit a polynomial function to the successive time intervals, rather 
than the full set of blocking factors. The data will be ordered within level 2 units so that a 
risk set in general will extend over several such units. A general procedure is to specify the 
response for each  level 1 unit  as binary, that is zero if the unit survives the interval and one 
if not, with the appropriate a l( )  in the fixed part. Thus a 2-level model will become specified 
as a 3-level model with the binomial variation at level 1 and the actual level 1 units at level 2. 
The model can be further extended to polytomous outcomes, or ‘competing risks’, where 
several different kinds of failure can occur. The analysis follows the same pattern, but with 
the response being a multinomial variate and the corresponding models of Chapter 7 can be 
applied with a different linear predictor for each outcome category. 

9.10 Log duration models 

For the accelerated life model the distribution function for duration is commonly assumed to 
be of the form 

 

f t X f te eX X( ; , ) ( )β β β= 0  

 

where f 0  is a baseline function (Cox and Oakes, 1984). For a 2-level model this can be 
written as 

l t X eij ij ij j ij= = +ln ( ) β  (9.48) 

which is in the standard form for a 2-level model. We shall assume Normality for the 
random coefficients at level 2 (and higher levels) but at level 1 we shall study other 
distributional forms for the eij . The level 1 distributional form is important where there are 

censored observations. We first consider the common choice of an extreme value 
distribution for the log duration L, conditional on X ij jβ , which as we noted above, implies 
an equivalence with the proportional hazards model. Omitting level subscripts we write 

f l e e ll al( ; , ) exp( )α δ α α δ δ= − − ∞ < < ∞− + − +       (9.49) 

E L L( ) ( ) var ( ) .= − = =−α δ γ
π
α

γ1
2

26
0 5772,    ,     

For (9.5) this gives 
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(9.50) 

Where the differential is for use in the estimation of censored data and is with respect to β  
in the expression below.  
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The mean of L is incorporated into the fixed predictor. If we have no censored data we 
estimate the parameters for the model given by (9.5) by treating it as a standard multilevel 
model. We note that the estimation is strictly quasilikelihood since we are using only the 
mean and variance properties of the level 1 distribution. If we assume a simple level 1 
variance then we can iteratively estimate α from the above relationship and we also obtain 
for the 2-level model (9.5) 

δ γ α βij ij jX= + ( )  

Where there is complex variation at level 1 then α will vary with the level 1 units. To 
estimate the survival function for a given level 2 unit we first condition on the covariates and 
random coefficients, that is X ij jβ , and then use (9.7). 

We can choose other distributional forms for the log duration distribution. These include the 
log gamma distribution, the Normal and the logistic. Thus, for example, for the Normal 
distribution we have 

π

π φ σ

β σ

ij ij

ij ij e

ij ij ij e

z

z

z l X

= −

′ =

= −

1 Φ( )

( ) /

[ ( ) ] /
 

where Φ,  φ  are the cumulative and density functions of the standard Normal distribution. 
Quasilikelihood estimates can be obtained for any suitable distribution with two parameters. 
The possibility of fitting complex variation at level 1 can be expected to provide sufficient 
flexibility using these distributions for most purposes.ing these distributions for most 
purposes.  

 

Table 9.2. Log duration of birth interval for Hutterite women. Subscript 1 refers to birth year, 2 to age 
and 3 to previous death.  

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 

Fixed A B C 

Intercept 1.97 1.96 1.97 

Mother’s birth year - 1900 -0.021 (0.002) -0.021 (0.002) -0.021 (0.002) 

Mother’s age - 20 -0.005 (0.010) -0.005 (0.010) -0.005 (0.010) 

Previous death -0.435 (0.079) 0.436  (0.079) -0.438 (0.089) 

Marriage duration (Months) 0.003 (0.001) 0.003 (0.001) 0.003 (0.001) 

Random    

Level 2    

σ u0
2  0.127 (0.017) 0.114 (0.052) 0.121 (0.054) 

σ u01   -0.001 (0.002) -0.001 (0.002) 

σ u1
2   0.0001 (0.0001) 0.0001 (0.0001) 
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σ u02   -0.004 (0.003) -0.005 (0.003) 

σ u12   0.0001 (0.0001) 0.0001 (0.0001) 

σ u2
2   0.0005 (0.0003) 0.0006 (0.0003) 

Level 1     

σ e0
2  0.549 (0.018) 0.533(0.018) 0.522 (0.018) 

σ e3
2    0.200 (0.108) 

-2 loglikelihood 5305.9 5295.5 5290.8 

9.11 Censored data 

Where data are censored in log duration models we require the corresponding probabilities. 
Thus, for right censored data we would use (9.7) with corresponding formulae for interval or 
left censored data. For each censored observation we therefore have an associated 
probability, say πij  with the response variable value of one.  

This leads to a bivariate model, in which for each level 1 unit the response is either the 
continuous log duration time or takes the value one if censored with corresponding 
explanatory  variables in each case. There are basically two explanatory variables for the 
level 1 variation, one for the continuous log duration response and one for the binomial 
response. In the former case we can extend this for complex level 1 variation, as in the 
example analysis below. For the latter we use the standard logit model as described in 
chapter 7, possibly allowing for extra-binomial variation. The random parameters at level 1 
for the two components are uncorrelated. When carrying out the computations, we may 
obtain starting values for the parameters using just the uncensored observations. 

Since the same linear function of the explanatory variables enters into both the linear and 
nonlinear parts of this model, we require only a single set of fixed part explanatory variables, 
although these will require the appropriate transformation for the logit response as described 
in chapter 7. We also note that any kinds of censored data can be modelled, so long as the 
corresponding probabilities are correctly specified. 
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Figure 9.2.  Level 1 residuals by Normal scores for Analysis B in Table 9.2  

We can readily extend this model to the multivariate case where several kinds of durations 
are measured. This will require one extra lowest level to be inserted to describe the 
multivariate structure, with level 2 becoming the between-observation level and level 3 the 
original level 2. For the logit part of the model we will allow correlations at level 2 where 
these can be interpreted as point-biserial correlations. 

For repeated measures models where there are different types of duration we can choose to 
fit a multivariate model. Alternatively, as discussed in chapter 4, we may be able to specify a 
simpler model where the types differ only in terms of a fixed part contribution, or perhaps 
where there are different variances for each type with a common covariance. As pointed out 
earlier, we may sometimes wish to treat the first duration length separately and this is readily 
done by specifying it as a separate response. 

9.12 Infinite durations 

 It is sometimes found that for a proportion of individuals, their duration lengths are 
extremely long. Thus, some employees remain in the same job for life and some patients may 
acquire a disease and retain it for the rest of their lives. In studies of social mobility, some 
individuals will remain in a particular social group for a finite length of time while others may 
never leave it: such models are sometimes referred to as mover-stayer models. We can treat 
such durations as if they were infinite. Since any given study will last only for a finite time, it is 
impossible to distinguish infinite times from those which are right censored.  Nevertheless, if 
we make suitable distributional assumptions we can obtain an estimate of the proportion of 
infinite survival times. 
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For a constant θ ,  given an unobserved duration time, the observation is either right 
censored with finite duration or has infinite duration  so that we replace the probability πij  by 
λ θ π θij ij= − +( )1 . In general θ  will depend on explanatory variables and an obvious 
choice for a model is 

logit ( ) ( ) )θ βθ θ
ij ijX= (

 (9.51) 

The coefficients in (9.8) may also vary across level 2 units.  

Where the observation is not censored we know that it has a finite duration so that for the 
infinite duration parameters we have a response variable taking the value zero with predictor 
given by  { exp ( )}1 1 1+ − − −θij .  The full model can therefore be specified as a bivariate 
model where for observed durations we have two responses, one for the uncensored 
component lij  and the one for the parameters β θ( ) . For the censored observations there is a 
single response which takes the value one with predictor function 

{ exp [( ) ]}1 1 1+ − − + −θ π θij ij ij . 

We can extend the procedures of chapter 7 to the joint estimation of  β β θ, ( ) , noting that 
for the censored observations when estimating β , we have 

′ = − ′λ β θ πij ij ij( ) ( )1  

and for estimating β θ( )  we have 

′ = − ′λ β π θθ
ij ij( ) ( )( ) 1   

9.13 Examples with birth interval data and children’s play episodes 

We first look again at the Hutterite birth interval data. Since all the durations are uncensored 
we apply a standard model to the log(birth interval) values. Results are given in Table 9.2. 

We see that we can now fit the year of birth and age as random coefficients at level 2. A 
joint test gives a chi-squared value of 10.4 with 5 d.f. P=0.065, and they are each 
separately significant with a significance level of 6%. We have significant heterogeneity at 
level 1 where the variance within women is greater where there has been a previous death 
with a chi squared on 1 d.f. of 4.7, P=0.03. As before, mother’s birth year and previous 
death  
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Figure 9.3 Estimated survival functions for women with previous live births (upper) and a previous 
death; born in 1900, age 20, 12 months marriage. 

are associated with a decrease and duration of marriage with an increase in birth interval. 
The estimated surviving fraction will in general depend on the level 1 distributional 
assumption. In the  

present case, as shown in Figure 9.2, the level 1 standardised residuals show little departure 
from Normality and Figure 9.3 shows the estimated surviving fraction based on Normality 
for women born in 1900, with marriage duration 12 months, aged 20 and with a previous 
live birth. 

Figure 9.3 is similar to Figure 9.1 based on the proportional hazards model. In fact, the two 
lines actually cross at about 30 months, as a result of the different level 1 variances for those 
with a previous live birth as opposed to a death. 

We now look at some data which exhibit more extensive variance heterogeneity at level 1. 
They measure the number of days spent by pre-school children either at home or in one of 
six different kinds of pre-school play activity. For each of 249 children there were up to 12 
periods of activity. 

The response is the logarithm of the number of days and covariates are the type of episode, 
with home chosen as the base category and the education of the mother measured on a 7-
point scale ranging from no education beyond minimum school leaving age (0) to university 
degree (6). Nineteen of the episodes were right censored and twenty five were left 
censored, being less than one day. 

The multilevel structure is that of episodes within children. The model is also multivariate with 
the type of play as six response variables, covarying at the level of the child. 
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Table 9.3 Log duration analysis of children's play episodes: Extreme value distribution. 

 

Table 9.3 shows the results of an analysis where there is a single between-child variance and 
where it is allowed to differ for each type of episode. The between-episode-within-child 
variance is also allowed to vary for different episodes. The level 1 residuals for the 
continuous response part of the model show some evidence of non Normality and we 
therefore show the results for the extreme value distribution. Because of the relatively small 
amount of censoring there is little difference for the parameter estimates between analyses 
making other distributional assumptions. 

We see that there is quite substantial variation at both levels. At level 2 there was between-
children variation only for play types 1,2 and 4. A proportional hazards model fitted to these 
data did not show any between-child variation. In general, the semiparametric proportional 
hazards model will not detect some of the relationships apparent from fitting parametric 
models although it has the advantage that it does not make strong distributional assumptions. 

 
Parameter   

Fixed A (s.e.) B (s.e.) 
Intercept 2.19 2.18 
Play 1 -0.12 (0.11) -0.13 (0.11) 
Play 2  0.20 (0.08) 0.18 (0.08) 
Play 3 0.00 (0.13) 0.00 (0.13) 
Play 4 0.87 (0.12) 0.95 (0.11) 
Play 5 0.28 (0.09) 0.28 (0.09) 
Play 6 0.15 (0.09) 0.14 (0.08) 
Mother Educn. -0.05 (0.02) -0.05 (0.02) 
   
Random Level 1    
Overall 0.75  
Home  0.76 
Play 1  1.23 
Play 2  0.83 
Play 3  0.79 
Play 4  0.40 
Play 5  0.65 
Play 6  0.57 
   
Level 2 covariance matrix. Analysis A (analysis B in brackets) 
 Play 1 Play 2 Play 4 
Play 1  0.34 (0.0)   
Play 2  0.11 (0.0) 0.20 (0.17)  
Play 4 -0.28 (0.0) 0.13 (0.09) 0.07 (0.23) 
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figure 9.4  Estimated surviving probability of play episodes. 

 

Figure 9.4 shows the predicted probabilities of home and play type 1 episodes lasting 
beyond various times expressed in log (days). The crossing of the lines is now much clearer 
as a consequence of the different level 1 variances. 
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Chapter 10 

Multilevel models with measurement errors 

10.8 Errors of measurement 

Many measurements are made with substantial error components, especially in the social 
and biological sciences. If the measurement were to be repeated we would not expect 
always to get an identical result. In some cases, such as the measurement of individual height 
or weight, the errors may be so small that they can safely be ignored in practice. In other 
cases, for example for educational tests and attitude measures, this usually will not be true 
and a failure to ignore errors may lead to incorrect inferences. Fuller (1987) provides a 
comprehensive account of methods for dealing with measurement errors in linear models and 
this chapter  extends some of those procedures to the multilevel model. The basic model for 
measurement errors in a 2-level model for the h-th explanatory variable and the response is 
as follows 

 

Y y q

X x m

q q m m

ij ij ij

hij hij hij

ij i j hij hi j

= +

= +

= =cov( ) cov( )/ / 0
 

 

(10.1) 

 

Where upper case letters denote the observed measurements and lower case the underlying 
‘true’ measurements. Thus, we can think of these true measurements as being the expected 
values of repeated  measurements of the same unit where the measurement errors are 
independent and are also independent of the true values. We define the reliability of  the h-th 
explanatory variable  

 

Rh hx hX hX hm hX= = −σ σ σ σ σ2 2 2 2 2/ ( ) /  (10.2) 

 

that is the variance of the true values divided by the variance of the observed values. This 
immediately raises two problems. When we are measuring such things as attitudes or 
educational achievement, we cannot carry out repeat measurements to obtain estimates of 
the σhm

2  because the measurement errors cannot be assumed to be independent. Another 
way of viewing this is to say that the process of measurement itself has changed the 
individual being measured, so that the underlying true value has also changed. 

The second problem is that we have to define a suitable population. The definition of 
reliability is population dependent, so that for example, if the measurement error variance 
σhm

2  remains constant but the population heterogeneity of the true values increases then the 
reliability will increase. Thus, the reliability may be lower within population subgroups, 
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defined by social status say, than in the population as a whole. In particular, the reliability of 
a test score may be smaller within level 2 units, say schools, than across all students.  

In this chapter we shall assume that the variances and covariances of the measurement 
errors are known, or rather that suitable estimates exists. The topic of  measurement error 
estimation is a complex one, and there are in general no simple solutions, except where the 
assumption of  independence of errors on repeated measuring can be made. The common 
procedure, especially in education, of using ‘internal’ measures based upon correlational 
patterns of test or scale items, is unsatisfactory for a number of reasons and may often result 
in reliability estimates which are too high. Ecob and Goldstein (1983) discuss these and 
propose some alternative estimation procedures. McDonald (1985) and other authors 
discuss the exploration and estimation of measurement error variances within a structural 
equation model, which has much in common with the suggestions of Ecob and Goldstein 
(1983). Because estimates of measurement error variance are generally imprecise it is useful 
to study the effects of varying them and we will illustrate this in examples 

10.9 Measurement errors in level 1 variables 

We use a two level model to show how measurement errors can be incorporated into an 
analysis. A full derivation is given in Appendix 10.1. We write for the true model 

 

y x z u z eij ij u j e ij= + +( ) ( ) ( )β  (10.3) 

 

where for now we assume that the explanatory variables for the random variables are 
measured without error which will be true for variance component models. We assume that 
it is this true model for which we wish to make estimates. In some situations, for example 
where we wish simply to make a prediction for a response variable based upon observed 
values then it is appropriate to treat these without correcting for measurement errors. If we 
wish to understand the nature of any underlying relationships, however, we require estimates 
for the parameters of the true model.  

For the observed variables (10.3) gives 

Y q m X z u z eij ij ij i j u j e ij= − + + +( ) ( ) ( ) ( )β β  (10.4) 

In Appendix 10.1 we show that the fixed effects are estimated by 
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where σ( , )h h m
i

1 2
 is the covariance between the measurement errors for explanatory variables 

h h1 2,   for the i-th level 1 unit. The last expression in (10.5) is a correction matrix for the 
measurement errors and has elements which are weighted averages of the covariances of the 
measurement errors for each level over all the level 1 units in the sample with  the weights 
being the diagonal elements of V −1 . In variance component models this is a simple average 
over the level 1 units, and in the common case where the covariance matrix of the 
measurement errors is assumed to be constant over level 1 units we have 

C tr V m m h h mΩ Ω Ω
1 1 2

1
1 1= =−( ) , { }( , )    σ  (10.6) 

An approximation to the covariance matrix of the estimates is given in Appendix 10.1 as is 
an expression for the estimation of the random parameters. For the constant measurement 
error covariance case with no measurement errors in the response variable  this covariance 
matrix is given by 
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(10.7) 

and in the estimation of the random parameters the term T m1  is subtracted from ~ ~YY T  at each 
iteration. It is important in some applications to allow the measurement error variances to 
vary as a function of explanatory variables. For example, in perinatal studies, the 
measurement of gestation length may be quite accurate for some pregnancies where careful 
records are kept but less so in others.  

Where the explanatory variables have random coefficients the above results are modified 
somewhat and the details are given in Appendix 10.1. 

10.10 Measurement errors in higher level variables 

Where variables are defined at level 2 or above with measurement errors we have 
analogous results, with details given in Appendix 10.1. Thus the correction term to be used 
in addition to CΩ1

 with a constant measurement error covariance matrix in a 2-level model is 

C J V Jn
T

j n
j

mj jΩ Ω
2

1
2= −∑( )  (10.8) 

where Jn  is a vector of ones of length n and V j  is the j-th block of V.   

A case of particular interest is where the level 2 variable is an aggregation of a level 1 
variable. Woodhouse et al (1995) consider this case in detail and give detailed derivations. 
Consider the case where we have a level 2 variable which is the mean of a level 1 variable 

X
n

Xj
j

i j
i

1 1

1
. = ∑  

The variance over the whole sample  is therefore given by 
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where we assume constant variances and covariances within level 2 units for the X ij1 . The 
number of level 1 units actually measured in the j-th level 2 unit is n j  out of a total  number 
of units N j . Straightforward estimates of the parameters can be obtained by carrying out a 
variance components analysis with X ij1  as response, fitting only the overall mean in the fixed 
part, so that the covariance is the level 2 variance estimate.  

For the true values we have an analogous result where now we consider the variance of  the 
mean of the true values for all the level 1 units in each level 2 unit. There are, in effect, two 
sources of error in X j1. .  There is the error inherent in the level 1 measurement X1 which  is 
averaged across the level 1 units in each level 2 unit and there is the sampling error which 
occurs when n Nj j< , that is not all the units in the level 2 unit are measured. Thus the true 
value is the average for all the level 1 units in each level 2 unit of the true level 1 
measurements. Since the measurement errors are assumed independent we have 
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This gives us the following expression for the required measurement error variance for the 
aggregated variable 
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(10.11) 

where the reliability R1  is estimated from the level 1 variation. 

If both the level 1 observed variable and its aggregate are included as explanatory variables 
then clearly their measurement errors are correlated and the correlation is given by 

1 1
1
2

1

− R
n

X
j

σ( ) ( ) . 

In the expressions for the correction matrices, we have considered the separate 
contributions from levels 1 and 2. Where there is a ‘cross-level’ correlation between 
measurement errors as above then we add the level 1 variable to Ω2 m using (10.11) for the 
covariance together with a zero variance. The measurement error variance for the level 1 
explanatory variable becomes a component of Ω1m. A detailed derivation of these results is 
given by Woodhouse et al (1995). 

 
Table 10.1 Eleven year Normalised mathematics score related to 8 year score, gender and social class 
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for different eight year score level 1 reliabilities; adjusting for measurement errors at level 1 only. 

    

Parameter A (R1=1.0) B (R1=0.9) C (R1=0.8) 

Fixed Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) 

Intercept 0.14 0.11 0.08 

8 year score 0.095 (0.0037) 0.107 (0.0042) 0.122 (0.0050) 

Gender -0.044 (0.050) -0.044 (0.050) -0.043 (0.052) 

Non Manual 0.15 (0.06) 0.11 (0.06) 0.06 (0.06) 

    

Random    

σu
2
 0.081 (0.023) 0.081 (0.024) 0.082 (0.024) 

σe
2
 0.423 (0.023) 0.374 (0.023) 0.311 (0.025) 

Intra-school corrn. 0.16 0.18 0.21 

10. 11 A 2-level example with measurement error at both levels. 

We use the Junior School Project data reading score at the age of  eleven years as our 
response with the eight year mathematics score as predictor, fitting also social class (Non 
manual and Manual) and gender. The scores at age eleven  have been transformed to have a 
standard Normal distribution. In addition we shall allow for measurement errors in both the 
test scores. There are a total of  728 students in 48 schools in this analysis. 

In the original analyses of these data (Mortimore et al, 1988) reliabilities are not given, and 
for the reasons given above are unlikely to be well estimated. For the purpose of our 
analyses we investigate a range of reliabilities from 0.8 to 1.0 to study the effect of 
introducing increasing  amounts of measurement error. 

It can be seen in Table 10.1 that the inferences about the fixed parameters and the level 1 
variance and intra-school correlation change markedly in moving from an assumption of zero 
measurement error to a reliability of 0.8. The increase in the intra-school correlation reflects 
the fact that it is only the level 1 variance which decreases as the reliability falls. The 
difference between the children from non manual and manual backgrounds is considerably 
reduced as the reliability decreases. 
We now look at the effect of  adjusting additionally for measurement error in the response 
variable. To illustrate this we look at the effects on the individual parameters for a range of 
values for the reliabilities of both response and explanatory variables. 

As the response variable reliability decreases, so does the level 1 variance estimate. 
Likewise, as the reliability of the 8-year score decreases the level 1 variance decreases. The 
combined effect of both reliabilities being 0.8 produces a variance which is a quarter of the 
estimate which assumes no unreliability. When both the reliabilities reach the value of 0.7 the 
level 1 variance decreases to zero! By contrast the level 2 variance is hardly altered. For the 
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coefficient of  the 8-year score and social class the greatest change is with the reliability of 
the 8-year score. 

    
Table 10.2 Parameter estimates (standard errors) for values of explanatory and response variables 

  

Eight year score Response reliability 

  1.0 0.9 0.8 

Eight year 1.0 0.095 0.095 0.095 

score reliability 0.9 0.107 0.107 0.107 

 0.8 0.122 0.122 0.123 

Gender Response reliability 

  1.0 0.9 0.8 

Eight year 1.0 -0.044 -0.044 -0.043 

score reliability 0.9 -0.044 -0.043 -0.042 

 0.8 -0.043 -0.042 -0.041 

Non manual  Response reliability 

  1.0 0.9 0.8 

Eight year 1.0 0.15 0.15 0.16 

score reliability 0.9 0.11 0.11 0.12 

 0.8 0.06 0.06 0.06 

Level 2 variance Response reliability 

  1.0 0.9 0.8 

Eight year 1.0 0.081 0.080 0.079 

score reliability 0.9 0.081 0.080 0.079 

 0.8 0.082 0.081 0.080 

Level 1 variance Response reliability 

  1.0 0.9 0.8 

Eight year 1.0 0.423 0.325 0.226 

score reliability 0.9 0.374 0.275 0.177 

 0.8 0.311 0.212 0.113 

 

As the reliability decreases so the strength of the relationship with 8-year score increases, 
while the social class difference decreases substantially. The gender difference is changed 
very little. 

Clearly, the requirement of a positive level 1 variance implies particular lower bounds on the 
reliabilities and measurement error variances, and underlines the importance of obtaining 
good estimates of these parameters or at least  a range of reasonable estimates. The range 
of intra-school correlation coefficients, from 16% to 21% also indicates that we need to 
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take care in interpreting small values of such coefficients without adjusting for measurement 
error.  
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10.12 Multivariate responses 

To model multivariate data, as discussed in chapter 4, we specify a dummy (0,1) variable 
for each response and corresponding interactions with other explanatory variables. Then 
C CΩ Ω1 2

,   in (10.5) and (10.8) are modified so that for each level 1 or level 2 unit, the 

covariance between measurement errors is set to zero when either of the corresponding 
dummy variables is zero and likewise for the variances. This is equivalent to specifying the 
same covariance matrix of measurement errors for each set of explanatory variables 
corresponding to a response variable, with no covariances across these sets. For the 
response variables we likewise specify the separate measurement error variances for each 
one using the general procedures in appendix 10.1.  

10. 13 Nonlinear models 

Consider the 2-level model (5.3) in Chapter 5 where there are measurement errors in the 
explanatory variables for the fixed part of the model. In this case we can obtain an 
approximate  analysis by using the observed values in the updating formulae and replacing 
the measurement error covariances in (10.5) by 

( )( )
/

( , )f i h h m
i2

1 2
σ  (10.12) 

where f i( )
/  is the first differential of the nonlinear function for the i-th level 1 unit with a 

corresponding expression for level 2 measurement errors. The derivation of  (10.12) is given 
in Appendix 10.1. Where the variables with measurement errors have random coefficients 
we likewise replace the corresponding measurement error covariances in section 10.1.3 of 
Appendix 10.1 by (10.12). 

10.14 Measurement errors for discrete explanatory variables 

Assume that we have a categorical explanatory variable with r categories. We shall consider 
only a single such variable, since multiple variables can in principle be handled by 
considering the p-way table based upon them as a single vector. In practice it will often be 
reasonable to assume that their measurement errors are uncorrelated so that  they can be 
considered separately. Likewise we can often assume that measurement errors in discrete 
explanatory variables are uncorrelated with those in continuous variables. The following 
derivations parallel those given by Fuller (1987, section 3.4). We consider only level 1 
explanatory variables, but the extension to higher levels follows straightforwardly. 

Let A i( ) ( )1 x r  be  a row vector for the i-th level 1 unit containing a one for the category 

which is observed and zeros elsewhere. Let kmn  be the probability that a level 1 unit with 
true category n is observed in category m. We write 

K k K m th Kmn m= −{ },     where   is the   column of  

and define 

X K Ai
T

i
T

( ) ( )= −1
 (10.13) 
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If  xi  is the true value we write 

 A x E A x x Ki i i i i i
T

( ) ( ) ( ) ( ) ( ) ( ), ( | )= + =ε     

We also write 

X x mi i i( ) ( ) ( )− =  

so that 

E m xi i( | )( ) ( ) = 0  

which gives the familiar form for the errors in variables model where the unknown true 
value x i( ) is uncorrelated with the measurement error. The X i( )  become the new set of 

observed values and interest is in the regression on the true category values x i( ) . The vector   

x i( )  consists of a single value of one and the remainder zero. We have 

cov( | ) ( )( ) ( ) ( )( )A x l diag K K Ki
T

i m i m m m m
T= = = −Σ    

where lm  is an r-dimensional vector with 1 in the m-th position and zeros elsewhere. For the 
i-th level 1 unit define 

Ω Σ( ) ( ) ( ) ( )( )cov( | )i m i
T

i m i mm x l K K
T

= = = − −1 1
 (10.14) 

and we use as our estimate of the covariance matrix of measurement errors the matrix in 
(10.14) conditional on the observed A i( ) . 

$ ( )
( )( ) ( )

( )

( )

Ω Ωi m i m
i m

i m

P x l
P A l

=
=
=













 

 

(10.15) 

The term in square brackets can be estimated as follows. If µ µA x,    are the observed and 
true vectors of probabilities for the categories, then  

µ µx AK= −1
 

and given the sample estimate of µ A  we can estimate µx . The estimate given by (10.15) is 
then used as in the case of continuous explanatory variables measured with error. In the 
general model the number of explanatory variables will generally be one less than the number 
of categories, with one of the categories chosen as the base and omitted.  

In practice, the matrix of probabilities K ,  is normally assumed constant but can itself 
depend on further explanatory variables. Often we will not have a good estimate of it, and 
we may need to make some simplifying assumptions. In the case of a binary variable it may 
be possible to assume equal misclassification probabilities, in which case only a single value 
needs to be determined, and in practice a range of values can be explored. 
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 Appendix 10.1   Measurement errors 

 

10.1.1 The Basic 2-level Model 

We consider the 2-level model and write 

 

Y y q

X x m

q q m m

E q E m

m m

ij ij ij

hij hij hij

ij i j hij hi j

ij hij

h ij h ij h h jm
i

= +

= +

= =

= =

=

cov( ) cov( )

( ) ( )

cov( )

/ /

( )

0

0

1 2 1 2
σ

 

 

 

(10.1.1) 

 

for the h-th explanatory variable with measurement error vector mh  and with q  as the 
measurement error vector for the response. We use upper case for the observed and lower 
case for the ‘true’ values which are the expected values of the observed measurements. 
Each level 1 unit may have its own set of measurement error variances. Where we have a 
level 2 explanatory variable, then the measurement error is constant within a level 2 unit. 

We write the ‘true’ model in the general form 

y x z u z eij ij u j e ij= + +( ) ( ) ( )β  (10.1.2) 

which gives the model for the observed variables as 

Y q m X z u z e

m m
ij ij ij ij u j e ij

h

= − + + +

=

( ) ( ) ( ) ( )

{ }

β β
 

(10.1.3) 

For the true values write 

M x V x x V y

M M

xx
T T

xx yy

= =

=

− −

−

1 1

1

,

$

     Mxy

β
 

(10.1.4) 

Now 

X V X x m V x m

x V x m V x x V m m V m

T T

T T T T

− −

− − − −

= + +

= + + +

1 1

1 1 1 1

( ) ( )
 

(10.1.5) 

so that 

E X V X x V x E m V mT T T( ) ( )− − −= +1 1 1
 (10.1.6) 
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If we further  assume that q and m are uncorrelated then we have 

E X V Y x V yT T( )− −=1 1
 (10.1.7) 

Thus, to estimate the fixed parameters we require E m V mT( )−1  and we now consider how 
to obtain this for measurement errors at both level 1 and level 2. We then consider the 
problem of obtaining estimates of the random parameters required to form V. 

10.1.2 Parameter estimation  

For errors of measurement in level 1 units the (h h1 2, ) element of E m V mT( )−1  is 

σ σ

σ σ

ii
h h jm
i

i

N

ii
h h jm

i

i
C

( )

( ){ }

1 2

1 1 2

1=
∑

∑=with  Ω

 

 

 

(10.1.8) 

where N  is the total number of level 1 units. In the case where each level 1 unit has the 
same covariance matrix of measurement errors we have 

C tr V m m h h mΩ Ω Ω
1 1 2

1
1 1= =−( ) , { }( )    σ  (10.1.9) 

For errors of measurement in level 2 explanatory variables we have 

 

C J V Jn j n jm
j

j jΩ Ω
2 1

1
1 2= −∑( )( , ) ( , )  (10.1.10) 

Where Ω2 jm  is the covariance matrix of  measurement errors for the j-th level 2 block, and 
J r s( , )  is a (r x s) matrix of ones. In Chapter 10 we discuss how to obtain the Ω2 jm  for level 2 
variables which are aggregates of level 1 variables. 

For the measurement error corrected estimate of  the fixed coefficients we have 

$M M C Cxx XX= − −Ω Ω1 2
 (10.1.11) 

For the random component based upon the model with observed variables write the residual 
v z u z e q mij u j e ij ij ij= + + −( ) ( ) ( )β , v vij= { }which gives 

E vv V T T

T T J

T

ij
ijq

ij

T
ijm j

T
jm n nj j

( )

( $ $ ) ( $ $ ) ( , )

= + ⊕ + +

= ⊕ = ⊕

σ

β β β β

2
1 2

1 1 2 2Ω Ω,       
 

 

(10.1.12) 

where σijq
2  is the measurement error variance for the ij-th response measurement. Thus the 

quantity ⊕ + +
ij ijq T Tσ 2

1 2  should be subtracted from the sum of products matrix ~ ~YY T  at each 

iteration, when estimating the random parameters. 

The covariance matrix of  the estimated fixed coefficients is given by 
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$ ( [ ] ) $M X V X X V QV X X V T T X Mxx
T T T

xx
− − − − − −+ + +1 1 1 1 2

1 2
1
 

Q
ij ijq= ⊕σ 2  (10.1.13) 

This expression ignores any variation in the estimation of the measurement error variance 
itself, although Goldstein (1986) includes terms for this.  

10.1.3 Random coefficients for explanatory variables measured with error 

We have assumed so far that the coefficients of variables with measurement error are not 
random. Where such coefficients are random the above formulae no longer apply and the 
‘moment-based’ approach encounters severe difficulties (Woodhouse, 1998). Alternative 
procedures are currently being studied. 

10.1.4 Nonlinear models 

Consider first the case where just the fixed part explanatory variables have measurement 
errors at level 1 in the single component  2-level nonlinear model for the i-th level 1 unit 

y f X randomi i( ) ( ) ( )= +β  

which yields the linearisation 

 

y f X x x random termsi i k t i k
k

k t i k
k

( ) ( ) , ( )
*

, ( )
*{ ( ) }− − =∑ ∑ +β β β 1 +   (10.1.14) 

   

where the explanatory variables are the observed measurements and the coefficients are the 
required ones corrected for measurement error and x f xi k i i k( )

*
( )
/

( )= . Consider the expansion 

of f i( )  for the measurement error terms, to a first order approximation, 

 

f f f mi i m i u i k k t
k

k k( ) ( ), ( ),
/

( ) ,= += =∑0 0 β  (10.1.15) 

 

Thus we can use the observed explanatory variables with measurement error as an 
approximation to the use of the true values in the  updating formulae, with ( )( )

/
( , )f i h h m
i2

1 2
σ  

replacing σ ( , )h h m
i

1 2
 in (10.5). Where the variables with measurement errors have random 

coefficients we likewise replace the corresponding measurement error covariances in section 
(10.1.3) by the same expressions. 
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Chapter 11 

Software, missing  data and structural equation models 

11.8 Software for multilevel analysis 

Traditionally, statistical analysis packages for the analysis of linear or generalised linear 
models have assumed a single level model with a single random variable. For the models 
described in this book such software packages are clearly inadequate, and this led, in the 
mid 1980’s, to the development of four special purpose packages for fitting multilevel 
models. One of these, GENMOD (Mason et al., 1988), is no longer generally available. 
The other three are HLM (Bryk et al., 1988), MLwiN   (Rasbash et al., 1999) and VARCL 
(Longford, 1988). A detailed review of  these four packages (including ML3 which 
subsequently became MLn and then MLwiN ) has been carried out by Kreft et al (1994). In 
their original form HLM, ML3 and VARCL  were designed for continuous Normally 
distributed response variables and all three produced maximum likelihood (ML) or restricted 
maximum likelihood (REML) estimates. All three were soon able to fit 3-level models and 
VARCL and ML3 developed procedures for fitting Binomial and Poisson response models 
using the first order marginal approximation described in chapter 5. In addition VARCL is 
able to fit a variance components model with up to nine levels. Subsequently, the major 
statistical packages, notably BMDP, SAS  and GENSTAT, have begun to incorporate 
procedures for ML and REML estimation for Normal response models. The packages 
EGRET and SABRE will obtain ML estimates for a 2-level logit response model. A 
Bayesian package using Markov Chain Monte Carlo (MCMC) estimation, BUGS, is also 
available and MLwiN  allows MCMC estimation for a range of models. Appendix 11.1 
contains details of where these and other programs can be obtained. 

The two packages, MLwiN  and BUGS, are able to fit nearly all the models described in 
this book, although not currently structural equation models. These latter models can be 
fitted by the program BIRAM, listed in Appendix 11.1. The programs Mln and MLwiN  
allow an effectively unlimited number of levels to be fitted, together with case weights, 
measurement errors and robust estimates of standard errors. They also have a high level 
MACRO language which will allow a wide range of  special purpose facilities to be 
incorporated. A number of the papers referenced in earlier chapters have carried out their 
estimation procedures using special purpose software written in statistical programming 
languages such as S-Plus or Gauss. For the most part, however, this approach is 
computationally inefficient for the analysis of  large and complex data sets, and the use of 
one of the special purpose packages is then essential, even when powerful mainframe 
computers are used. The general purpose packages, SAS, GENSTAT and also MLwiN 
allow a wide variety of  data manipulations to be carried out within the software whereas the 
others tend to demand a somewhat rigid data format with limited possibilities for data 
transformations etc. 

It is reasonable to expect that the standard multilevel models will soon be available within 
most of the major general purpose statistical packages. For the more complex models, such 
as those with multivariate outcomes, nonlinear relationships and complex variation at all 
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levels, it will be important to have a user interface which assists understanding  the 
complexity of structure when specifying models and when interpreting output. Because the 
level of complexity of multilevel models is greater than that associated with single level linear 
or generalised linear models, the importance of helpful user interfaces cannot be 
overemphasised if the best use is to be made of these models. The ability to work 
interactively in a graphical environment will also be important and it will be necessary for 
programs to optimise computations so that very large and complex datasets can be handled 
within a reasonable time (Goldstein and Rasbash, 1992). 

 

11.9 Design issues 

When designing a study where the multilevel nested structure of a population is to be 
modelled, the allocation of level 1 units among level 2 units and the allocation of these among 
level 3 units etc. will clearly affect the precision of the resulting estimates of both the fixed 
and random parameters. The situation becomes more complex when there are random cross 
classifications and where there are several random coefficients. There are generally 
differential costs associated with sampling more level 1 units within an existing level 2 unit as 
opposed to selecting further level 1 units in a new level 2 unit. At the present time there 
appears to be little empirical or theoretical work on issues of optimum design for multilevel 
models..  

Some approximations for studying the standard errors of the fixed coefficients have been 
derived by Snijders and Bosker (1993) in the case of a simple 2-level variance components 
model. They are concerned with students sampled within schools and assume that the cost 
of  selecting a student in a new school is a fixed constant times the cost of selecting a student 
in an already selected school. They also assume that there is a minimum of 11 students per 
school. They tend to find that, where this constant is greater than 1 and the total number of 
students to be sampled is fixed, the sample of schools should be as large as possible, 
although this will not necessarily be true for all the coefficients of interest.  

Where cost information is available, together with some idea of parameter values, perhaps 
from a pilot study, then a guide to design efficiency can be obtained by simulating the effect 
of different design strategies and studying the resulting characteristics of the parameter 
estimates, such as their mean squared errors. This will be time consuming however, since for 
each design a number of  simulated samples will be required. On the other hand, in certain 
areas, such as that of school effectiveness or animal and human growth studies, where 
information about costs and parameter values is often available, it would be possible to 
derive some generally useful results. 

11.10 Missing data 

A characteristic of most large scale studies is that some of the intended measurements are 
unavailable. In surveys, for example, this may occur through chance or because certain 
questions are unanswered by particular groups of respondents. We are concerned with 
missing values of explanatory variables in a multilevel model. An important distinction is 
made between situations where the existence of a missing data item can be considered a 
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random event and where it is informative and the result of a non random mechanism. 
Randomly missing data may be missing ‘completely at random’ or ‘at random’ conditionally 
on the values of other measurements. The following exposition will be concerned with these 
two types of random event. Where data cannot be assumed to be missing at random, one 
approach is to attempt to model the missingness mechanism, and then to predict values from 
this model. Such predictions can be treated in similar ways to those described below. 

We consider the problem of missing data in two parts. First we develop a procedure for 
predicting data values which are missing and then we study ways of  obtaining model 
parameter estimates from the resulting ‘filled-in’ or ‘completed’ data set. The prediction will 
use those measurements which are available, so that data values which are missing at 
random conditional on these measurements can be incorporated. Detailed discussions of 
missing data procedures are given by Rubin (1987) and Little (1992). 

The basic exposition will be in terms of  a single level model for simplicity, pointing out the 
extensions for multilevel models. 

11.11 Creating a completed data set 

Consider the ordinary linear model 

y x x ei i i i= + + +β β β0 1 1 2 2  (11.1) 

for the i-th unit in a single level model. Suppose that some of the x i1  are missing completely 
at random (MCAR) or conditionally missing at random (MAR) conditional on X 2 . Label 

these unknown values x i1
* . We consider the estimation of these by predicting them from the 

remaining observations and the parameter set θ  for the prediction model, namely 

 

$ ( | , , )* *x E x x yi i i i1 1 2= θ  (11.2) 

 

Where we have multivariate Normal data the prediction (11.2) is simply the linear regression 
of X X Y1 2 on , , where the coefficients of this regression prediction are obtained from 
efficient, for example maximum likelihood, estimates of the parameters of the multivariate 
Normal distribution. This can be achieved efficiently using the procedures for modelling 
multivariate data described in Chapter 4. We shall consider the case of non-Normal data 
later. 

We define a multivariate model with three response variables, Y X X, ,1 2  and three 
corresponding dummy variables, say Z Z Z0 1 2, , . Some level 2 units will have all three 
response variables, but others will have only two where X1  is missing. Write this as the 2-
level model 
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(11.3) 

together with the three covariances to give the (2 x 2) covariance matrix  Ω XX  and 
covariance vector Ω XY . This model will produce efficient (ML in the Normal case) 
estimates of the parameters in (11.1) 

$θ = −Ω ΩXX XY
1

 (11.4) 

Thus for any missing value we can use the parameters from (11.4) to predict X1  from 
X Y2 , .These predicted values are just the estimated level 2 residuals from  

(11.3) for the missing values. Clearly this procedure extends to any number of variables with 
any pattern of missing data. We simply formulate the model as a multivariate response by 
introducing dummy variables for each variable and then estimating the residuals for the 
resulting 2-level model and choosing the appropriate  residuals to fill in the missing values. 
This procedure extends in a straightforward way to multilevel data. 

Suppose we have a two level data set with some explanatory variables measured at level 1 
and some at level 2 and various values missing. We specify a 3-level multivariate response 
model where some of the responses are at level 2 and some at level 3. At level 2 of this 
model we estimate a covariance matrix for the original level 1 variables and at level 3 we 
estimate a covariance matrix for all the variables. For the original level 2 variables with 
missing values we estimate the residuals at level 3 and use these to fill in missing values. For 
the original level 1 variables we add the level 3 and the level 2 residuals together to obtain 
filled in values. 

If we were to use the completed data sets in the usual way to fit a multilevel model the 
resulting estimates would be biased because the filled in data are shrunken and have less 
variation than the original measurements. Little (1992) discusses this problem and in the next 
section we outline procedures for dealing with it. 

11. 12 Multiple imputation and error corrections 

The usual multiple imputation (Rubin, 1987) procedure proceeds as follows. The predicted 
values are adjusted to have their correct, on average, distributional properties  

by sampling from the multivariate distribution of the predicted values. Where we have, as in 
the above example, just one  variable with missing values in a single level Normal model this 
involves a series of random values chosen from the Normal distribution with mean the 
residual estimate $*x i1  and variance given by the estimated (comparative) variance of this 
residual estimate. For small samples, in estimating this variance, we should also take account 
of the sampling variation of the estimated parameters, for example using a bootstrap 
procedure (Chapter 3). Where the residuals from two different levels are combined, as 
described above, several level 1 units within the same level 2 unit share the same level 2 
residual so that we will need to sample from the multivariate distribution where the variances 
are simply the sums of the variances from the two levels and the common covariance is the 
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variance of the level 2 estimate. Where there are several variables with filled in values then 
we need to sample from an extended multivariate distribution.  

Having generated these ‘corrections’ we then fit our multilevel model in the usual way and 
obtain parameter estimates. This process is repeated a number of times, and the final 
estimates are suitably chosen averages of these sets of estimates. These final estimates are 
asymptotically efficient with consistent standard errors. 

This kind of multiple imputation, in practice, has certain drawbacks. The principal one is the 
amount of computation required to carry out several analyses, especially in its use with 
secondary data where different analysts, often with limited resources, wish to work on the 
same data set. As an alternative, the following procedure is proposed. 

For our simple example the imputation procedure implicitly assumes a model of the form 

x x wi i i1 1 1= +$*
 (11.5) 

where the w i1  have the variances and covariances for the residuals estimated as above, and 
zero means. This model is similar to the basic model (10.1)  in chapter 10 for errors of 
measurement, except that the role of  x i1  is now that of the ‘true’ value which is unknown. If 
we assume that the two terms on the right hand side of (11.5) are uncorrelated, then we 
have 

var( ) var( $ ) var( )*x x w1 1= +  (11.6) 

We see therefore that to obtain estimates for the fixed coefficients based upon the true 
values we can apply the same procedures as in the measurement error case but with 
measurement error variances added rather than subtracted from the relevant quantities. 
Thus, for a 2-level model we have the following  which correspond to (11.5) for a model 
with p explanatory variables with missing data at  level 1. We form  
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(11.7) 

substituting sample estimates. For the ij-th level 1 unit σ ij  is the diagonal term of V −1  
andσ e h h w

ij
( , )1 2

 is the corresponding covariance (or variance) between the (level 1) residuals 

for variables h h1 2,  where these are both missing. The vector Jn h hj ( )
*

1 2
 contains a one if , for 

the j-th second level unit, variables h h1 2,  are both missing and zero otherwise. The term 

σ uj h h
j

( )1 2
 is the estimated covariance (or variance) between the (level 2) residuals for 

variables h h1 2, . The estimates of the fixed coefficients are given by 

$ $ $β = −M Mxx xy
1
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The extensions for level 2 explanatory variables and discrete variables (see below) are 
likewise analogous to those described in Chapter 10. 

In the single level case for a single explanatory variable with missing data, these results 
reduce to the following. Order the completed data so that the imputed observations are 
grouped together first. Then, ignoring any correction for sampling variation, the adjustment is 
obtained by replacing ( )X XT  by  

( )
$

X X
nT w+









1

2

0 0
σ

 
(11.8) 

where there are n1  imputed values. This is very similar to the correction described by Beale 
and Little (1975), although these authors use an estimate based upon the observed residuals 
calculated from the complete data cases and approximate the covariance matrix by $M xx

−1 . 

11.13 Discrete variables with missing data. 

Suppose we have one or more categorical explanatory variables as well as continuous 
variables with missing values. The first stage procedure is to obtain the predicted values. We 
can do this by treating all the variables together as a multivariate model with mixed 
continuous and discrete responses as described in Chapter 7. For each categorical variable 
we obtain the predicted probabilities of belonging to each category, corresponding to each 
dummy variable used in the subsequent analysis. For a single level model these would be 
substituted to form the completed data set. For a 2-level model we would add the level 3 
residual from the initial multivariate model to each prediction. Thus, where the categorical 
variable is at level 1 then for each level 1 unit where variables are missing the dummy 
variable values are replaced by estimates. We can obtain the σ e h h w

ij
( , )1 2

 together with 

covariances between discrete and continuous variables from the model estimates (Chapter 
7) and the relevant higher level variances and covariances are added for models with further 
levels. Care is needed with such linear predictions for discrete data and further research is 
required. 

11.14 An example with missing data 

We use the Junior School Project data set and model A of  Table 10.1 to illustrate the 
missing data procedure. We have omitted, at random, 15% of the values of the 8-year 
maths score. Three analyses have been carried out. The first simply omits all the level 1 units 
with a missing value. The second carries out only the first stage of the analysis to provide a 
completed data set and then proceeds in the usual way. The third analysis carries out the full 
missing data procedure. 

The first stage consists of  estimating the level 2 and level 3 covariance matrices for the 
response  and three explanatory variables (excluding the intercept) and estimating the 
residuals. 

We see that in the analysis which retains only the complete cases the standard errors are 
raised. The analysis which uses the completed data set without adjusting for the uncertainty 
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of the predicted values tends to underestimate the level 1 variance and also changes the 
fixed parameter estimates markedly. The corrected analysis using the full missing data 
procedure tends to give standard errors which are somewhat smaller than the analysis which 
simply omits level 1 units with missing data. 

 
Table 11.3 JSP Mathematics data. Model A is full data analysis, model B omits cases with missing data, 
model C uses completed data, model D uses full missing data procedure. 

  
Parameter Estimate (s.e.) Estimate(s.e.) Estimate (s.e.)  Estimate (s.e.) 

 A B C D 
Fixed:     
Constant 0.14 0.12 0.097 0.12 
8-year score 0.095 (0.0037) 0.100 (0.0040) 0.105 (0.0037) 0.097 (0.0039) 
Gender (boys - girls) -0.044 (0.050) -0.087 (0.054) -0.067 (0.047) -0.066 (0.051) 
Social class (Non Man - Man) 0.154 (0.057) 0.113 (0.060) 0.107 (0.054) 0.135 (0.058) 
     
Random:     
Level 2     
σ u0

2   0.081 (0.023) 0.083 (0.025) 0.077 (0.022) 0.077 (0.023) 

     
Level 1     
σ e0

2   0.423 (0.023) 0.415 (0.024) 0.378 (0.021) 0.412 (0.023) 

 

 

11.8 Multilevel structural equation models 

The theory and application of single level structural equation models, including the special 
cases of observed variable path models and factor analysis models, is well known (Joreskog 
and Sorbom, 1979, McDonald, 1985). In this chapter we look at multilevel generalisations 
of these models. We shall not give details of estimation procedures which are set out in 
Goldstein and McDonald (1987), McDonald and Goldstein (1988) with elaborations by 
Muthen (1989) and Longford and Muthen (1992). McDonald (1994) presents an informal 
overview. 

Consider first a basic 2-level factor model where we have a set of measurements on each 
student within a sample of schools together with a set of measurements at the school level 
which may be aggregated student level measurements. The response measurements of 
interest whose structure we wish to explore are assumed to be random variables, Normally 
distributed. A further set of covariates, for example gender or social class, are explanatory 
variables which we may wish to condition on. For the p level 1 responses we first write a 
multivariate model with p responses, where in general some may be randomly missing. 

y X e z u zhij hij hij hij hj hijhh
= + + ∑∑( )β  

This is a 3-level model as described in Chapter 4 with dummy variables for each response 
with random coefficients at level 2 and level 3. Note that at level 3 (between schools) some 
of the responses may not vary. Note also that in general some of the coefficients of the 
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covariates may vary at level 3 and these would be incorporated as further level 3 random 
variables along with those above. Reverting to the original 2-level model we now have a set 
of level 1 random variables ehij  and a set of level 2 random variables uhj . A general factor 

structure for the level 1 variables may involve factors defined at both level 1 and level 2, 
where we can write 

e f w

u f w

hij gh gij hijg

hj gh gj hjg

= +

= +

∑
∑

λ

λ

1
1)

2
2

(

( )  

for the factor structures at each level, using standard notation. We may wish to identify some 
of these factors as the ‘same’ factors at each level, for example by constraining certain 
loadings to be zero. In general of course, we may have different random variables at level 1 
and level 2, since, for example some of the variables which vary between students may not 
vary across schools and vice versa. Thus we may have an attitude score with no between-
school variation and any aggregate level variables by definition will not vary between pupils. 
The latter, nevertheless, may enter the model with the level 1 random variables as responses, 
by being part of the level 2 factor structure and contributing to the prediction of the uhj  in 

the above equation. Thus, we can in principle consider any level 2 random variables 
including random coefficients of covariates when modelling the factor structure at this level. 

A straightforward and consistent procedure for estimating the parameters of this factor 
model is to do it in two stages. The first stage involves the estimation of the separate level 1 
and level 2 residual covariance matrices as described above using the procedures given in 
chapter 4. The second stage involves the factor analysis of these separate matrices using any 
standard procedure, as described for example in Joreskog and Sorbom (1979) or 
McDonald (1985). This also automatically deals with any missing responses at either level. 
McDonald (1993) gives details for maximum likelihood estimators in this case.  

The two stage procedure should be reasonably efficient except where the data are 
unbalanced, with highly variable numbers of  level 1 units within level 2 units. It has the 
advantage that it can be used for quite general structures. Thus it extends straightforwardly 
to any number of hierarchical levels. Furthermore, we can also fit models where there are 
random cross classifications using the procedures described in chapter 8. Thus, if students 
are classified by the primary and the secondary school they attended we can estimate the 
covariance matrices for level 1 and for both classifications at level 2 and then carry out three 
separate factor analyses of these matrices. 

This procedure also allows us to fit general unconditional path models, with or without latent 
variables, since the covariance matrices at each level are sufficient for these models. A 
simple example of such a model without latent variables is as follows 

y x u e

y y u e
ij ij j ij

ij ij j ij

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 1

1 1 1

2
2 2

1 2 2

= + + +

= + + +

α β

α β
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where the y ij
( )1  is regarded as a random variable in both equations. The traditional path 

model treats y ij
( )1  in the second of these equations conditionally, so that it can be treated 

straightforwardly as a bivariate 2-level model. A choice between these two models will 
depend on substantive considerations, especially where there is a temporal ordering of 
variables when the conditional model would seem to be more appropriate in general. 
McDonald (1985) gives an account of estimation for unconditional path models. 

11.9 A factor analysis example using Science test scores 

We use the science data analysed in Chapter 4 to fit a 2-level factor model. to the results in 
Table 4.4. The factor model is fitted to the estimated residual covariance matrices of this 
table, omitting the variable Earth Science core. We use first the level 1 and level 2 
covariance matrices and fit 2  models. The first assumes one factor at each level with the 
loadings constrained to be  the same and the second allows the loadings to be different.  A 
model with two factors with loadings constrained to be equal at each level was also fitted 
but yielded a very high correlation (0.95) between the factors at level 1 and an estimated 
correlation at level 2 of 1.80! The model where the loading constraints were removed failed 
to converge. The program BIRAM was used with the solution scaled so that the factor 
variance equals one (McDonald, 1994). The goodness of fit chi squared values are 
approximate, based upon the assumption of equal numbers of level 1 units per level 2 unit. 

The unconstrained solution shows a greatly improved fit over the constrained solution.. At 
level 1 both the loadings for the Physics tests are somewhat higher than for the Biology tests 
with R3 having a much lower correlation with the factor. At school level there is no such 
clear separation between the loadings.  

11.10 Future developments 

A wide range of topics has been covered in this volume. Normal response models, are well 
understood and have found many successful applications. Binary response models likewise 
are finding numerous applications. In the former case, there are now efficient algorithms for 
fitting multilevel and cross classified models 

  Table 11.2  Factor analysis of residual covariances of Science achievement data. 

   

Variable Unconstrained loadings (s.e.) Constrained loadings (s.e.) 

 Level 2 level 1  

Biology core 1.02 (0.01) 0.58 (0.02) 0.61 (0.02) 

Biology R3 0.97 (0.08) 0.23 (0.02) 0.26 (0.02) 

Biology R4 0.73 (0.05) 0.50 (0.02) 0.52 (0.02) 

Physics core 0.96 (0.01) 0.64 (0.02) 0.66 (0.02) 

Physics R2 0.87 (0.03) 0.64 (0.02) 0.65 (0.02) 

χ 2  ( . . )d f  91.9 (10) 236.5 (15) 
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with many levels and ways of classification. Likewise, the nonlinear modelling of  variance 
functions including time series analysis promises to open up interesting new areas of 
application.  

With anticipated increases in the power of  computer hardware the analysis of very large 
datasets, including for example population censuses, should become feasible. In the case of 
binary data, as well as count and multicategory response data and nonlinear models more 
generally, there is more research required on the properties of different estimators. More 
simulation studies would be useful here. Bayesian methods such as Gibbs Sampling show 
considerable promise. 

The ability to handle measurement errors and missing data efficiently is important and a 
generally neglected area in applied research which tends to ignore measurement errors and 
treat missing data by omitting complete units. The procedures discussed here will benefit 
from further development and exploration and this will be an important area for further 
research, affecting as it does both consistency and efficiency. Likewise, the issue of design 
efficiency has hardly been explored at all although it is a practically important topic. 

We have presented a succession of models in previous chapters, dealing separately with 
each one. We have said little about combinations of these to produce more complex 
models. For example, we can combine a mixed binary and continuous response model with 
higher level cross classifications and measurement errors. With models of such complexity 
both the model specification and interpretation will need to be dealt with carefully. This will 
be helped by the use of powerful graphical procedures for diagnosis and presentation of 
model structures, and this is an important  area for further development. 

Finally, to help researchers and others keep abreast of the rapid developments in multilevel 
modelling, a Web site has been set up to provide updated information about software 
developments, theory and applications. It can be accessed from the following addresses: 

 

London:  http://www.ioe.ac.uk/multilevel/  

Montreal:  http://www.medent.umontreal.ca/multilevel/  

Melbourne: http://www.edfac.unimelb.edu.au/multilevel/ 

There is also an active email discussion group which can be joined by sending a message to: 

mailbase@mailbase.ac.uk  

The message should contain a single line, with a command of the form  

join multilevel <firstname(s)> <lastname>  

for example: join multilevel Jane Smith 
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Appendix 11.1   

Addresses for multilevel software packages 

BIRAM is available from: 
Professor R.P. McDonald 
Department of Psychology, 
University of Illinois 
603 E. Danial St., 
Champaign, IL. 61820, U.S.A. 
 
BMDP is available from: 
BMDP Statistical Software Inc., 
1440 Sepulveda Blvd. Suite 316, 
Los Angeles 
CA 90025, U.S.A. 
 
BUGS is available from: 
MRC Biostatistics Unit 
Institute of Public Health 
Robinson Way 
Cambridge, CB2 2SR, England. 
 
EGRET is available from: 
Statistics and Epidemiology Research Corporation 
909 Northeast 43 Street, Suite 202 
Seattle, Washington, 98105, U.S.A. 
 
MLwiN  available from: 
Hilary Williams 
Institute of Education 
20 Bedford Way, 
London, WC1H 0AL, England 
 
ML3, HLM and VARCL are also available from 
ProGamma, . 
P.O.B. Groningen, 
The Netherlands. 
 
SABRE is available from: 
Centre for Applied Statistics 
University of Lancaster 
Lancaster, LA1 4YF,  England 
 
SAS is available from: 
SAS Institute Inc., 
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SAS Campus Drive 
Cary, NC 27513, U.S.A. 
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GENSTAT is available from: 
NAG Ltd., 
Wilkinson House 
Jordan Hill Road 
Oxford, OX2 8DR 
England 
 
 
HLM is available from : 
Scientific Software Inc. 
1525 East 53rd St., 
Suite 906, 
Chicago, Ill. 60615 
U.S.A. 
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Identification of updates to 1995 edition of Multilevel Statistical 
Models incorporated into the April 1999 Web version 

Note that some reprints of the 1995 edition will incorporate some of these 
amendments  

Section Position of amended text 

xii Description of Kronecker product 

Appendix 2.3 Various 

3.4 Expression following equation 3.7 

3.5 Table 3.5 

4.2 Table 4.1 and Equation 4.1 

6.3 Equation 6.5, Table 6.1. Second paragraph following equation 6.5 

6.4 Paragraph 3 

7.2 Final paragraph – extra reference 

7.7 Equations 7.14, 7.15 

7.8 From immediately following equation 7.17 to end of section. 

Appendix 7.1 Expression for second differential of logit-multinomial model. 

8.1 Second paragraph, Figure 8.2 

8.2 Sentence following equation 8.2. 

8.6 Various. 

9.5 Final paragraph 

9.6 Various 

9.10 Equations 9.6, 9.7. Sentence following equation 9.7. Final paragraph, 
expression for first differential. 

Appendix 10.1 Section 10.1.3 paragraph starting ‘For estimating the fixed part..’ 
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11.10 An additional final paragraph 
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