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Preface

In the mid 1980's a number of researchers began to see how to introduce systematic
approaches to the satisticd modelling and anays's of hierarchicaly structured data. The
early work of Aitkin et d (1981) on the teaching styles data and Aitkin's subsequent classic
work with Longford (1986) initiated a series of developments that, by the early 1990's had
resulted in a core set of established techniques, experience and software packages that
could be applied routindy. These methods and further extensions of them are described in
this book and are coming to be applied widdy in areas such as education, epidemiology,
geography, child growth, household surveys and many others.

In addition to the first edition of the present text (Goldstein, 1987b), two expository volumes
appeared in the early 1990's. That by Bryk and Raudenbush (1992) discusses 2 and 3-leve
linear multilevd models with agpplications especially to educationa data and aso to repeated
messures designs. Longford (1993) gives a more theoreticaly oriented account and includes
additiondly discusson of a multilevd factor andyds mode, modds with categorica
responses and multivariate models. The present volume ams to integrate existing
methodological developments within a consgent terminology and notation, provide
examples and explan a number of new developments, especidly in the aress of discrete
response data, time series models, random cross classfications, errors of measurement,
missing data and nonlinear models. In many cases these developments are the subject of
continuing research, so that we can expect further elaborations of the procedures described.

The main text seeks to avoid undue datistical complexity, with methodologica derivations
occurring in gppendices. Examples and diagrams are used to illustrate the application of the
techniques and references given to other work. The book is intended to be suitable for
graduate level courses and as a generd reference.

Harvey Goldstein
August, 1994

Prefacetothefirst Internet edition

It isnow nearly 5 years snce the second edition was completed. Since then there have been
many developments; in methodology, in applications and in computation. A new edition of
Multilevd Statigicd Modds is now beng plaaned and it will incorporate these
developments. In the meantime the second edition has been corrected and one or two topics
amplified, with some additiond references. This edition does not contain a subject index;
readers can search the text eectronicdly for topics. Information about current issues in

multilevel moddling can be obtained from the folowing web ste which has further useful

links www.ioeac.uk/multilevel/ .

Havey Goldgtein
h.goldstein@ioe.ac.uk
April 1999
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Notation

The following definitions refer to a 2level modd. The extension to three and higher leve
moddsisusudly sraightforward. Where thisis not clear, athree level definition isincluded.

Definition Symbol

Response variable vector Y

Explanatory variable design matrix X

Fixed part explanatory variable design matrix for a X foraleve 1 unit
sngle unit X; foraleve 2 unit

g
— (3)
Vi = A ViwZ
h=0

Total residuals at each level for a3-level modd U, =8 Uy 22
h=0

g
ex=a enijkqflilj)k
h=0

Explanatory varidble design matrix for level 2 and  z®  z®
levd 1 random coefficients

Predicted vaue from fixed part of mode ¥, = X;b =(Xb);
Raw or totdl residud for level 1 unit Yo=Y~ 9
. . - 1 N -
Mean raw residud for levd 2 unit y, :n_é‘ g,
ji=1
Estimated residua or posterior resdud estimate u;, &
Covariance matrix of random coefficients at level i W, W={W}

Parentheses denoting vector or matrix of eements {}

Covariance matrix of response vector for k-levd V, orjust V
model

Contribution to covariance matrix of response vector Vi, orjust V,
fromlevd i for k-level mode

Direct sum of matrices A, ...., A, /&A

Kronecker product of conformable matrices A, A, A A A
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VeC operator on matrix A

Cluster

Desgn matrix

Explanatory varigble

Fixed part

Levd

Levd n variation

Nesting
Random part

Response variable
Unit

vec(A)

Glossary

A grouping containing 'lower level' dements. For examplein
asample survey the set of householdsin a neighbourhood.

In the fixed part of the modd, the matrix of vaues of the
explanatory variables X . In the random part the matrix of
explanatory variables Z .

Also known as an ‘independent’ varigble. In the fixed part
of the modd usudly denoted by x and in the random part

by z.
That part of amode represented by Xb, that isthe average
relationship.

A component of adata hierarchy. Leve 1 isthelowest leve,
for example dudents within  schools or  repested
measurement occasions within individua subjects.

The vaiation of levd n unit measurements about the fixed
part of amode.

The dudering of unitsinto a hierarchy

That pat of a modd represented by Zu, that is the
contribution of the random variables. a each levd.

Also known as a‘dependent’ variable. Denoted by y.

An entity defined a alevel of adata hierarchy. For example
an individud sudent will be aleve 1 unit within aleve 2 unit
which isaschoal.

11



Chapter 1
I ntroduction

1.1 Multilevel data

Many kinds of data, including observationd data collected in the human and biologica
sciences, have a hierarchical or clustered dructure. For example, anima and human
dudies of inheritance ded with a natud hierarchy where offoring are grouped within
families. Offspring from the same parents tend to be more dike in their physicd and menta
characterigtics than individuas chosen at random from the population at large. For instance,
children from the same family may dl tend to be smdl, perhaps because their parents are
amdl or because of acommon impoverished environment.

Many designed experiments aso create data hierarchies, for example clinicd trids carried
out in severd randomly chosen centres or groups of individuals. For now, we are concerned
only with the fact of such hierarchies not their provenance. The principa gpplications we
shdl ded with are those from the socia sciences, but the techniques are of course gpplicable
more generdly. In subsequent chapters, as we develop the theory and techniques with
examples, we shdl see how a proper recognition of these natural hierarchies alows us to
seek more satisfactory answers to important questions.

We refer to ahierarchy as conssting of units grouped at different levels. Thus offsoring may
be the level 1 unitsin a2-leve gructure where the level 2 units are the families: sudents may
be the leve 1 units clustered within schools that are the level 2 units

The exigence of such data hierarchies is neither accidental nor ignorable. Individua people
differ as do individud animds and this necessary differentiation is mirrored in dl kinds of
socid activity where the latter is often a direct result of the former, for example when
students with smilar motivations or gptitudes are grouped in highly sdective schools or
colleges. In other cases, the groupings may arise for reasons less strongly associated with
the characteridtics of individuds, such as the dlocation of young children to dementary
schools, or the dlocation of patients to different clinics. Once groupings are established,
even if their establishment is effectively random, they will tend to become differentiated, and
this differentiation implies thet the group' and its members both influence and are influenced
by the group membership. To ignore this relationship risks overlooking the importance of
group effects, and may dso render invdid many of the traditiond datistica andyss
techniques used for sudying data relationships.

We shdl be looking at this issue of datistica validity in the next chapter, but one smple
example will show its importance. A wdl known and influentid sudy of primary
(elementary) school children carried out in the 1970's (Bennett, 1976) claimed that children
exposed to so cdled formd' styles of teaching reading exhibited more progress than those
who were not. The data were analysed using traditiona multiple regression techniques which
recognised only the individua children as the wnits of andyss and ignored their groupings
within teachers and into classes. The results were datigticaly sgnificant. Subsequently,
Aitkin e d, (1981) demondrated that when the andyss accounted properly for the
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grouping of children into classes, the sgnificant differences disgppeared and the formaly’
taught children could not be shown to differ from the others.

This reandyss is the first important example of a multilevel analyss of socid science data
In essence what was occurring here was that the children within any one classroom, because
they were taught together, tended to be amilar in ther performance. As a result they

provide rather less information than would have been the case if the same number of
students had been taught separately by different teachers. In other words, the basic unit for
purposes of comparison should have been the teacher not the student. The function of the
sudents can be seen as providing, for each teacher, an estimate of that teacher's
effectiveness. Increasing the number of students per teacher would increase the precision of
those estimates but not change the number of teachers being compared. Beyond a certain
point, smply increasing the numbers of students in this way hardly improvesthings at dl. On
the other hand, increasing the number of teachers to be compared, with the same or

somewhat smaler number of students per teacher, considerably improves the precison of
the comparisons.

Researchers have long recognised thisissue. In educeation, for example, there has been much
debate (see Burdein et d, 1980) about the so called 'unit of andyss problem, which isthe
onejust outlined. Before multilevel modelling became well developed as aresearch tool, the
problems of ignoring hierarchica structures were reasonably well understood, but they were
difficult to solve because powerful genera purpose tools were unavailable. Specid purpose
software, for example for the andyds of genetic data, has been available longer but this was
restricted to ‘variance components models (see chapter 2) and was not suitable for handling
generd linear models. Sample survey workers have recognised this issue in another form.
When population surveys are caried out, the sample desgn typicdly mirrors the
hierarchicd population dructure, in terms of geography and household membership.
Elaborate procedures have been developed to take such structures into account when
carrying out gatigicd andyses. We return to thisin alittle more detall in alater section.

In the remainder of this chapter we shdl look at the mgor areas explored in this book.
1.2 School effectiveness

Schooling systems present an obvious example of a hierarchicd dructure, with pupils
grouped or nested or clustered within schools, which themselves may be clustered within
education authorities or boards. Educationa researchers have been interested in comparing
schools and other educationa ingtitutions, most often in terms of the achievements of their
pupils. Such comparisons have severa ams incuding the am of public accountability
(Goldgtein, 1992) but, in research terms, interest usudly is focused upon studying the
factors that explain school differences.

Condder the common example where test or examination results at the end of a period of
schooling are collected for each school in a randomly chosen sample of schools. The
researcher wants to know whether a particular kind of subject streaming practice in some
schools is associated with improved examination performance. She adso has good measures
of the pupils achievements when they started the period of schooling so that she can control
for this in the analysis. The traditiond gpproach to the andysis of these data would be to
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cary out a regresson andyds, udng peformance score as response, to study the
relationship with streaming practice, adjusting for the initid achievements. Thisis very smilar
to the initid teaching styles andys's described in the previous section, and suffers from the
same lack of vaidity through failing to take account of the school level clustering of students.

An andyss that explicitly models the manner in which students are grouped within schools
has severd advantages. Fird, it enables data andydts to obtain datidticaly  efficient
estimates of regresson coefficients. Secondly, by using the clustering information it provides
correct sandard errors, confidence intervas and significance tests, and these generdly will
be more 'consarvative' than the traditiona ones which are obtained smply by ignoring the
presence of clugtering - just as Bennett's previoudy daidicdly significant results became
non-dgnificant on reandyss. Thirdly, by dlowing the use of covariates measured a any of
the levels of a hierarchy, it enables the researcher to explore the extent to which differences
in average examination results between schools are accountable for by factors such as
organisationa practice or possibly in terms of other characterigtics of the students. It aso
makes it possible to gudy the extent to which schools differ for different kinds of students,
for example to see whether the variation between schools is greeter for initidly high scoring
sudents than for initidly low scoring sudents (Goldstein et d, 1993) and whether some
factors are better at accounting for or 'explaining' the variation for the former students than
for the latter. Findly, thereis often congderable interest in the rdative ranking of individud
schools, using the performances of their students after adjusting for intake achievements.
This can be done sraightforwardly using a multilevel modelling gpproach.

To fix the basic notion of alevel and a unit, consider figures 1 and 2 based on hypothetica
relationships.

. Figure 1 shows the exam score and intake achievement scores for five sudentsin a schooal,
together with a smple regresson line fitted to the data points. The resdud variaion in the
exam scores about this line, is the level 1 residual variation, Snceit relatesto leve 1 units
(students) within a sample leve 2 unit (schoal). In figure 2 the three lines are the ample
regression lines for three schools, with the individua student data points removed. These
vary in both their dopes and their intercepts (where they would cross the exam axis), and
this variation is level 2 variation. It is an example of multiple or complex level 2 variation
since both the intercept and dope parameters vary.

Level 2 variation

Level 1 variation

Exam
Score

Score

O, N W b OO
O P, N W b OO

0 0.5 1 0 0.5 1

Intake achievement Intake achievement

Figurel Figure2

14



The other extreme to an andys's which ignores the hierarchica structure is one which treats
each school completely separately by fitting a different regresson model within each one. In
some circumstances, for example where we have very few schools and moderately large
numbers of students in each, this may be efficient. It may dso be appropriate if we are
interested in making inferences about just those schools. If, however, we regard hese
schools as a (random) sample from a population of schools and we wish to make inferences
about the variation between schools in generd, then a full multilevel approach is cdled for.
Likewise, if some of our schools have very few students, fitting a separate mode for each of
these will not yied religble estimates: we can obtain more precision by regarding the schools
as a sample from a population and using the information avallable from the whole sample
data when making estimates for any one school. This gpproach is epeciadly important in the
case of repeated measures data where we typicaly have very few leve 1 units per leve 2
unit.

We introduce the basic procedures for fitting multilevel models to hierarchicdly structured
data in chapter 2 and discuss the design problem of choosing the numbers of units at each
levd in chapter 11.

1.3 Sample survey methods

We have dready mentioned sample survey data which will be discussed in many of the
examples of this book. The standard literature on surveys, reflected in survey practice,
recognises the importance of taking account of the clustering in complex sample designs.
Thus, in a household survey, the firg sage sampling unit will often be a wel-defined
geographicd unit. From those which are randomly chosen, further stages of random
selection are carried out until the fina households are selected. Because of the geographica
clustering exhibited by measures such as politicd attitudes, specid procedures have been
developed to produce vaid statistica inferences, for example when comparing mean vaues
or fitting regresson modes (Skinner et a, 1989).

While such procedures usualy have been regarded as necessary they have not generaly

merited serious substantive interest. In other words, the population structure, insofar asiit is
mirrored in the sampling design, is seen as a ‘nuisance factor'. By contrast, the multilevel

modedlling gpproach views the population structure as of potentid interest in itself, so that a
sample designed to reflect that Sructure is not merdly a matter of saving cods as in
traditiona survey design, but can be used to collect and andyse data about the higher leve

units in the population. The subsequent modelling can then incorporate this information and
obviate the need to carry out specid adjustment procedures, which are built into the andyss
model directly.

Although the direct moddling of clustered data is Satidticdly efficient, it will generdly be
important to incorporate weightings in the andysis which reflect the sample design or, for
example, patterns of non-response, so that robust population estimates can be obtained and
S0 that there will be some protection againgt serious mode misspecification. A procedure for
introducing externd unit weightsinto a multilevel andyssis discussed in Chapter 3.
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1.4 Repeated measuresdata

A different example of hierarchicaly structured data occurs when the same individuas or
units are measured on more than one occason. A common example occurs in studies of
anima and human growth. Here the occasons are clustered within individuas that represent
the levd 2 units with measurement occasions the leve 1 units. Such structures are typicaly
grong hierarchies because there is much more variaion between individuds in generd than
between occasions within individuds. In the case of child height growth, for example, once
we have adjusted for the overdl trend with age, the variance between successve
measurements on the same individud is generdly no more than 5% of the variation in height
between children.

There is a congderable past literature on procedures for the andyss of such repesated
measurement data (see for example Goldstein, 1979), which has more or less successfully
confronted the datisticad problems. It has done so, however, by requiring that the data
conform to a particular, baanced, structure. Broadly speaking these procedures require that
the measurement occasons are the same for each individua. This may be possble to
arrange, but often in practice individuas will be measured irregularly, some of them a great
number of times and some perhaps only once. By consdering such data as agenerd 2-leve
dructure we can apply the standard set of multileve modelling techniques that dlow any
pattern of measurements while providing datisticaly efficient parameter estimation. At the
same time moddling a 2-leve sructure presents asmpler conceptua understanding of such
dataand leads to a number of interesting extensions that will be explored in chapter 6.

One particularly important extenson occurs in the study of growth where the am is to fit
growth curves to measurements over time. In a multilevd framework this involves, in the
amplest case, each individud having ther own draight line growth trgectory with the
intercept and dope coefficients varying between individuds (leve 2). When the levd 1
measurements, consdered as deviations from each individud's fitted growth curve, are not
independent but have an autocorrdated or time series Sructure, neither the traditiona
procedures nor the basc multilevel ones are adequate. This Stuation may occur, for
example, when measurements are made very close together in time so that a ‘pogtive
deviation from the curve a one time implies aso a positive deviation after the short interva
before the next measurement.

1.5 Event history models

Moddling time spent in various gaes or Stuations is important in a number of aress. In
indudtry the 'time to failure of components is a key factor in qudity control. In medicine the
aurvivd time is a fundamenta measurement in studying certain diseases. In economics the
duration of employment periodsis of great interest. In education, researchers often study the
time students spend on different tasks or activities.

In sudying employment higories, any one individua will generdly pass through severd
periods of employment or unemployment, while a the same time changing his
characteridtics, for example his level of qudifications. From a modelling point of view we
need to modd the length of time in each type of employment, rdating this to both congtant
factors such as an individud's socid origins or gender and to changing or time dependent
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factors such as qudifications and age. The multilevel structure is analogous to that for
repested measures data, with periods taking the place of occasons. Furthermore, we would
have generdly a further, higher levd of the hierarchy snce individuds, which are the levd 2
units, are themsalves typicaly clustered into workplaces, which now condtitute level 3 unitst.
In fact, the dructure is even more complicated because these workplaces change from
period to period and if we wish to include thislevel in our modd we need to consder cross-
classfications of the units. We shdl have more to say about cross classfications shortly.

There are paticular problems arisng when gudying event duration data that are
encountered when some information is ‘censored' in the sense that instead of being adle to
observe the actud duration we only know that it is longer than some particular vaue, or in
some cases less than a particular vaue. Chapter 9 will discuss ways of deding with thisissue
for multilevel event duration models.

1.6 Discreteresponsedata

Until now we have assumed implicitly that our response or dependent varigble is
continuoudy distributed, for example an exam score or anthropometric measure such as
height. Many kinds of gatigticad modelling, however, ded with categorised responses, in the
amplest case with proportions. Thus, we might be interested in a mortdity rate, or an
examination pass rate and how these vary from areato area or school to school.

In sudying mortality ratesin a population, it is often of great concern to try to understand the
factors associated with variations from area to area or community to community. This
produces a basic 2-leve dructure with individuas a level 1 and communities a levd 2. A
typical study might record deeths over a given time period together with the characterigtics
of the individuas concerned dong with a control group and leved 2 characteridtics of the
communities, such astheir szes or social compositions. One andysis of interest would be to
see whether any of these explanatory variables could explain between community variation.
Another interest might be in studying whether mortdity rate differences, say between men
and women, varied from community to community.

Such models, part of the class known as generdised linear models have been available for
some time for single level data (McCullagh and Nelder, 1989), with associated software. In
chapter 7 we show how to fit multilevel models with severa categorica responses and even
modd s with mixtures of categorica and continuous responses.

1.7 Multivariate models

An interesting specid case of a 2-level modd isthe multivariate linear (or generdised linear)
mode. Suppose we have taken several measurements on an individud, for example ther
systolic and diastolic blood pressure and their heart rate. If we wish to andyse these
together as response variables we can do so by setting up a multivariate, in this case 3
variate, model with explanatory variables such as age, gender, socid background, smoking
exposure, etc. We can think of this as a 2-level modd by considering each individud as a

IFormally, we can regard unemployment for this purpose as a particular workplace.
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level 2 unit, with the three measurements congtituting the level 1 units, rather as occasons
did for the repeated measures modd. Chapter 4 will show how this forma device for
specifying a multivariate modd yidlds consderable benefits. For example, by consdering
further higher levels in this case say dlinics, we have a smple way of specifying a
multivariate multilevel modd. Also, if some individuas do not have dl the measurements, for
example if they are randomly missng a blood pressure measurement, then this is
automaticaly taken account of in the andyss, without the need for specia procedures for
handling missing data

A paticulaly important application occurs where measurements are missng by design
rather than at random. In certain kinds of surveys, known as rotation designs, and in certain
kinds of educationa assessments known as matrix sample designs, each individud unit has
only a subset of measurements made on it. For example, in large-scae testing programmes,
the full range of tests may be too extensve for any one student, so that each student
reponds to only one combination. Such designs are viewed usefully as having amultivariate
response with the full set of tests congtituting the complete multivariate response vector, and
every sudent having some tests missng. Such desgns can become rather complex,
especidly snce the sudents themsdlves are clustered into schools. By viewing the dataas a
sngle hierarchy in which the multivariate responses are level 1, we obtain an efficient and
readily interpretable andyss.

The multivariate multilevedl modd is dso the basis for ways of deding with missing data in
multilevel models and thisis developed in chapter 11.

1.8 Nonlinear models

Some kinds of data are better represented in terms of nonlinear rather than linear models.
For example, the modelling of discrete response datais consdered formally as a case of
moddling nonlinear data. Many kinds of growth data are conveniently moddled in this way,
especidly during periods of rgpid and complex growth such as early infancy and a the
approach to adulthood when growth approaches an upper asymptote (Goldstein, 1979).
Other examples arise when the response variable has inherent condraints. For example,
biochemicd activity petterns in patients may exhibit asymptotic behaviour, or cyclica
patterns, both of which are difficult to mode using purely linear modds. Chapter 5 will
introduce such models and show how to extend the linear multilevel modd to this case. It
will also congder cases where variances and covariances can be modedled as nonlinear
functions of explanatory variables.

1.9 Measurement errors

Mogt measurements made in the human sciences contain some aror component. This may
be due to observer error as when measuring the weight of an animd, or an inherent result of
being adle to measure only a smdl sample of behaviour asin educationd testing. It is wel
known that when varidbles in gaisticd modeds contain rdatively large components of such
error the resulting Satigtica inferences can be very mideading unless careful adjustments are
made ( Fuller, 1987). In the case of smple regression, when the explanatory or independent
vaiable is measured with error, the usuad estimate of the regresson line dope is an
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underestimate compared to that which would result if the measurement were avalable
without error. Thisis particularly important in studies of school effectiveness where the fitting
of intake achievement scores is important but where such scores often have large
components of measurement error.

An important case when the latter arise is where the level 2 variadble is a ‘compostiona’
vaiadle That is, it is a measurement aggregated from the characterigtics of the level 1 units
within the level 2 units. Thus, for example the mean inteke achievement and the standard
deviation of the intake achievements of dl the pupils in a school are compostiond variables
that may, and indeed sometimes do, affect the fina achievements of each individua student.
Likewisein ahousehold survey, we may congder that a measure of the average socid satus
or the percentages of households in each socid group, usng dl the households in the
immediate community, are important explanatory variables to fit in a model. The problem
aises when it is possble to collect data on only some of the level 1 units, this being the
typica stuation with household sample surveys. What we then have is an edtimate of a
compositiond variable that is measured with error, in the case of household surveystypicaly
with a very large error. In many educationa studies this dso occurs where only a small

proportion of students within aclass or school are sampled.

Chapter 10 discusses the problem of level 1 measurement error as well as the issue of
measurement errorsin variables measured at leved 2.

1.10 Random cross classifications

Whilst the title of this book refers to multilevd, thet is hierarchica models, we have aready
dluded to examples where units are cross-classified as well as clustered. In geographica
research, the definition of an individud's geographicd area is contingent upon the context
being consdered. Thus, the relevant location unit for purposes of leisure may not be the
same as that surrounding the environment of work or schooling. We can conceive formdly
of individuas belonging smultaneoudy to both types of unit each of which may have an
influence on a person'slife.

In most schooling systems, students move from elementary to secondary or high school. We
might expect that both the dementary and secondary schools atended will influence a
sudent's achievements, behaviour and attitudes. Thus the level 2 units are of two types,

elementary school and secondary school, with each ‘cdll’ of their cross classification contains
some, or possibly no students. In this example, athird way of classfication could be the area
or neighbourhood where the student lives.

An interesting specid case occurs where for asingle leve 2 dassfication, leve 1 units may
belong to more than one leve 2 unit. An example from sociology concerns children’s and
adults friendship patterns where an individuad may belong to severd groups Smultaneoudy.
The characterigtics of the members of each group will influence such an individud, in
relaion to the individud's exposure to the group. Such multiple unit membership may be
viewed formaly as a multiway classfication of the relevant units. Thus, for the case where an
individud a most beongs to two groups we cross classfy the friendship groups by
themselves, with each individua belonging to one cdll of the classfication.

19



In chapter 8 we show how to handle such random cross-classified structures as specid

cases of the generd mulltilevd modd. This nat only dlows an efficient method of moddling
such gructures, it dso alows any complexity of mixed hierarchicad and cross classfied data
to be handled comprehensvely in the same modelling framework using the same generd

purpose software. For example, in epidemiologica studiesinvolving the use of trained raters
or observers, a different random sample of raters may rate the status of the individuals
within each levd 2 unit, such as a dinic or workplace. This leads to a complex structure
where a level 1 we have a cross classfication of individuds by raters, where the individuals
and raters are nested  within the level 2 units. Such mixtures of hierarchically structured and
crossed units can be moddled within this overd| framework.

1.11 Structural equation models

In many areas of the socid sciences, where measurements are difficult to define precisdy, an
investigator might suppose that there is some underlying condruct which cannot be
measured directly hut nevertheess can be assessed indirectly by measuring a number of
relevant indicators. Structura equation modeling, and in particular the specid case of factor
andyss, was developed for this purpose, typicaly deding with individuas behaviour,
attitudes or mentd performance. Where individuds are grouped within hierarchies, for dl the
same reasons discussed above, is important to carry out such andyses in a multilevel
framework. For example, we may be interested in underlying individud attitudes based upon
a number of indicators. Data on such indicators may be available over time and we can
postulate a modd whereby the underlying attitude varies from individud to individud (leve
2) and dso varies randomly over time within individuas (level 1). The modd can then be
further eaborated by studying whether thereis any systematic change over time and whether
this varies across individuas. Chapter 11 discusses such models.

1.12 L evels of aggregation and ecological fallacies

When gtudying relationships among variables, there has often been controversy about the
gopropriate 'unit of andyss. We have dluded to this dready in the context of ignoring
hierarchica data clustering, and as we have seen, the issue is resolved by explicit hierarchica
modedling.

One of the best known early illustrations of what is often known as the ecologica or
aggregation fdlacy was the study by Robinson (1950) of the relationship between literacy
and ethnic background in the United States. When the mean literacy rates and mean
proportions of Black Americans for each of nine census divisions are correated the resulting
vaue is 0.95, whereas the individua-leve corrdation ignoring the grouping is 0.20.
Robinson was concerned to point out that aggregate-level relationships could not be used as
edimates for the corresponding individua-level reationships and this point is now well
understood. In chapter 3 we shdl discuss some of the satistical consequences of moddlling
only a the aggregete levd.

Sometimes the aggregate levd isthe principd levd of interest, but neverthdess a mulltileve
perspective is useful. Congder the example (Derbyshire, 1987) of predicting the proportion
of children socidly 'a risk' in each locd adminidrative area for the purpose of dlocating
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centrd government expenditure on socid services. Survey data are available for individud
children with information on risk status so that a prediction can be made using area based
variables as wdl as child and household based variables. The probability of achild being ‘a
risk’ was estimated by the following (sngle level) equation

logit(p) =-6.3+5.9x, +2.2%, +15x,

where X, isthe proportion of children in the areaiin households with a lone parent, X, isthe
proportion of households in each area which have a density of more than 1.5 persons per
room and X, is the proportion of households whose 'head' was born in the British ‘New
Commonwedth' or Pakistan. All these explanatory
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variables are measured at the aggregate area level and the response p is the proportion of
children at risk in each area. Although we can regard this andlysis as taking place entirely a
the area levd (with suitable weighting for the number of children in each areg), there are
advantages in thinking of it as a 2levd mode with each child being aleve 1 unit and the
response variable being the binary response of whether or not the child is at risk.

Fird, this alows us to incorporate possbly important variables that are measured at the child
levd, for example whether or not each child's household is overcrowded. Including such
level 1 variables may greetly improve the predictive power of the modd. With the results of
such a mode we can then form a prediction for each area by aggregating over the known
numbers of children living in overcrowded households.

Secondly, the possibility of moddling the characterigtics of children or their households
dlows the posshbility of an alocation formula that can take account of costs and benefits
related to the actua composition of each areain terms of these child characteritics.

1.13 Causality

In the naturd sciences, experimentation has a dominant postion when making causd
inferences. This is both because the units of interest can be manipulated experimentaly,
typicaly usng random alocation, and because there is a widespread acceptance that the
results of experiments are generdisable over space and time. The modes described in this
book can be applied to experimental or nonrexperimentd data; but the find causad
inferences will differ. Nevertheless, most of the examples used are from non-experimenta
gudies in the human sciences and a few words on causd inferences from such data may be
ussful.

If we wish to answer questions about a possible causa relationship between class size and
educationa achievement, an experimenta study would need to assign different numbers of
levd 1 units (tudents) randomly to level 2 units (class - teachers) and sudy the results over
a time period of severa years. This would be time consuming and could creete ethica

problems. In addition to such practicd problems, any single study would be limited in time
and place, and require extensive replication before results confidently could be generalised.
The specific context of any study is important, for example the date of the educationd

sysem and the resources avalable a the time of the sudy. The difficulty from an
experimentd viewpoaint isthat it is practicdly impossible to dlocate randomly with respect to
al such possible confounding factors.

This is hot to say that randomised experiments should never be undertaken, rather that on
their own they may have limited potentid for making generd statements about causdity.
Whether an experiment fails or succeeds in demongrating a relationship, there will dmost
aways be further explanations for the findings which require sudy. Even if an experiment
gopears to diminate a possble rdationship, for example demondratiing a negligible
relationship between class Sze and atainment, it may be legitimate to query whether a
relationship nevertheless exids for specific subgroups of the population. Goldstein and
Blatchford (1998) provide a further discussion.

In the pursuit of causd explanations we require some guiding underlying principles or
theories. It is these which will tdl us what kinds of things to measure and how to be critica
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of findings. For example, in sudies of the reationship between perinata mortdity and
materna smoking in pregnancy (Goldstein, 1976) we can attempt to adjust for confounding
factors, such as poverty, which may be responsble for influencing both smoking habits and
mortality. We can dso study how the relationship varies across groups and seek measures
which explain such variation. we might adso, in some circumstances, be able to carry out
randomised experiments, assigning for example intensve hedth education to a randomly
selected 'treatment’ group and comparing mortdity rates with a‘control’ group.

A multilevel approach could be useful herein two different ways. Firdt, pregnant women will
grouped hierarchicdly, geographicdly and by medicd inditution and the between-area and
betweent+inditution variation may affect mortaity and the relationship between mortaity and
smoking. Secondly, we will be able often to obtain serid measurements of smoking so
alowing the kind of repeated measures 2-leve modelling discussed earlier. Thiswill dlow us
to sudy how changes in smoking are related to mortdity, and permit a more detaled
exploration of possble causd mechaniams.

Multilevd models can often be used to identify units with extreme vaues. For example, in
school effectiveness sudies an exploration of school-level resdud estimates (see Chapter 3)
may identify those which are highly atypicd, having adjusted for ‘contextud’ variables such
as the intake characterigtics of their students. These can then be sdected for further scrutiny,
for example by means of intensve case sudies, so forming alink between the quantitatively
based multilevel andysis and a more quditatively based investigation which would seek to
identify detailed causa processes.

A discussion of some necessary conditions for causa inference in observationa studies can
be found, for example, in Holland (1986) and Cochran (1983 ).

Finaly, many of the concerns addressed by multilevedl models are to do with prediction
rather than causation. Thus, for example, in chapter 6 we use a 2-level modd of children's
growth for the purpose of predicting adult height. In studies of school effectiveness we may
be interested in understanding the causes of school differences, but we may be concerned
aso with predicting which schoadl is likely to produce the best (on average) examination
result for a student with given initid characteristics and achievements.

1.14 A caveat

The purpose of this book isto bring together techniques for the andysis of highly structured
data, both hierarchies and cross classfications. The application of such techniques has
dready begun to yidd new and important ingghts in a number of aress as the examplesin
the following chaptersillustrate. As software becomes more widdy available, the application
of these techniques should become rdatively straghtforward, even routine.

All this is welcome, yet despite their usefulness, models for multilevel andysis cannot be a
universad panacea. In some circumstances, where there is little structural complexity, they
may be hardly necessary, and traditionad single level modds may suffice, both for andyss
and presentation. On the other hand multilevel andyses can bring extra precison to attempts
to understand causdlity, for example by making efficient use of student achievement data in
attempts to understand differences between schools.
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They are not, however, subdtitutes for well grounded substantive theories, nor do they
replace the need for careful thought about the purpose of any datisticd moddling.
Furthermore, by introducing more complexity they can extend but not necessarily smplify
interpretations.

Multilevel models are tools to be used with care and understanding..
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Chapter 2
Thebasic linear multilevel model and its estimation

2.10 The2-level model and basic notation

In this chapter we introduce the 2level modd together with the basc notation which we
shdl use throughout the book. We look at aternative ways of setting up and motivating the
modd and introduce procedures for estimating parameters, forming and testing functions of
the parameters and congtructing confidence intervals.

To make matters concrete, consder the following data. It is a dataset we shdl use again
and it congsts of 728 pupilsin 50 primary (elementary) schools in inner London, part of the
‘Junior School Project’ (JSP). We consder two measurement occasions: the first when the
pupils were in ther fourth year of schooling, thet is the year they atained their eighth
birthday, and three years later in their fina year of primary school. Our data are in fact a
subsample from a more extensive dataset which is described in detail in Mortimore et d

(1988). We use the scores from mathematics tests administered on these two occasions
together with information collected on the socia background of the pupils and their gender.
In this chepter the data are used primarily to illustrate the development of basc 2levd
moddling. In chapter 3 we shall be studying more eaborate modds which will engble usto
handle these data more efficiently.

Fig. 2.0 is a scatterplot of the 11-year-old mathematics test score by the eight-year-old test
score. In this plot no digtinction is made between the schools to which the pupils beong.
Notice that there is a generd trend, with increasing 8-year scores associated with increasing
11-year scores. Notice adso the narrowing of the between pupil variaion in the 11-year
score with increasing 8-year score; an issue to which we shal return.

In Fig. 2.2 the scores for two particularly different schools have been selected, represented
by different symbols.

Two things are apparent immediately. The school represented by the circles shows a steeper
'dope’ than the school represented by the filled triangles and for most 8-year scores, the 11-
year scores tend to be lower. Both these features are now addressed by formally modelling
these rdationships.
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Fig. 2.1 Scatterplot of 11-year by 8year mathematics test scores. Some points
represent more than one child.

Congder first asmple modd for one school, relating elevenyear-score to eight-year score.
Wewrite

y=a tb x +e (2.1

where standard interpretations can be given to the intercept (a), dope (b) and resdud
(e). Wefallow the norma convention of usng Greek |etters for the regression coefficients
and place a circumflex over any coefficient (parameter) which is a sample estimate.
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Fig. 2.2 Scatterplot of 11-year by 8-year mathematics test scores for two schools.
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This is the forma modd for figure 1.1 in the previous chapter and describes a sngle-levd
relationship. To describe smultaneoudy the relationships for severd schools we write, for
schodl |,

yj =a; +bx; +e (2.2)

Thisis now the forma model for figure 1.2 where j refersto the level 2 unit and i to theleve
1 unit.

As it gands, (2.2) is dill essentidly a single level modd, dbeit describing a separate
relationship for each school. In some stuations, for example where there are few schools
and interest centres on just those schools in the sample, we may andyse (2.2) by fitting dl
the 2n+1 parameters, namely

(@a;,b;) j=1..n s

e

assuming acommon ‘within-school' residud variance and separate lines for each school.

If we wish to focus not just on these schools, but on awider 'population’ of schools then we
need to regard the chosen schools as giving us information about the characteridics of al the
schools in the population. Just as we choose random samples of individuas to provide
estimates of population means etc., so a randomly chosen sample of schools can provide
information about the characterigtics of the population of schools. In particular, such a
sample can provide estimates of the variation and covariation between schools in the dope
and intercept parameters and will dlow us to compare schools with different characterigtics.

An important class of dtuations arises when we wish primarily to have information about
each individua school in a sample, but where we have a large number of schools so that
(2.2) would involve estimating a very large number of parameters. Furthermore, some
schools may have rather smal numbers of students and application of (2.2) would result in
imprecise estimates. In such cases, if we regard the schools as members of a population
and then use our population estimates of the mean and between-school variation, we can
utilise this informetion to obtain more precise estimates for each individua school. This will
be discussed later in the section dedling with 'residuds.

2.11 The 2-level model

We now develop a genera notation which will be used throughout this and later chapters,
eaborated where necessary. We then discuss the estimation of model parameters and
resduas and thisis followed by illugtrative examples.

To make (2.2) into a genuine 2-level model we let a ;,b; become random variables. For
consistency of notation replace a ; by b,; and b ; by b ,; and assume that
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bOj = b0+u0j’ blj :b1+u1j
where uy;, U,; arerandom variableswith parameters
E(u;) = E(u;) =0

var(ly) =S oo Var(y) =Sy, COV(Uy;,Uy;) =S g 23
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We can now write (2.2) in the form

Y =g tbx; + (U Uy X TEy)

Var(eou) =S 20 24

We dhdl require the extra suffix in the level 1 resdud term for the models introduced in
Chapter 3.

We have expressed the response variable y; asthe sum of afixed part and arandom part
within the brackets.

We shd| dso generdly write the fixed part of (2.4) in the matrix form
E(Y) = Xb
with Y ={y,}

E(y,) = X,b = (Xb),, X ={X,}

ijr
where {} denotes a matrix, X is the design matrix for the explanatory variablesand X;; is
the ij-th row of X. For model (24) we have X ={1 x;} .Note the dternative
representation for the i-th row of the fixed part of the modd.

The random variables are referred to as 'resduas and in the case of asingle level modd the
level 1 resdud €;; becomes the usud linear model residua term. To make the model

symmetrical so that each coefficient has an associated explanatory varigble, we can define a
further explanatory variable for the intercept b, and its associated residua , uy;, namely

X5; » which tekes the value 1.0. For smplicity this variable may often be omitted.

The feature of (2.4) which digtinguishes it from standard linear models of the regresson or
andysis of variance type is the presence of more than one resdua term and thisimplies that
gpecia procedures are required to obtain satisfactory parameter estimates. Note thet it is
the Structure of the random part of the modd which is the key factor. In the fixed part the
variables can be measured a  any levd, for example n the JSP data we can measure
characteristics of schools or teachers. We can dso include so caled ‘compositiond’
variables such as the average 8 year mathematics test score for dl pupils in each schoal.
The presence of such variables does not ater the estimation procedure, athough results will
require careful interpretation.

2.12 Parameter estimation for the variance components model

Equation (2.4) requires the estimation of two fixed coefficients, b,,b,, and four other
parameters, s2,,s2,,s o, ad s 2. We refer to such variances and covariances as random
parameters. We gart, however, by conddering the smplest 2-level modd which includes
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only the random parameters s?,,sZ. It is termed a variance components model because
the variance of the response, about the fixed component, the fixed predictor, is

var (Y;1b,,b;,%;) = var(u, + &) =85, +S85,

that is, the sum of aleve 1 and aleved 2 variance. For the JSP data this modd implies that
the total variance for each student is congtant and that the covariance between two students
(denoted by i, ,i,) in the same schoal is given by
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COV(Up; + 8 ; Uy; +6,; ) =COV(Uy;, Uy) =S 5 (2.9)

sncethelevel 1 resduds are assumed to be independent. The correlation between two such
sudents is therefore

2

— SuO

(Sﬁo"'sio)

which is referred to as the 'intra-level-2-unit corrdation’; in this case the intra-school
corrdaion.2 This correlaion measures the proportion of the total variance which is
betweenschoals. In a modd with 3 levds, say with schoals, classrooms and students, we
will have two such corrdaions; the intra-school corrdaion measuring the proportion of
variance that is betweenschools and the intra- classroom correlation measuring that between
classrooms.

The exigence of a non-zero intra-unit correlaion, resulting from the presence of more than
one resdua term in the modd, means that traditiond estimation procedures such as
‘ordinary least squares (OLS) which are used for example in multiple regresson, are
ingpplicable. A later section illustrates how the application of OLS techniques leads to
incorrect inferences. We now look in more detal at the structure of a 2level data s,
focusing on the covariance structure typified by Figure 2.3.

2 2 2 2 n
?uo-'-seo SuO SuO 9
2 2 2 2 )

C Suw SwtS o Sw *
2 2 2 2 =

% Su0 SuO Su0+se0@

Figure 2.3 Covariance matrix of three studentsin a single school for a variance components model.

The matrix in figure 2.3 is the (3 x 3) covariance matrix for the scores of three sudentsin a
single school, derived from the above expressions. For two schools, one with three students
and one with two, the overadl covariance matrix is shown in Figure 2.4. This 'block-diagond’
dructure reflects the fact that the covariance between students in different schoals is zero,
and dlearly extends to any number of leve 2 units.

A O
&0 By

where

2 |n the sample survey literature and elsewhere such as in genetics, the term ‘intra-class correlation’ is
used, but this clearly is confusing in the present context.
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Figure 24 The block-diagonal covariance matrix for the response vector Y for a 2-level variance
components model with two level 2 units.
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A more compact way of presenting this matrix, which we shdl use again isgiven in figure 2.5

yd 2 2 AY

V — ? uO‘J(3) +S e0|(3) O H
2= 2 2

é 0 Suwd tSwleq

Figure 2.5 Block-diagonal covariance matrix using general notation.

where |, isthe (n x n) identity matrix and J,; isthe (n x n) matrix of ones. The subscript 2

for V indicates a 2-levd modd. In single-level OLS models s 2, is zero and this covariance
matrix then reduces to the standard form s 2| where s? isthe (Sngle) residua variance,

2.13 Thegeneral 2-level model including random coefficients

We can extend (2.4) in the standard way to include further fixed explanatory variables
J
Y; = by +0yxy; + @ byXg; + (Ug; + Uy Xy +&;)
h=2
and more compactly as
2 2.6
Vi = Xgb+a UyZy + &2y (26
h=0

where we use new explanatory variables for the random part of the modd and write these
more generdly as

z :{ZO Zl}
ZO ={% i.e. avectorof 1's
Z) ={x)

The explanatory variables for the random part of the model are often a subset of those in the
fixed part, as here, but this is not necessary and later we shall encounter cases where thisis
not 0. Also, any of the explanatory variables may be measured a any of the levels; for
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example we may have student characteristics at level 1 or school characteritics a leve 2.
Examples of both are used in the dataandysisin alater section.

This modd, with the coefficient of X, random &t level 2, gives rise to the following typica
block structure, for aleve 2 block with two level 1 units. The matrix W, is the covariance
matrix of the random intercept and dope at level 2. Note that we need to distinguish
caefully between the covariance matrix of the responses given in figure 2.6 and the
covariance matrix of the random coefficients. We aso refer to the intercept as a random
coefficient. The matrix W, is the covariance matrix for the set of level 1 random coefficients;
inthis case there is just a Single variance term at level 1. We dso write W={W} for the st
of these covariance matrices.
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Figure 2.6 Response covariance matrix for alevel 2 unit with two level 1 units for a 2-level model with a
random intercept and random regression coefficient at level 2.

We as0 see here the general pattern for constructing the response covariance matrix which
generaises both to higher order models and, as we shdl see in chapter 3, to complex
variation at level 1. Appendix 2.1 sets out the details and describes procedures for obtaining
edimates and carrying out significance tests and congtructing confidence intervals for the
parameters of the basc multilevel model.

2.14 Estimation for the multilevel model

We now give an overview of the Iterative Generalised Least Squares (IGLS) method which
aso forms the basis for many of the developmentsin later chapters.

We consder the smple 2-level variance components model

Yi =bo +byX; +Uy; + €y (2.7)
Suppose that we knew the vaues of the variances, and so could congruct immediatdy the
block-diagond meatrix V,, which we will refer to Smply as V. We can then apply

immediately the usuad Generdised Least Squares (GLS) estimation procedure to obtain the
estimator for the fixed coefficients

b=(XV X)XVl (28)
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wherein this case

%, 0 Y11 O
1%, - Yor =

X=¢: @ = Y=¢ : + (2.9)
¢1x &Yoo

with m level 2 units and n; level 1 unitsin the j-th level 2 unit. When the residuas have
Normd digtributions (2.8) ds0 yields maximum likelihood estimates.

Our estimation procedure is iterative. We would usudly start from ‘reasonable’ estimates of
the fixed parameters. Typicaly these will be those from an initid OLS fit (that is assuming
s2,=0), to give the OLS estimates of the fixed coefficients 6(0) . From these we form the
raw' resduals

Vi=V- b, - blxij (210)
The vector of raw resduasis written
Y ={ Y }

If we form the cross-product matrix YY™ we see that the expected vaue of this is smply
V. We can rearrange this cross product matrix as a vector by stacking the columns one on

top of the other which is written as vec(YY") and similarly we can construct the vector
vec(V) . For the structure given in figure 2.4 these both have 3% +2°= 13 dements. The
relationship between these vectors can be expressed as the following linear model

270 mLsiy o ab
Qyzl_yn+ ¢ Sﬁo - X gl— X go—
cC : +=¢ : ++R=s ci++s ,c:++R (2.11)
¢ Vo : & o *S 202 glj glj
g 1] g 2 & o & &

where R isaresdud vector. The left hand sde of (2.11) is the response vector in the linear
mode and the right hand side contains two explanatory variables, with coefficients s 2, s 2,
which are to be estimated. The estimation involves an gpplication of GL S using the estimated
covariance matrix of vec(Y Y"), assuming Normadlity, namdy 2(V *AV ') where A isthe
Kronecker product. The Normality assumption allows us to express this covariance matrix
as a function of the random parameters. Even if the Normality assumption fails to hold, the
resulting estimates are gill consgent, athough not fully efficient, but standard errors,
edimated usng the Normdity assumption and, for example confidence intervas will
generdly not be condgtent. For certain variance component models aternative distributiond
assumptions have been sudied, especidly for discrete response models of the kind
discussed in Chapter 7 (see for example Clayton and Kador, 1987) and maximum
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likelihood estimates obtained. For more generd models, however, with severd random
coefficients, the assumption of multivariste Normdlity is a flexible one which dlows a
convenient parameterisation for complex covariance structures a severd leves. It is this
assumption which forms the bag's of the analyses in the remainder of the book.

With the estimates obtained from applying GLS to (2.11) we return to (2.8) to obtain new
esimates of the fixed effects and so dternate between the random and fixed parameter
estimation until the procedure converges, that is the estimates for dl the parameters do not
change from one cycle to the next. Essentidly the same procedure can be used for the more
complicated models in the following chapters and is incorporated in the program ML3
(Prosser et a 1991) and its more general successor MLn (Rasbash et d, 1995). The
maximum likelihood procedure produces biased estimates of the random parameters
because it takes no account of the sampling variation of the fixed parameters. This may be
important in smal samples, and we can produce unbiased estimates by using a modification
known as restricted maximum likelihood (REML). The IGLS dgorithm is readily modified to
produce these restricted estimates (RIGLS) (Goldstein, 1989a).

2.15 Other estimation procedures

Longford (1987) developed a procedure based upon a 'Fisher scoring' dgorithm and
Raudenbush (1994) shows that it is formdly equivdent to IGLS. A progran VARCL

(Longford, 1987) uses this dgorithm and aso incorporates certain extensons, for example
to handle discrete response data (see chapter 7). A variation on IGLS is Expected
Generdised Least Squares (EGLS). This focuses interest on the fixed part parameters and
uses the edtimate of V obtained after the firg iteration merely to obtain a consstent
estimator of the fixed part coefficients without further iterations. A variant of this separates
the level 1 variance from V as a parameter to be estimated iteratively along with the fixed
part coefficients.

A raher different approach is to view (2.2), and more generd extensions, as a Bayesan
linear model (Lindley and Smith, 1972) where the b ; are assumed to be exchangeable and

to have a prior distribution with variance s 2,. The full Bayes estimation then requires a prior
digtribution for the random parameters d <o, in this case the level 1 and leve 2 variances. An
dternative to the full Bayes estimation, known as 'Empirical Bayes , ignores the prior
digtributions of the random parameters, treating them as known for purposes of inference.
When Normdlity is assumed, these estimates are the same as IGLS or RIGLS. Bryk and
Raudenbush (1992) describe the use of an EM agorithm to provide such estimates and the
program HLM (see Chapter 11) uses this agorithm.

Another gpproach which pardlds dl of these is that of Generalised Estimating Equations
(GEE) introduced by Liang and Zeger (1986). The principa difference is that GEE obtains
the estimate of V using smple regresson or ‘'moment’ procedures based upon functions of
the actua caculated raw resduas. It is concerned principdly with moddling the fixed
coefficients rather than exploring the structure of the random component of the modd. While
the resulting coefficient estimates are condgtent they are not fully efficent. In some
circumstances, however, GEE coefficient estimates may be preferable, snce they will usudly
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be quicker to obtain and they make weaker assumptions about the structure of V. The GEE
procedure can be extended to handle most of the models dedlt with in later chapters.

More recently, the full Bayesan trestment has become computationaly feesible with the
development of 'Markov Chain Monte Carlo (MCMC) methods, especidly Gibbs
Sampling (Zeger and Karim, 1991). This has the advantage, in smdl samples, that it takes
account of the uncertainty associated with the estimates of the random parameters and can
provide exact measures of uncertainty. The maximum likdihood methods tend to
overestimate precison because they ignore this uncertainty. In smal samples this will be
important especialy when obtaining 'posterior’ estimates for resduas which we ded with
later in the chapter. In Chapter 3 we present an aternative ‘bootstrap’ procedure for taking
account of this uncertainty. Appendix 2.4 provides details of Gibbs Sampling and Appendix
2.3 of empirica Bayes estimates.

We shdl have more to say about computational issuesin Chapter 11.

2.16 Residuals

In asingle level model such as (2.1) the usud estimete of the Single resdud term € isjust
the raw resdud. In amultilevel modd, however, we shdl generdly have saverd residuds at
different levels. We condder esimating the individua residuas dong the following lines

Given the parameter estimates, consider predicting a specific resdud, sy u,; ina2-leve
variance components modd. Specificaly we require for each leve 2 unit

Op; = E(uy IY,b, W) (212)

We shdl refer to these as estimated or predicted resduds or, usng Bayesian terminology,
as poderior resdua estimates. If we ignore the sampling variation attached to the parameter
esimatesin (2.12) we have

cov( ¥, Uy ) = var(uy) = Sﬁo
cov(9; &) = Sg

~  _2 2
Var(yij) _SUO +Se0

(2.13)

We regard (2.12) as a linear regresson of u,; ontheset of {,} for the j-th level 2 unit

and (2.13) defines the quantities required to estimate the regresson coefficients and hence
Uy, - Details are given in gppendix 2.2. For the variance components model we obtain
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" nsish)

én‘j = Yij - lj0j (214
v =@ %)/n,

where n; isthe number of level 1 unitsinthe j-thlevel 2 unit. The resdud estimates are not,
unconditionally, unbiased but they are consistent. The factor multiplying the mean () of the

raw residuas for the j-th unit is often referred to as a 'shrinkage factor' since it isdwaysless
than or equal to one. As n; increases this factor tends to one, and as the number of level 1

unitsin alevel 2 unit decreases the 'shrinkage estimator' of u,; becomes closer to zero. In

many gpplications the higher level resduds are of interest in ther own right and the
increased shrinkage for asmal level 2 unit can be regarded as expressing the relative lack of
information in the unit so that the best estimate places the predicted resdud close to the
overdl population vaue as given by the fixed part.

These resduas therefore can have two roles. Their basc interpretation is as random
vaiables with a digtribution whose parameter vaues tdl us about the variation among the
leve 2 units, and which provide efficient estimates for the fixed coefficients. A second
interpretation is as individud estimates for each leve 2 unit where we use the assumption
that they belong to a population of units to predict their vaues. In particular, for units which
have only afew level 1 units, we can obtain more precise estimates than if we were to ignore
the population membership assumption and use only the information from those units. This
becomes especidly important for estimates of resduals for random coefficients, where in the
extreme case of only one leve 1 unit in a levd 2 unit we lack information to form an
independent estimate. In chapter 6 we shdl illugtrate this when we consider predictions
based upon repeated measures growth models.

As in dngle levd models we can use the edimated resduds to hep check on the
assumptions of the modd. The two particular assumptions that can be studied readily are the
assumption of Normality and that the variances in the model are congtant. Because the
variances of the resdua estimates dependsin genera on the vaues of the fixed coefficients it
is common to sandardise the resduas by dividing by the appropriate standard errors. The
formulae for these are given in appendix 2.2 where we refer to them as 'diagnostic' or
‘unconditiona’ standard errors.

When the resduds a higher levels are of interest in their own right, we need to be able to
provide interval estimates and significance tests as well as point estimates for them or
functions of them. For these purposes we require estimates of the standard errors of the
edimated resduas, where the sample edtimate is viewed as a random redisaion from
repeated sampling of the same higher level units whose unknown true vaues are of interest.
The formulae for these 'conditiona’ or ‘comparative standard errors are dso given in

appendix 2.2.
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The leved 1 resduds are generdly not of interest in their own right but are used rather for
mode checking, having first been standardised using the diagnostic standard errors..

2.17 Theadequacy of Ordinary L east Squar es estimates.

In gppendix 2.1 we give the formulae for estimating the true standard errors for OLS
edimates when a multilevel mode applies. When the intra-unit correlations are smal we can
expect reasonably good agreement between the multilevel estimates and the smpler OLS
ones. While it is difficult to give generd guiddines about when OLS is an adequate
dternative we can readily derive an explicit formula for the baanced 2-leve variance
components model using a smple regresson equation with an intercept and a single
explanatory varidble

Yj =bo +byX; +u; +e

Write r, r for the intra-unit correlations for Y, X respectively and n for the number of

levd 1 unitsinthe j - thlevel 2 unit. To obtain an estimate of the correct sandard error for
the estimate of b, we multiply the usua OL S estimate of the standard error by the quantity

{1+ rr X[m(é"[ J_n'l)'1 - 1]}}/2

where IT is the number of leve 2 units Thusif thereis exactly oneleve 1 unit per leved 2
unit or either of the intra-unit correlations are zero, this expression is equd to 1.0 and the
usual expression is correct. As n increases S0 the OL S estimator increasingly underestimates
the true standard error. Thus with r =1, =0.20 and 76 level 1 units per level 2 unit the

true standard error is, on average, twice the OLS estimate. Hence confidence intervals
based on the OLS estimate will be too short and significance tests will too often reject the
null hypothess By designing a sudy where n is smal we may be able to rdy on OLS
procedures to give adequate estimates for the fixed coefficients, but this does then not alow
us to sudy any multilevel structures.

2.18 A 2-level exampleusing longitudinal educational achievement data

We dhdl fit the smple 2level variance components model (2.7) to the JSP data with the
11-year maths score as response and a single explanatory variable, the 8-year maths score,
in addition to the congtant term, equa to 1 and defining the intercept. . The parameter vaues
are displayed in table 2.1 with the Ordinary Least Squares estimates given for comparison..
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Table 2.1 Variance components model applied to JSP data

Parameter Estimate (s.e) OL SEsgtimate (s.e.)
Fixed:

Constant 139 138

8-year score 0.65 (0.025) 0.65 (0.026)
Random:

s 2, (between schools) 319(10)

S 2, (between students) 19.8(1.3) 233(1.2)
Intra-school correlation 0.14

Comparing the OLS with the multilevel estimates we see that the fixed coefficients are
sgmilar, but that there is an intra-school corrdation of 0.14. The estimate of the standard
error of the between school variance is less than athird of the variance estimate, suggesting
avaue highly sgnificantly different from zero. This comparison, however, should be treated
cautioudy, since the variance estimate does not have a Normd distribution and the standard
error is only estimated, athough the size of the sample here will make the latter cavesat less
important. It is generdly preferable to carry out a likelihood ratio test by estimating the
‘deviance for the current model and the mode omitting the level 2 variance (see McCullagh
and Nelder, 1989). The next section will dedl more generaly with inference procedures.
The deviances are, respectively, 4294.2 and 4357.3 with a difference of 63.1 which is
referred to tables of the chi-squared digtribution with one degree of freedom, and is highly
dgnificant. Note that if we use the sandard error estimate given in Table 2.1 to judge
significance we obtain the corresponding value of (3.19/1.0) = 10.2 which is very much
gmaller than the likelihood ratio test Satitic.

We daborate the model first by adding two more explanatory variables, gender and socid
class. Theresults are set out in the first column of table 2.2
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Table 2.2 Variance components model applied to JSP data with gender and social class

Parameter Egtimate(s.e) Egimate(s.e)
Fixed:

Constant 149 329

8-year score 0.64 (0.025)

Gender (boys- girls) -0.36 (0.34) -0.39 (0.47)
Social Class (NonMan. - Manual) 0.72(0.39) 293 (0.51)
Random:

s 2, (between schools) 321(10 452(15)

S io (between students) 196(1.1) 37.2(20)
Intra-school correlation 0.14 011

The random parameter estimates are hardly changed, nor is the coefficient of the 8 year
meaths score. The gender differenceis very amdl and in favour of the girls, but isfar from the
conventiond 5% dgnificance level. The socid dass difference favours the children of non
manua parents. When we are judging the fixed effects, a smple comparison of the estimate
with its standard error is usudly adequate. Because the modd adjudts for the earlier maths
score we can interpret the socid class and gender differences is in terms of the relative
progress of girls versus boys or non-manud versus manud children. The second columniin
table 2.2 shows the effects when 8 year maths score is removed from the modd and the
interpretation is now in terms of the actual differences found at 11 years. Note thet the leve
1 and leve 2 variances are increased, reflecting the importance of the earlier score as a
predictor, and the intra-school correlation is dightly reduced. The socid class difference is
much larger, suggesting that most of the differenceis that exigting at 8 years with a somewhat
greater progress made between 8 and 11 years by those in the non-manua socid group.
The gender difference remains small.

The 8-year score has been used as it stands, without centring it in any way. This is
acceptable in the present case, dthough the drict interpretation of the intercept is the
predicted score at an 8 year score of zero, which is outside the range of the observed
vaues. If we were to measure the 8year-score from its mean, the intercept would ke
interpreted as the predicted value at the mean 8 year-score. When we introduce random
coefficientsin chapter 3 we shall see that this becomes an important consideration.

2.18.1 Checking model assumptions

We now check some assumptions of the modd by looking at the residuds. Figure 2.7 isa
plot of the standardised level 1 resduas againgt the fixed part predicted value and figure 2.8
is a plot of these resduds againg their equivaent Norma scores. Figure 2.7 shows the
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same pattern as figure 2.1 of a decreasing variance with increasing 8-year score, so that the
assumption of acondant level 1 varianceis clearly untenable.

level 1
residual -
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25 35

Predicted value

Figure 2.7 Standardised level 1 residuals by predicted valuesfor Table 2.2

In chapter 3 we shdl be looking at ways to ded with this. The Normal score plots, on the
other hand, are farly draight, suggesting that the Normd distribution assumption is
reasonable for both level 1 and leve 2.

2.18.2 Checking for influential units

Ingpection of Figure 2.9 shows one schooal, identified as number 38, with the largest
gandardised resdua and unstandardised value of 3.5 compared with 2.9 for the next
largest. It is often useful to study the effect of omitting one or more units from an anayssto
see what difference this makes to the parameter estimates. Efficient techniques, known as
'influence andysis, for deciding which units
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Figure 2.8 Standardised level 1 residuals by Normal equivalent scoresfor Table 2.2
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Figure 2.9 Standardised level 2 residuals by Normal equivalent scoresfor Table 2.2

to treat in this way are well developed for single level models (Cook and Weisberg, 1982).
Techniques for multilevel models are now available (Langford and Lewis, 1998), and we
shdl look a one procedure which involves studying the effect of omitting specific units. We
illustrate this for school 38. Table 2.3 shows the parameter estimates associated with two
different procedures.

In andyss A school 38 is smply omitted. The principd effect is to reduce the leve 2
variance by about 14%, with little effect on the other parameters. In andysis B we have
retained al the data n the andyss, but removed school 38 from the level 2 variation by
fitting a separate condant in the fixed part of the mode. For the explanatory variable
defining the level 2 variance wefit Z; rather than Z,,, where

. _10if school 38ij
Zo = )
11 otherwise k’,
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Table 2.3 As Table 2.2. Analysis A omitting school 38. analysis B fitting a constant for
school 38.

Parameter Estimate (s.e) Estimate (s.e.)
A B

Fixed:

Constant 145 147

8-year score 0.65 (0.026) 0.64 (0.025)

Gender (boys- girls) -0.40 (0.34) -0.37(0.34)

Social Class (Non Man. - Manual) 0.74 (0.39) 0.72(0.38)

School 38 6.1(1.5)

Random:

s 2, (between schools) 274(0.9) 2.75(09

S Z, (between students) 196(11) 196(11)

I ntra-school correlation 0.12 0.12

and the congtant fitted in the fixed part is Smply 1- Z,. The redively smal number of
sudents, 9, in school 38 accounts for the fact that its shrunken resduad mean of 35 is
congderably less than the directly fitted mean of 6.1. Although it makes little difference to
the parameter edimates in this example, in generd it seems preferable to fit separate
parameters for influentid units and retain as much data as possible in the andyss.

2.19 Higher level explanatory variablesand compositional effects

We have dready mentioned that from the point of view of estimating parameters, the
explanatory variables can be defined or measured a any leve. For subgtantive
interpretations, however, explanatory variables measured at levels 2 or above often have
particular interpretations. We illustrate some of these using the JSP dataset and forming the
explanatory variable which is the mean 8year-old maths score. This is often known as a
‘compodgtiond’ variable since it measures an aspect of the compostion of the schoal to
which the individua student belongs. We are interested in whether the average 8-year score
has an effect on the deven year score, after having adjusted for the student's own 8 year
score. For this andysis dl the eight year scores are measured about the sample mean vaue
of 25.98, see Table 2.4.. Analysis A adds the average school 8-year score. Its coefficient is
very smdl and not Sgnificant. Analysis B uses the school centred 8-year score. Thisis often
advocated on the grounds that it is the difference between a sudent's score and the average
score for that student's school which is likely to be the most relevant predictor of later
achievement. Bryk and Raudenbush (1992, Chapter 5) give a detaled discusson of this
issue for models where the compositiond variable, as here, is a mean computed for dl the
gudents in the school, or more generdly dl the level 1 units in the rdlevant level two unit.
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Andyses A and B are, of course, formdly equivdent and andyss A indicates directly that a
sampler model omitting the school mean score is adequate. It is andysis C, as discussed
bel ow, which introduces a more complex moddl.

Table 2.4 Variance components model for JSP data with mean 8-year score measured about sample
mean and centring about school mean.

Parameter Estimate(se) Estimate(se) Estimate(s.e.)
A B C

Fixed:

Constant 315 315 317

8-year score 0.64 (0.025) 0.63 (0.025)

8-year score centred on school mean 0.64 (0.026)

Gender (boys- girls) -0.36 (0.34) -0.36 (0.34) -0.37(0.34)

Socia Class (Non Man. - Manual) 0.72(0.38) 0.72(0.31) 0.79(0.32)

School mean 8-year score -0.01 (0.13) 0.63(0.12) -0.03(0.12)

8-year score x school mean 8-year score -0.02 (0.01)

Random:

S 50 (between schools) 3.21(10) 3.21(1.0) 3.13 (10

s 2 (between students) 196 (1.1) 196 (1.0) 195(1.2)

Intra-school correlation 0.14 0.14 0.14

In fact, the mean score for students in a schoadl is only one particular summary datistic
describing the compostion of the students. Another summary would be the spread of
scores, measured for example by their sandard deviation. We can also consder measures
such as the proportions of high or low scoring sudents and in generd any set of such
measures. When using the average score we can aso consder using the median or moda
score rather than the mean. With any of these other measures we may wish to retain the
deviation from the school nean as an explanatory variable, and we could even consider
introducing a more complex function of this, for example by adding higher order terms.
Thereis here afruitful areafor further sudy.

Analysis C looks at the possibility of an interaction between student score and school mean
and we do find a Sgnificant effect which we can interpret as follows. The higher the school
mean 8 year score the lower the coefficient of the student's 8-year score. One implication of
this is that for two relatively low coring student's at 8 years, the one in the school with a
higher average is predicted to do better a 11 years. To study this further we now need to
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introduce a modd with random coefficients where we explicitly adlow each school's
coefficient to vary randomly at level 2, asin equation (2.6), see Table 2.5.

The addition of the 8year score coefficient as a random variable a level 2 somewhat
increases the socid class difference and somewhat decreases the gender difference, but
within their slandard errors. The level 1 variance is reduced and we have significant 'dope
variation at levd 2; the likelihood retio test criterion is 52.4 which is referred to chi squared
tables with 2 degrees of freedom and is highly sgnificant.

Table 2.5 Random coefficient model for JSP data.

Parameter Estimate (s.e.)
Fixed:

Constant 317

8-year score 0.62 (0.036)
Gender (boys- girls) -0.25(0.32)
Socia Class (Non Man. - Manual) 0.96 (0.36)
School mean 8-year score -0.04 (0.13)

8-year score x school mean 8-year score  -0.02 (0.01)

Random:

Leve 2

s 2, (Intercept) 367(1.03)
S 01 (covariance) -0.34 (0.09
S?2, (8-year score) 0.03(0.01)
Level 1

s? 17.8(1.0)

If we calculate the corrdlation between the intercept and dope a level 2 we obtain a vdue
of -1.03! This sometimes hgppens as a result of sampling variaion and implies tha the
population correlation is very high. We shdl see in chapter 3 we can condrain this
correlation to be exactly -1.0 and thus admissble. Alternatively, by suitably eaborating the
modd or by carrying out certain trandformations we can avoid this problem. For now,
however, in order to illustrate what this means in the present data we can compute residuas
for each school, for the dope and intercept. With these estimates we can then predict the
11-year score for any set of vaues of the explanatory variables. Figure 2.10 shows the
predicted vaues for manud girls by 8-year score.
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Figure 2.10 Plot of predicted 11-year score by 8-year score for JSP schools

The predicted lines for the high scores at 8 years are very close together separating asthe 8-
year score decreases. The dope resdud is dmost uncorrdated (-0.02) with the mean &
year score and the compositiona coefficient of mean 8 year scoreislittle changed. We can
add, therefore, to the previous compositiond effect, the statement that some schools are
differentialy 'effective for pupils with low 8-year scores, with little difference for high 8-year
scores. In chapter 3 we shdl continue to analyse this dataset and show how further
elaboration of the variance dructure of the modd leads to cetan smplifications of
interpretation.

2.20 Hypothesistesting and confidenceintervals

In this section we ded with large sample procedures for congtructing interval estimates for
parameters or linear functions of parameters and for hypothesis testing. Hypothesis tests are
used sparingly throughout this book, since the usua form of a null hypothess that a
parameter vaue or a function of parameter vaues is zero, is usudly implausble and dso
relatively uninteresting. Moreover, with large enough samples a null hypothesis will dmaost
certanly be rgected. The exception to this is where we are interested in whether a
difference is pogtive or negative, and this is discussed in the section on resduals below.
Confidence interva's emphasi se the uncertainty surrounding the parameter estimates and the
importance of their substantive sgnificance.

2.20.1 Fixed parameters

In the andlyses of 2.11 we presented parameter estimates for the fixed part parameters
together with their standard errors. These are adequate for hypothesis testing or confidence
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interval condruction separately for each parameter. In many cases, however, we are
interested in combinations of parameters. For hypothess testing, this most often arises for
grouped or categorised explanatory variables where n group effects are defined in terms of
n- 1 dummy variable contrasts and we wish smultaneoudy to test whether these contrasts
are zero. In the case of the analysisin table 2.2 we may be interested in the hypothess that
the gender and socid class effects taken jointly, are zero. We may dso be interested in

providing a pair of confidence intervasfor the parameter estimates. We proceed as follows.

Define a (r x p) contrast matrix C. Thisis used to form linearly independent functions of the
p fixed parameters in the modd of the foom f = Cb, so that each row of C defines a
paticular linear function. Parameters which are not involved have the corresponding
elements st to zero. Suppose we wish to test the hypothesisin table 2.2 that the gender and
socid class coefficients are jointly zero. We define

C® 0105 abs
"8 0 0 15 &b,s

and the generd null hypothessis
Hy:f =k, k={0 here
Weform

R=(f - K)T[C(XVX)CTTf - k)

£och (2.15)

If the null hypothesis is true this is distributed as approximately ¢ with r degrees of
freedom. Note that the term (X 'V "*X)* is the esimated covariance matrix of the fixed
coefficients.

If we find a gatigticdly sgnificant result we may wish to explore which particular linear
combinations of the coefficients involved are dgnificantly different from zero. The common
ingtance of this is where we find that n groups differ and we wish to carry out al possble
pairwise comparisons. A smultaneous comparisons procedure which maintains the overdl
type | error at the specified kevd involves carrying out the above procedure with ether a
subset of the rows of C or aset of (lessthan r) linearly independent contrasts. The vaue of
R obtained is then judged againg the critical vaues of the chi-squared digtribution with r
degrees of freedom.
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We can dso obtain an a% confidence region for the parameters by setting R equa tothe
a% tail region of the ¢ * ditribution with r degrees of freedom in the expression

R=(f- f)[C(XV X)'CTTXf- f)

This yields a quadratic function of the edimated coefficients, giving an r-dimensond
elipsoida region. For table 2.2 we obtain the following results.

The null hypothesistest gives avaue for chi squared on 2 degrees of freedom of 4.51 with a
corresponding P-vaue of 0.10. The 95% confidence region is the dlipse

8.3(b, +0.36)2 +0.22(b, + 0.36) (b, - 0.72) +6.7(b, - 0.72)? =5.99

where the subscripts (1,2) refer to gender and socid class respectively and 5.99 is the 5%
paint of the ¢ distribution. Figure 2.10 displays this region.
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Figure 2.11 95% confidence region for coefficients of Social Class and Gender

In some Situations we may be interested in separate confidence intervals for dl possble
linear functions involving a subset of q parameters or q linearly independent functions of the
parameters, while maintaining a fixed probability that dl the intervas include the population
vaue of these functions of the parameters. As before, this may arise when we have an
explanatory varigble with severd categories and we are interested in intervals for sets of
contrasts. For a (1- a)% intervd write C for the i-th row of C, then a Smultaneous
(1- a)% intervd for Cb, for dl C isgivenby
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(Cb- d,,Cb+d,)
where

d, =[C(XV'X)'C'c? ]

q,

2
where ¢,

isthe a% point of the c? distribution.
For model A of table 2.2 we obtain the following 95% intervas for the coefficients of
gender and socid class, fird the separate intervals then the smultaneous ones which are

some 25% wider.

03620660 220.36%0.83
€072+0767 &072+094 g

We can dso use the likelihood ratio test criterion for testing hypotheses about the fixed
parameters, dthough generdly the results will be similar. The difference arises because the
random parameter estimates used in (2.15) are those obtained for the full mode rather than
those under the null hypothes's assumption, dthough this modification can easily be made.
For example the likelihood ratio test for gender and socid class yields a vadue of 5.5
compared with the above vaue of 4.5. We shdl discuss the likelihood ratio test in the next
section dedling with the random parameters.

2.20.2 Random parameters

In very large samples it is possible to use the same procedures for hypothess testing and
confidence intervals as for the fixed parameters. Generdly, however, procedures based
upon the likelihood stetigtic are preferable. To test anull hypothess H, againg an dternative
H, involving the fitting of additiona parameters we form the log likelihood ratio or deviance
ddidic

D, =-2log. (1 ,/1 ) (2.16)

where | | , arethelikelihoods for the null and aternative hypotheses and this is referred to
tables of the chi squared distribution with degrees of freedom equa to the difference (q) in
the number of parameters fitted under the two models. We have dready quoted this satistic
for testing the level 2 variance in table 2.1 where the vadue of 63.1 compares with the
datistic formed by taking the variance estimate and dividing by its sandard error and then
squaring the result to give avaue of 11.0.

52



We can as0 use (2.16) as the basis for congtructing a (1- a)% confidence region for the
additional parameters. If D,, is st to the vaue of thea% point of the chi squared
digribution with g degrees of freedom, then aregion is congtructed to satisfy (2.16), using a
suitable search procedure. This is a computationdly intensive task, however, since dl the
parameter estimates are recomputed for each search point.

If we carry out these caculations for the levd 2 variance in table 2.1 we obtain a 95%
confidence interva of (1.78, 5.65). Likewise we can obtain an interval for the intra-school
correlation by searching in two dimensions and computing the vaue at each search point.
This gives a 95% confidence interva of (0.09, 0.22). A review of some approximate
proceduresis given by Burdick et d (1988).

An dternative is to use the ‘profile likdihood (McCullagh and Nelder,1989). In this case
the likelihood is computed for a suitable region containing values of the random parameters
of interest, for fixed vaues of the remaining random parameters. For the level 2 variance of
table 2.1 this gives a 95% confidence interva of (1.77, 5.69) which is very close to the full
likelihood interval.

In Chapter 3 we shal see how bootstrap smulations can provide interva estimates.

2.20.3 Residuals

In our JSP variance components analyss we estimated level 2 residuds, one for esch
school. In gudies of school effectiveness, one requirement is sometimes to try to identify
schools with resduds which are subgantidly different. From a dgnificance testing
standpoint, we will often be interested in the null hypothesis that school A has a smaler
resdud than school B againg the aternative that the resdud for school A islarger than that
for schoal B (ignoring the vanishingly smdl probability that they are equd). In the case when
a dandard significance test accepts the aternative hypothess (at a chosen level) of some
difference againg the null hypothesis of no difference, this is equivaent to accepting one of
the dternatives (A > B, A < B) a the same levd of dgnificance and we shdl use this
interpretetion.

Where we can identify two particular schools then it is straightforward, using the results of
appendix 2.1 to congtruct a confidence interva for their difference or carry out a significance
test. Often, however, the results are made available to a number of individuds, each of
whom are interested in comparing their own schools of interest. This may occur, for example
where policy makers wish to sdect a few schools within a smal geographica area for
comparison, out of a much larger study. In the following discusson, we suppose that
individuas wish to compare only pairs of schools, athough the procedure can be extended
to multiple comparisons of three or more residuds. Further details are given by Goldgtein
and Healy(1994).

Congder the JSP data where we have 48 edimated resduds together with their
comparative standard errors. Since the sample size isfairly large, we can dso assume that
these estimates are uncorrel ated.
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Firg, we order the resduds from smdlest to largest. We congtruct an interval about each
resdua =0 that the criterion for judging Satistical sgnificance a the (1- a)%levd for any
par of resduds is whether their confidence intervals overlap. For example, if we consider a
par of resduds with a common sandard error (se) , and assuming Normdity, the
confidence interva width for judging a difference sgnificant a the 5% level are given by
+1.39(se).

The generd procedure defines a set of confidence intervals for each resdud i as
0 +c(se), (2.17)

For each possible pair of intervals, (2.17) there is a Sgnificance level associated with the
overlgp criterion, and the vaue ¢ is determined so that the average, over dl possble pairsis
(1- a)%. A search procedure can be devised to determine c. When the ratios of the
standard errors do not vary appreciably, say by not more than 2:1, the value 1.4 can be
used for c. As this ratio increases so does the value of c. In the present case dl but 2 of
these ratios are greater than 2 and we have used the common value of 1.4.

The results are presented in figure 2.11. As is clear, gpart from some of the extreme
intervals, each interva overlgps with most of the other intervas. If we wished the basic
comparison to take place among triplets of schools, with smultaneous confidence intervalss,
then using the results of section 2.11.1 we replace the Normal upper 2.5% value of 1.96 by

1/02(0.05) = 2.45. Thiswill give asmilar display but with intervals 25% wider. In redity the

complete set of schools typicaly will be compared in overlapping subsets of different Szes,
and avauefor ¢ can be determined by averaging over al such posshilities.

14
Conf. | | |
Interval

School

Fig 2.12 Simultaneous confidenceintervalsfor JSP school residuals

Presentations such as that in 212 are useful for conveying the inherent uncertainty
associated with estimates for individua level 2 (or higher) units, where the number of leve 1
units per higher leve unit is not large. This uncertainty in turn places inherent limitations upon
such comparisons.
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Appendix 2.1

The general structure and estimation for a multilevel model

Weillugrate the genera Structure using a 2-level modd. We have

Y=Xb+E
Y={y;}, X ={X;}, Xy ={Xgjs Xy seee- X5} 011
E:E1+E2:{QJ}’ € = (1)+e(2)

%
L =3 ;Ma®d 2 — (2) (2)
i a. ehlj ! ej a

Wewill dso write Smply

H — 2) —
QJ _qJ’ ej _uj

Y =Xb +ZPu+2z%

Theresdud matrices E,, E, have expectation zero with

E(EE) =V, E(E,E,;) =V,
E(EE;) =0, V, =V, Vo (21.2)

In the standard model the level 1 residuals are assumed independent across level 1 units, so
thet V,,, isdiagond with ij-th element

var(e,) =s 2 ="' W,z”, W, = cov(e)

The level 2 resduds are assumed independent across level 2 units and V,,, is block-
diagond with j-th block
— 527 2 — 2
Voo =27 W,z , W, =cov(e}?)
Thej-th block of V, istherefore given by

=As Vo) (2.1.3)
where A isthe direct sum operator.

For some of the modds dedt with in later chapters, such as the time series models of
chapter 6, the requirement of independence among the residuds for the leve 1 unitsis
relaxed. In this case the first term on the right hand sde of (2.1.3) is replaced by the
particular structure of V,,, .
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For known V, and omitting the subscript for convenience, the generdised least squares
edimate of the fixed coefficientsis

b=(XVIX)tXV Y (2.1.4)
with covariance matrix

(XV X))

For known b weform

Y =YY", Y=Y- Xb=E, +E, (2.15)
andwehave E(Y') =V . We now write

Y™ =vec(Y)

where vec is the vector operator stacking the columns of Y™ underneath each other. We
can now write a linear modd involving the random parameters, tha is the dements of
W,, W,, asfollows
E(Y")=Zq (2.1.6)

Where Z* is the design matrix for the random parameters. An example of such a design
matrix for a smple variance components modd is given in Chapter 2. We now carry out a
generdised least squares anadlysisto estimate q , namdly

§= (Z*TV*-lz*)_lZ*TV*-lYH’ V' =V AV (2.1.7)
where A isthe Kronecker product. The covariance matrix of q isgiven by
VYV v W Z (V7

Now we have

Y =vec(YYT)=YAY

Using a standard result ( for example Searle et d., 1992 sect 12.3) we have

cov(YAY) =(VAV)(I +S,)

where VAV =v™ and S, isthe vec permutation matrix.

As Goldstein and Rasbash (1992) note, the matrix A where z™ = vec(A) , is symmetric and
hence

V7Z =(v AV hvec(A) = vec(V TAV Y
and v AVt issymmetric so that, using a standard result, we have
sV'z=vZ7

and after substituting in the above expresson for cov(q) we obtain
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cov@) =22V Z')? 2.18)

Theiterative generalised least squares (IGLS) procedure (Goldstein, 1986) iterates between
(2.1.4) and (2.1.7) using the current estimates of the fixed and random parameters. Typica
garting vaues for the fixed parameters are those from an ordinary least squares andysis. At
convergence, assuming multivariate Normality, the estimates are maximum likelihood.

The IGLS procedure produces biased estimates in general and this can be important in smdll
samples. Goldstein (1989a) shows how a smple modification leads to redtricted iterative
generdisad least squares (RIGLS) or redtricted maximum likelihood (REML) estimates

which are unbiased. If we rewrite (2.1.5) usng the estimates of the fixed parameters b we
obtain

E(Y)=V,- Xcov(b)X" =V, - X(X'V,*X) X" 2.19)

By taking account of the sampling variation of the b we can obtain an unbiased esimate of
V, by adding the second term in (2.1.9), the ‘hat’ matrix, from Y™ a each iteration until

convergence. In the case where we are estimating a variance from a smple random sample
this becomes the standard procedure for using the divisor n-1 rather than n to produce an
unbiased estimate.

Full detalls of efficient computationa procedures for carrying out dl these cdculaions are
given by Goldstein and Rasbash (1992).
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Appendix 2.2
Multilevel residuals estimation

Denotethe set of m, resdudsat levd hinamultilevd modd by

P ={ PP}y P ={ Py oo P ) (2.2.1)

where n, isthe number of level h units. Since the resduds & any level are independent of

those a any other leve for each residud vector we require the posterior or predicted
resdua estimates given by

Py =E(p;lY.V)
where Y =Y - Xb . We consider the regression of the set of all residuas p, on Y which
givesthe estimator

b =RV 2.22)
where R, is block-diagond, each block corresponding to alevel h unit and for the j-th
block given by

h

Z(J')\Nh

where Z(h].) is the matrix of explanatory variables for the random coefficients at level h. We

obtain consstent estimators by subgtituting sample estimates of the parameters in (2.2.2).
These esimates are linear functions of the responses and their unconditional covariance
matrix is given by

RV RV - X(XTVIX)IXTWVR, (22.3)

The second term in (2.2.3) derives from congdering the sampling variation of the estimates
of the fixed coefficients and can be ignored in large samples and we obtain a consstent
edimator by subgtituting parameter estimatesin

Ry V'R,
Note that there are no covariances across units. Where we wish to study the distributiona
properties of standardised resduds for diagnostic purposes then the unconditiona

covariance matrix (2.2.3) should be used to standardise the estimated residuds. If, however,
we wish to make inferences about the true p,; for example to construct confidence intervals

or test differences then we require the conditional or ‘comparative’ covariance matrix of
p.lp, or E[(R,- p,) (P, - p,)"] whichisgiven by substituting parameter estimatesin
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Sh- RV IV - X(XTVIIX) X VR, (2.2.4)

where S, is the block-diagona matrix where each block correpondsto alevel h unitis
W, . We note that no account is taken of the sampling varigbility associated with the

estimates of the random parametersin (2.2.3) or (2.2.4). Thus with smal numbers of units,
a procedure such as bootstrapping should be used to estimate these covariance matrices
(Chapter 3).
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Appendix 2.3
The EM algorithm

To illugtrate the procedure, consider the 2-level variance components model
Yy =(Xb )y +u; +ey, Var(e|j)zsg’ Var(uj)zsﬁ (2.3.1)

The vector of level 2 resduds is treated as missing data and the ‘complete’ data therefore
consists of the observed vector Y and the u; treated as observations. Thejoint distribution

of these, assuming Normdity, and using our standard notation is

éYu_Ni-éXbuév JTs 2ufl
e u=Nie e '
w80l su g (232

This generalises readily to the case where there are severa random coefficients. If we
denote these by b ; we note that some of them may have zero variances. We can now

derive the digtribution of b ;|Y in appendix 2..2, and we can aso write down the Normal
log likelihood function for (2.3.2) with agenerd set of random coefficients, namely

log(L) k- Nllog(s ;) - JlogWks .°a &) - & bjW,'b,
J

j (2.3.3)
W, =cov(b,)
Maximising this for the random parameters we obtain
22 _ N1 &2
S e N a. Qj
ij (2.3.4)

N — 18 T
W, =m a.‘bjbj
]

where m is the number of level 2 units. We do not know the vaues of the individua random
variables. We require the expected vaues, conditional on the Y and the current parameters,
of the terms under the summation sgns, these being the sufficient datistics We then
subgtitute these expected vaues in (2.3.4) for the updated random parameters. These
conditiona vaues are based upon the 'shrunken' predicted vaues and their (conditional)
covariance matrix, given in gppendix 2..2. With these updated vaues of the random
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parameters we can form V' and hence obtain the updated estimates for the fixed parameters
using generdised least squares. We note that the expected vaues of the sufficient satistics
can be obtained using the generd result for a random parameter vector .

E(qq") = cov(q) +[E(Q)I[E(a)]" (2.35)

The prediction is known as the E (expectation) step of the dgorithm and the computationsin
(234) the M (maximisation) step. Given darting vaues, based upon OLS, these
computations are iterated until convergence is obtained. Convenient computationa formulae
for computing these quantities a each iteration can be found in Bryk and Raudenbush
(1992).

Using the generd procedures for estimating resduas in Appendix 2.2, a each iteration we
would define the levd 2 estimated resduals as explanatory variables and then regress the
response variable on these. In the present case this would be an OLS regression to obtain
the fixed coefficients. Note, however, that we require the matrix given by (2.3.5) in the
estimation rather than theusua (q'V *q) p (g'q) which in this case isjust the second term

in (2.3.5), the first term being the (estimated) covariance matrix of the resduds. Using
(2.3.4) for the level 2 random parameters we then estimate new resduds and iterate.
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Appendix 2.4

Markov Chain Monte Carlo estimation

Markov Chain Monte Carlo agorithms exploit the properties of Markov chains where the
probability of an event is conditiondly dependent on a previous state. The procedure is
iterative and a each stage from the full multivariate digtribution the digtribution of each
component conditional on the remaining components is computed and used to generate a
random varigble. The components may be variates, regresson coefficients, covariance
matrices etc. After asuitable number of iterations, we obtain a sample of vaues from the
digtribution of any component which we can then use to derive any desired characterigtic
such as the mean, covariance matrix, etc. The most common procedure is that of Gibbs
Sampling and Gilks et d. (1993) provide a comprehensive discussion with applications and
an application to a 2leve logit modd is given by Zeger and Karim (1991). It dlows the
fitting of Bayesian models where prior distributions for the parameters are specified.

We ouitline a Gibbs Sampling procedure for a 2-level modd.

Write

Y=Xb+2z®u+z%

We first consider the distribution b|u™®,Y where k refersto the k-th iteration.
Given u®, Z®u isjust an offset s0 that we can regress y; on x; to estimate
b® and var(b®)

We can then sdect a random vector from this digtribution, assumed to be multivariate
normd (b ,var(b™)).

We now consider the digtribution of W, |u® . We have (with a non-informative prior) thet
the (posterior) distribution of W," is a Wishart distribution with parameter (i.e. covariance)
meatrix

J T
S® = § uPu®’ with d=J- q+1d.f.

=1
where J isthe number of leve 2 unitsand g is the number of random coefficients.

A smple way of generating such a Wishart distribution is to generate d multivariate normd
vectorsfrom N(0,S™) and form their SSP matrix. This provides WA .

Findly we consider the distribution u;|b,W,,Y . These are the usud level 2 residuds, for
which we have standard expressons for their expected values and covariance matrix. We
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note that for a 2-level modd (but not within a three levd mode) these are block-
independent. Assuming Normality we can now generate a st of u'*’ and this completesan

iterative cycle.

There are some particular computational details to be noted. For example 'rgection
sampling' at each cycle can be used and we can do severd cycles for W, ,u; for each b
since the former tend to have higher autocorrelations across cycles.

The procedure can be gpplied to any exiging modds, eg. logit modes, where the
conditiona didributiona assumptions ae explicit. Gibbs Sampling tends to be
computationally demanding, with hundreds if not thousands of iterations required and this
can be particularly burdensome when severd different models are being explored for ther fit
to the data. It is perhaps most useful for smal and moderate Sized samples and whenused in
conjunction with likelihood based EM or IGLS dgorithms.
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Chapter 3
Extensionsto the basic multilevel model

3.21 Complex variance structures

In dl the models of chapter 2 we have assumed that a single variance describes the random
variation a level 1. At level 2 we have introduced a more complex variance sructure, as
shown in figure 2.7, by alowing regresson coefficients to vary across level 2 units. The
moddling and interpretation of this complex variaion, however, was soldy in terms of
randomly varying coefficients. Now we look a how we can modd  the variation explicitly
as a function of explanatory variables and how this can give substantively interesting
interpretations. We shdl condgder mainly the levd 1 variaion, but the same principles apply
to higher levds. We shdl aso in this chapter consder extensons of the basc modd to
include condraints on parameters, unit weighting, sandard error estimation and aggregate
level analyses.

In the andyds of the JSP data in chepter 2 we saw that the levd 1 resdud variation
appeared to decrease with increasing 8-year maths score. We aso saw how the estimated
individual school lines gppeared to converge a high 8 year scores. We congder first the
generd problem of modeling the level 1 variation.

Since we shdl now condder severd random variables a each level the notation used in
chapter 2 needs to be extended. For a 2level modd we continue to use the notation

u;, € for thetotd variaion a levels 2 and 1 and we write
5 &
u; = 20 U & = 2-0 Shij Zhi (33

where the Z's are explanatory varidbles. Normaly z,;, z;; refer to the constant (=1)
defining abasic or intercept variance term a each level.

For three level models we will use the notation v, u, , €, wherei refersto level 1

units, j to level 2 units, and k to level 3 units and h indexes the explanatory variables and
their coefficients within eech levd..

One smple modd for the level 1 varidion is to make it a linear function of a smple
explanatory variable. Consder the following extenson of (2.1)

Vi = by +b,X; + (U, +€; +€52;), 7 =X, (3.4)

var(6;) =S%, var(e;)=0, cov(ey ;) =Sey

so that the level 1 contribution to the overall variance isthe linear function of  z,
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This device of congraining a variance parameter to be zero in the presence of a non zero
covariance is used to obtain the required variance structure. Thus it is only the specified
functions of the random parameters in (3.2) which have an interpretation in terms of the
level 1 variances of the responses ;. This will generdly be the case where the coefficients

are random at the same level a which the explanatory variables are defined. Thus for
example, in the analyses of the JSP datain chapter 2, we could modd the average school 8
year-score, which is a leve-2 varigdble, as random at level 2. If the resulting variance and
covariance are non-zero, the interpretation will be that the between-school \eriance is a
quadratic function of the 8-year score namely

2 2 _2
S uo + 23 uOle +S ulzj
where z; isthe average 8-year score.

Furthermore, we can dlow a variance parameter to be negative, 0 long as the total leve 1
variance remains positive within the range of the data In chapter 5 we discuss modelling the
totad level 1 variance as a nonlinear function of explanaory variables, for example as a
negative exponentid function which automaticaly congtrains the variance to be positive.

Where a coefficient is made random a a level higher than that a which the explanatory
variable itsdf is defined, then the resulting variance (and covariance) can be interpreted as
the between-higher-levd unit vaiance of the within-unit rdaionship described by the
coefficient. Thisis the interpretation, for example, of the random coefficient modd of table
2.5 where the coefficient of the student 8 year score varies randomly across schools. In
addition, of course, we have a complex variance (and covariance) structure a the higher
leve.

The modd (3.2) does not condrain the overdl level 1 contribution to the variance in any
way. In particular, it is quite possble for the leve 1 variance and hence the total response
variance to become negative. This is dearly inadmissble and will dso lead to numerica
estimation problems. To overcome this we can consder daborating the modd by adding a
quadratic term, most Smply by removing the zero condraint on the variance. In chapter 5
we consder the aternative of modelling the variance as a nonlinear function of explanatory
variables.

In table 3.0 we extend the modd of table 2.5 to incorporate a such a quadratic function for
the leve 1 variance. If we atempt to fit a linear function we indeed find that a negative totd
varianceis predicted.

The results from modd A show a significant complex leve 1 variaion (chi squared with 2
degrees of freedom = 123). Furthermore, the level 2 correlation between the intercept and
dope is now reduced to -0.91 and with little change among the fixed part coefficients. The
predicted level 1 standard deviation varies from about 9.0 at the lowest 8-year score vaue
to about 1.9 at the highest, reflecting the impresson from the scatterplot in figure 2.1.
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Table 3.1 JSP data with level 1 variance a quadratic function of 8year score measured about the
sample mean. Model A with original scale; models B and C with Normal score transform of 11-year

score.

Parameter Estimate(s.e.) Egimate(s.e) Estimate (s.e)
A B C

Fixed:

Constant 317 013 014

8-year score 0.58 (0.029) 0.097 (0.004) 0.096 (0.004)

Gender (boys- girls) -0.35(0.26) -0.04 (0.05) -0.03 (0.05)

Social class (Non Man - Man) 0.74 (0.29) 0.16 (0.06) 0.16 (0.06)

School mean 8-year score 0.02(0.12) -0.008 (0.02)

8-yr score x school mean 8-yr score  0.02 (0.01) 0.0006 (0.02)

Random:

Level 2

s 30 2.84(0.88) 0.084 (0.024) 0.086 (0.024)

S,o1 -0.17 (0.07) -0.0024 (0.0015) -0.0030 (0.0015)

S 31 0.012 (0.007) 0.00018 (0.00016) 0.00021 (0.00016)

Level 1

s 50 165 (1.02) 0.413 (0.029) 0.412 (0.022)

S w1 -0.90 (0.02) -0.0032 (0.0017)

s 51 0.06 (0.02) 0.0000093(0.00041)

One of the reasons for the high negative correlaion between the intercept and dope at the
school level may be associated with the fact that the 11-year score has a ‘celling’ with a
third of the students having scores of 35 or more out of 40. A standard procedure for
dedling with such skewed digtributions is to transform the data, for example to normdity,
and thisis most conveniently done by computing Norma scores; that is by assgning Normd
order statistics to the ranked scores. The results from this analyss are given under modd B
in table 3.1. Note that the scde has changed since the response is now a standard norma
variable with zero mean and unit Sandard deviation. We now find thet there is no longer any
gopreciable complex variation at leved 1; the chi squared test yidds a vaue of 3.4 on 2
degrees of freedom. Nor is there any effect of the compositiona variable of mean school 8
year score; the chi squared test for the two fixed coefficients associated with this give a
vaue of 0.2 on 2 degrees of freedom. The reduced modd is fitted as C. The parameters
associated with the random sope at level 2 remain sgnificant (c2=7.7, P=0.02) and the
level 2 corrdation is further reduced to -0.71. Figure 3.1 shows the leve 1 standardised
resduds plotted againg the predicted vaues from which it is clear that now the variance is
much more nearly congtant. This example demongtrates that interpretations may be sengtive
to the scale on which variables are measured. It s typicd of many measurements in the
socid sciences that their scales are arbitrary and we can judtify nonlinear, but monotone,
order presarving, transformations if they hep to amplify the datisticd mode and the
interpretation.
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Figure 3.1 Level 1 standardised residuals by predicted valuesfor analysis Cintable 3.1

We are not limited to making the variance a function of asingle explanatory variable, and we
can congder general functions of these combined. Some may be absent from the fixed part
of the modd, or equivaently have their fixed coefficients congtrained to zero. A traditiond,
sgngle levd, example is 'regresson through the origin' in which the fixed intercept term is zero
while alevel 1 variance associated with the intercept is fitted.

We can congder any particular function of explanatory variables as the bass for moddling
the variance. One possibility is to take the fixed part predicted vaue y; and definethe level
1 random term as qjj\/yT, assuming the predicted vaue is podtive, so that the leve 1
variance becomes s;y”, that is proportiond to the predicted value;, often known as a

‘congtant coefficient of variation' model. Other functions are clearly possible, and aswe shall
see in chapter 7 often there are natura choices associated with distributional assumptions
made about the responses.

3.21.1 Variancesfor subgroupsdefined at level 1

A common example of complex variation at level 1 is where variances are specific for
subgroups. For example, for many measurements there are gender or socid class
differences in the level 1 variaion. A draightforward way to modd this Stuation in the case
of a single such grouping is by defining the following verson of (3.2) for a modd with
different variances for children with manua and with non-manua socia class backgrounds.

Yij = Do +byX; + (U 6,2, +€5%;)
Z; = 1 for manud , O for non - manua
z,, =0for manud , 1 for non- manud (35)

ver (&y;) =S5, var (ey;) =S, cov(e,;,e5) =0
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Table 32 JSP data with normal score of 11-year maths as response. Subscript 1 refers to 8-year
maths score, 2 to manual group, 3 to non manual group and 4 to boys.

Parameter Estimate(s.e) Estimate (s.e)) Edimate (s.e)
A B C

Fixed

Constant 0.13 0.13 0.13

8-year score 0.096 (0.004) 0.096 (0.004) 0.096 (0.004)

Gender (boys-girls) -0.03(0.05) -0.03(0.05) -0.03(0.05)

Socia Class (Non Man- Man) 0.16 (0.05) 0.16 (0.05) 0.16 (0.05)

Random

level 2

s 30 0.086 (0.025) 0.086 (0.025) 0.086 (0.024)

S .01 -0.0029 (0.0015) -0.0029 (0.0015) -0.0028 (0.0015)

s 31 0.00018 (0.00015) 0.00018 (0.00015) 0.00018 (0.00015)

leve 1

S io 0.37 (0.04) 0.36 (0.04)

S 2 0.03(0.02) 0.03(0.02)

S iz 0.43(0.03)

S 53 0.37(0.04)

S s 0.004 (0.02)

-2 (log likelihood) 1491.8 1491.8 1491.7

If we do thisfor modd C in table 3.1 then we obtain the estimatesin column A of table 3.2.

The estimates of the fixed parameters have changed little and the level 2 parameters are dso
amilar. At leve 1 the variance for the manua students is higher than that for the non manud
sudents, but not sgnificantly so snce the likedihood ratio test gatistic, formed by differencing
the values of (2 log likelihood) for the modd with a single level 1 variance (1493.7) and
thet given in analyss A of table 3.2, gives a chi-squared test satistic of 1.9 on 1 degree of
freedom.

We now look at an aternative method for specifying thistype of complex variation & level 1
which has certain advantages. We now write

Yy =y +byx + (W, +e,;zy)

Z,; = 1for manud , O for non - manud

var (&) = Seos var(ey;) =0, COV(&;,6s) =S en2

and the level 1 variance is given by s +2s,z, because we have condtrained the

variance of the manua coefficient to be zero. Thus, for manud children (z,, =1) thelevel 1

vaianceis s 2, + 2s _, ad for non manud children the level 1 varianceis s 2. The second
column in table 3.2 gives the resuts from this formulation and we see that, as expected, the

68



covariance estimate is equa to haf the difference between the separate variance etimates in
the firg column.

Suppose now that we wish to modd the level 1 variance as a function both of socid class
group and gender. One possibility is to fit a separate variance for each of the 4 possble
resulting groups, using ether of the above procedures. Another possibility is to congder a
more parsmonious ‘additive model for the variances as follows

€ = € T &L T €y 2y
z,;, = lifaboy, Oif agirl

var (&) =S 200 COV(€y;i € ) =Sepor COV(Ei€4) =S coa

with the remaining two variances and covariance equa to zero. Thus (3.4) implies that the
level 1 variance for a manud boy is s2, +2s ., + 2S ., €c. The third column of table 3.2
givesthe edimates for thismodd and we see that thereisanegligible differencein the level 1
variance for boys and girls.

(3.6)

We can extend such gructuring to the case of multicategory variables and we can aso
include continuous varigbles as in table 3.1. Suppose we had a 3 category varigble: we
define two dummy variables, say z;, 24 corresponding to the second and third categories,
just asif we were fitting the factor in the fixed part of the moddl. With z;; representing the
continuous variable an additive mode for the leve 1 random variation can be written as

€ =& T &% t &4
var (&) =Sk, var (e;) =s, COV(€4;€;) =S e
COV(€;i€5) =Seos, COV(Eyi€si) =S eos

This modd can be eaborated by including one or both the covariances between the dummy
variable coefficients and the continuous varigble coefficient, namely S, S Thee
covariances are analogous to interaction terms in the fixed part of the modd and we see
thet, starting with an additive mode, we can build up modds of increasing complexity. The
only redriction is that we cannot fit covariances between the dummy variable categories for
a sngle explanatory variable. Thus if socid class had three categories, we could fit two
covariances corresponding to, say, categories 2 and 3 but not a covariance between these
categories.

Resduds can be estimated in a straightforward manner for these complex variation models.
For example, from (3.4) the estimated resduad for amanua boy is €;; +€,; + &,; where the

estimates of the individud resduds are computed using the formulae in gppendix 2.2 with
the appropriate zero variances.

3.1.2 Variance asafunction of predicted value

The levd 1 variance can be modeled as a function of any combination of explanatory
variables and in particular we can incorporate the estimated coefficients themsalves in such
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functions. A useful specid case is where the function is the fixed part predicted vaue Y;;.
Thus (3.2) becomes

Yi =bo +byX; +(Uy; + &y + € )A/u)
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with level 1 variance givenby s% +2s V., +s%¥2. A specia case of this model isthe so
cdled ‘congtant coefficient of variation modd' where the two variance terms are constrained
to zero. The estimation of the random parameters is straightforward: a each iteration of the
agorithm a new set of predicted values are caculated and used as the level 1 explanatory
vaiable,

Table 3.3 GCSE scoresrelated to secondary school intake achievement.

Fixed A B
Constant 013 0.14
Reading score 0.50 (0.03) 0.49 (0.03)
Gender (boys- girls) -0.19 (0.06) -0.22 (0.06)
Social class (Non Man. - Man.) -0.07 (0.06) -0.06 (0.06)
Random

Level 2:

S 30 0.03(0.02) 0.02 (0.01)
level 1

S go 0.66 (0.04) 0.63(0.04)
Senn 0.16 (0.04)
S 51 0.11 (0.09)
-2 log(likelihood) 1929.5 1905.0

Table 3.3 illudrates the use of this mode where the level 1 variance shows a strong
dependence on the predicted value. The data are the Generd Certificate of Secondary

Examination (GCSE ) scores at the age of 16 years of the Junior School Project students.
This score is derived by assigning vaues to the grades achieved in each subject examination
and summing these to produce a tota score (See Nuttdl et a, 1989 for a detalled
description). There are 785 students in this andysisin 116 secondary schools to which they
transferred at the age of 11 years. The students have a measure of reading achievement, the
London Reading Test (LRT) taken at the end of their junior school and this isused as a
pretest basdine measure againgt which relative progress is judged. Both the reading test
score and the examination score have been transformed to Norma equivaent deviates.

Anadyss A is a vaiance components anadyss and figure 3.2 shows a plot of the
sandardised level 1 resduds againg the predicted vaues. It is clear that the variation is
much smaller for low predicted vaues.

One possible extenson of the mode to ded with this is the use the LRT score as an
explanatory varidble a level 1, so that the level 1 variance becomes a quadratic function of
LRT score. This does not, however, entirdy diminate the relationship and instead we model
the predicted value as a level 1 explanatory variable, and the results are presented as
andyss B of Table 3.3. If we now plot the standardised resduals associated with the
intercept againg the predicted values we obtain the pattern in figure 3.3 from which it is
clear that much of the relationship between the variance and the predicted vaue has been
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accounted for. We could go on to fit more complex functions of the predicted vaue, for
example involving nonlinear or higher order polynomia terms.

4
.l
5 ]
1]

level1 O T
residual ;1 1

(S I NV )
——t+—

-1.5 -1 -0.5 0 0.5 1 15 2

Predicted value

Figure 3.2 Standardised residualsfor variance components analysis.
3.21.3 Variancesfor subgroupsdefined at higher levels

The random dopes modd in table 3.1 has dready introduced complex variaion a level 2
when the coefficient of aleve 1 explanatory variable is alowed to vary acrossleve 2 units.
Just as with level 1 complex variation, we can dso alow coefficients of variables defined at
level 2 to vary a level 2. Exactly the same consderations gpply for categorica leve 2
variables as we had for such variables a levd 1 and complex additive or interactive
structures can be defined.
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Figure 3.3 Standar dised residualswith level 1 variance a function of predicted value.
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In addition, the coefficient of alevd 2 variable can vary randomly at ether leved 1 or level 2
or both. For example, suppose we have three types of school; al boys schools, dl girls
schools and mixed schools. We can dlow different variances, at level 2, between boys
schools, between girls schools and between mixed schools. We can dso adlow different
betweenstudent variances for each type of school.

To further illustrate complex level 1 variation and aso to introduce a three level modd we
turn to another data s, thistime from asurvey of socid attitudes.

3.22 A 3-level complex variation model.

The longitudind or panel data come from the British Socid Attitudes Survey and cover the
years 1983 - 1986 with a random sample of 264 adults measured a year apart on four
occasons and living a the same address. This panel was a subsample of alarger series of
cross sectiond surveys. The find sample was intended to be sdf weighting with each
household as represented by a single person having the same incluson probability. A full
technica account of the sampling procedures is given by McGrath and Waterton (1986).
The sampling procedure was at the firs stage to sample parliamentary congtituencies with
probability proportionad to size of eectorate, then to sample a single "polling digtrict’ within
each condituency in asmilar way and findly to sample an equa number of addresses within
each polling didrict.

Because only one polling didtrict was sampled from each congtituency, we cannot separate
the between-didrict from the betweencondituency variaion; the two are 'confounded'.
Likewise we cannot separate the betweenrindividuads from the between-households
variation. The basic vaiation is therefore a two levels, betweendidtricts (congtituencies)
and between-individuds (households). The longitudina dructure of the data, with four
occasions, introduces a further level below these two, namely a between occasion-within-
individud level, so that occason is levd 1, individud is level 2 and didrict is levd 3. In
chapter 5 we shall study longitudind data structures in more depth, both at level 1 and higher
levels.

The response varigble we shdl useisascde, in the range O - 7, concerned with attitudes to
abortion. It is derived by summing the (0,1) responses to seven questions and @n be
interpreted as indicating whether the respondent supported or opposed a woman's right to
abortion with high scores indicating strong support. Explanatory variaoles are politicd party
dlegiance (4 categories), saf-assessed socia class (3 categories), gender, age (continuous),
and religion (4 categories) and year (4 categories). A number of prdiminary anayses have
been carried out and the effects of party alegiance, socia class, gender, and age, were
found to be smdl and not gatigicdly sgnificant. We therefore examine the basic 3 levd
modd which can be written asfollows.

Yik = Do + (01X + b oXgi + D 3Xsiik) 37)
+(D 4 Xgij TP sXgj + D eXei) + (Vi + Ui + € )
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with the explanatory variables with subscripts 3 being dummy variadles for reigious
categories 2-4 and those with subscripts 4-6 being dummy variables for years 1984-1986.
We have three variances, one a each levd in the random part of the modd. The response
vaiable in the following andyses has only 8 categories, with 32% of the sample having the
highest vdue of 7. The response has been transformed by assigning Norma scores to the
overdl digribution and we shal treat the response as if it was continuoudy distributed. In
chapter 7 we shdl look at other models which retain the categorisation of the response
vaiable.

Table 3.4 Repeated measurements of Attitudes to Abortion. Response is Normal score
transformation. Religion estimates are contrasted with none. Ageis measured about the mean
of 37 years.

Par ameter Egimate(SE.) Egimate (SE.) Edimate (SE.)
A B C

Fixed:

Constant 0.32 0.33 0.33

Rdigion:  R. Catholic -0.80(0.18) -0.80(0.18) -0.69(0.18)
Protestant -0.27(0.10) -0.26(0.10) -0.25(0.10)
Other -0.63(0.13) -0.63(0.13) -0.54(0.14)

Year: 1984 -0.29(0.05) -0.29(0.48) -0.29(0.05)
1985 -0.06(0.05) -0.07(0.05) -0.07(0.05)
1986 0.06(0.05) 0.05(0.04) 0.05(0.04)

Age 0.013(0.005)

Agex R. Catholic -0.036(0.010)

Age x Protestant -0.014(0.007)

Age x Other -0.023(0.008)

Random:

Leve 3

S 3 0.03(0.02) 0.03(0.02) 0.03(0.02)

Leve 2

S 3 0.37(0.04) 0.34(0.04)

Leve 1

s2 0.31(0.02) 0.21(0.08) 0.21(0.03)

S w1 0.11(0.05) 0.10(0.04)

S w2 0.03(0.16) 0.03(0.02)

S w3 0.04(0.02) 0.04(0.02)

S w4 0.05(0.02) 0.05(0.02)

S w5 0.05(0.02) 0.05(0.02)

S w5 0.00(0.02) 0.00(0.02)

-2 (log likelihood) 22335 2214.2 2198.7

Table 3.4 gives the results of fitting (3.5). The between-occasion and between+-individua
variances are dmilar. The levd 3 variance is smdl, and the likeihood ratio chi-squared is
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2.05 (compared with avaue of 1.64 obtained from comparing the estimate with its standard
error), which is not sgnificant at the 10% levd.

For the religious differences we have ¢’ = 33.7 for the overdl test with al those having
religious beliefs being less inclined to support abortion, the Roman Catholic and other
religions being least likely of dl. The Roman Caholic and other rdigions are Sgnificantly
less likely than the Protestants to support abortion. The smultaneous test (3 d.f.) chi-
squared statistics respectively are 9.7 and 9.0 (P=0.03). For the year differences we have
c2=59.7 and smultaneous comparisons show that in 1984 there was a subgtantialy less
approving attitude towards abortion. It is likely that this is an artefact of the way questions
were put to respondents.3 No sgnificant interaction exists between religion and year.

We now look at elaborating the random structure of the modd. At level 1 we fit an additive
mode as in section 3.1.1 for the categories of religion and for year. Year is the variable
defining leve 1, but rigion is defined a level 2 and is an example of a higher levd varigble
used to define complex variation a alower levd.

The results are given as analysis B in table 3.3. For year we obtain ¢ = 8.3 (P=0.04) and
for rdigion c¢; =110 (P=0.01). There is a greater heterogeneity within the Roman
Cathalics, from year to year, and within the other religions than within Protestants and those
with no religion. The addition of these variances to the modd does not change subgtantialy
the vaues for the other parameters.

Fitting complex variation at level 2 (between individuds) and level 3 (between didtricts) does
not yidd gatigticaly sgnificant effects, dthough there is some suggestion that there may be
more variation among Roman Catholics.

For the find andysis we look again at the fixed part and explore interactions. None of the
interactions have important effects except for that of age with rdigion, adthough age on its
own had a negligible effect. We see from analyss C that those with no religion show an
increasing gpprova of abortion with age, whereas the Roman Catholics and to a smdler
extent other religions show a decreasing approva with age. The overdl chi-squared for
testing the interactions is 16.1 with 3 degrees of freedom.

3.23 Parameter Constraints

In the example of the previous section some of the fixed and random parameters for year
and rdigious groups were smilar. This suggests that we could fit a smpler mode by forcing
or '‘congraining’ such parameters to take the same vaues and aso so decreasing the
gandard errors in the modd. We illudtrate the procedure using the fixed part estimates for
the abortion attitudes data.

3In 1984 seven questions making up the attitude scale were put to respondents in the reverse order, that
is with the most 'acceptable’ reasons for having an abortion (e.g. as aresults of rape) coming first. This
illustrates an important issue in surveys of all kinds which collect data for comparisons over time,
namely to maintain the same questioning procedure.
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We consder the generd linear condraint for the fixed parameters in the foom Cb =k,

where C isa (n x p) condraint matrix and K is a vector which can have quite generd vaues
for their dements.

Suppose thet, in andyss C of table 3.4, we wished to congrain the main effects and
interaction terms of the Roman Catholic and Other religions to be equal. This implies two
congraint functions, and we have

c® 1 0-100 0 00 0 08
"0 0 0 0 00O O 0 1 O

k:ﬂg
&0p

whichimpliesb, =b,, b, =b,.
The condrained estimator of b is
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b®=b- LC(CTLC)*(Cb- k) (3.8)
L=(XViX)*?

where 6 is the unconstrained estimator. The covariance matrix of the constrained estimator
is MLM where

M=1- LC(C'LC)'C".
Thereis an analogous formula for congtrained random parameters.

Using the above condraints for andysis C in Table 3.4, the random parameters are little
changed, the main effects for Roman Catholic and Other religion become -0.57 and the
interaction terms become -0.026 and the remaining main effects are virtudly undtered. The
standard errors, as expected, are smaler being 0.121 for the main effect estimate and 0.007
for the interaction.

In addition to linear congraints we can dso goply nonlinear wngraints. To illudrate the
procedure we congder the analysis in table 2.5, where the estimated correlation between
the dope and intercept was -1.03. To condrain this to be exactly -1.0, after each iteration
of the agorithm we compute the covariance as a function of the variances to give this

correlation. Thus, after iteration t we compute s |;; =SS!, and then congtrain the

covariance to be equd to this vaue, a linear condraint, for iteration t+1. This procedureis
repeated until convergence is obtained for the unconstrained vaues. For more generd
nonlinear congtraints we may require severa such condraints to apply smultaneoudy.

If we congtrain the modd of Table 2.5 to give a corrdation of -1.0 we find that the fixed
effects and the leve 1 variance are dtered only dightly, with a smdl reduction in standard
errors. The level 2 parameters, however, are reduced by about 50% and are closer to those
inandyss A of Table 3.1 where the estimated corrdation is-0.91.

We can dso temporaily condrain vaues during the iterative estimation procedure if
convergence is difficult or dow. Some parameters, or functions of them, can be held a
current values, other parameter values allowed to converge and the congtrained parameters
subsequently uncongtrained.

3.24 Weighting units

It is common in sample surveys to sdect leve 1 units, for example household members, so
that each unit in the populaion has the same probability of sdection. Such sdf-weghting
samples can then be noddled usng any of the multileve modes of this book. Likewise, if
the modd correctly specifies the population structure, nonsaf weighting samples can be
moddled smilarly: the differentid sdection probabilities contain no extra informeation for the
modd parameters. If we wished to form predictions for the whole population on the basis of
the model estimates, we could cobine weights from each levd of the data hierarchy (typicdly
inverses of sdection probabilities) into composite level 1 weights and apply these to the
predicted vaues for each level 1 unit and then form aweighted sum over these units.
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In genera we can carry out the following procedure for assgning weights. Two cases need
to be digtinguished. In the first the weights are independent of the random effects a the level.
In this case we adopt the following procedure.

Consider the case of a2 level model. Denote by w; the weight attached to the j-th level 2
unit and by w,. the weight attached to the i-th levd 1 unit within the j-th level 2 unit such
that

li

[¢] _ [ _
aw; =n, awj—J
[ J

(3.7
where Jis the total number of level 2 unitsand N = é_ n; thetotal number of level 1 units,
j
That is the lower level weights within each immediate higher level unit are scaled to have a

mean of unity, and likewise for higher levels. For each level 1 unit we now form the find, or
composite, weight

[o] [}
w; = Nwi,w, /@ wy,wy = Nww; /@ nw,
i,] J
(3.8)

Denoteby Z,, Z, respectively the sets of explanatory varigbles defining the level 2 and
level 1 random coefficients and form
Z,=Wz,, W =diag{w;*}
Z, =W Z,, W, =diag{w;*’}

(3.9
We now cary out a sandard estimation but usng Z,, Z_ as the random coefficient
explanatory variables.

For a3 levd modd, with an obvious extensgon to notation, we have the following
é Wi = Ny é Wy =y, é w, =K, N :é e ‘]:é Ji
i j k jk k

_ J [o] _ ] o]

Vvijk - NWi|jij|ka 6}( \Ni|jij|<Wk 1 ij - JWj|ka ak Wj|ka
ij J
Denoteby V™ the weighting matrix in this andysis. The fixed part coefficient estimates and
their covariance matrix are given by
b=(XV X)XV,
cov(b) = (XV" X)XV WTX(XV X))
(3.10)

with an andogous result for the random parameter etimates. MLWiN  does not dlow the
computation of the covariance matrix estimates directly, but robust or sandwich estimators
(see below) may be used.

78



In survey work analysts often have access only to the find level 1 weights w; . In this case,
sy for a 2levd modd, we can obtan the w by computing

J

we=WJ /é W, W :(é w;) /n; . For a 3-level model the procedure is carried out for
i i
each level 3 unit and theresulting wy, are transformed analogoudly.

A number of features are worth noting.

Firgt, for asngle level mode this procedure gives the usud weighted regresson estimator.
Secondly, suppose we st a particular level 1 weight to zero. This is not equivdent to
removing that unit from the andyss in a 2 levd modd since the levd 2 (weighted)
contribution remains. Nevertheless, this weighting may be appropriate if we wish to remove
the effect of the unit only at leve 1, say if it were an extreme levd 1 outlier. If, however, we
St aleve 2 weight to zero then thisis equivalent to removing the complete level 2 unit. If we
wished to obtain estimates equivaent to removing the level 1 unit we would need to et dl
the level 2 (random coefficient) explanatory varigblesfor that level 1 unit to zero dso. This
is eadly done by defining an indicator variable for the unit (or units) with a zero
corresponding to the unit in question and multiplying al the random explanatory variables by
it.

In cdculating resduds we may dso wish to use the weights. This leads to the following
results for the level 2 resduas

ﬁZ :WZZ:TV*JV’
cov(p,) =W,Z VT (VIVTZT W,
V =E(YYT)

(3.11)

This provides a congstent estimator of the covariance matrix. Alternatively, we may use a
sandwich estimator for the covariance matrix. For many purposes an unweighted estimator
for the resdudsis adequate, in which case the usua formulae apply.

A smilar procedure gpplies for multilevel generdised linear models (Chapter 7). Here the
weighted explanatory variables a levels 2 and higher are as above. For the quasilikelihood
estimators (PQL and MQL) at level 1 the vector Z is tha which defines the binomid

variation. Thus, for binomia data, a level 1 amethod of incorporating the weight vector isto
use Z but to work with w;n; instead of n; asthe denominator.

The second Stuation is where the weights are not independent of the random effects a a
levd. This leads to complications which are discussed by Pfefferman et d. (1997). These
authors conclude that, in this Situation, the above procedure produces acceptable results in
many cases but can give biased results in some circumstances and should be used with
caution.

3.25 Robust, Jacknife and Bootstrap Uncertainty Estimates

Until now we have assumed that the response variable has a Normal distribution, and where
the departure from Normality is subgstantid we have consdered a transformation, using
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Norma scores. As we saw in the abortion data set, however, such transformations may be
only gpproximate where the origina score digribution is highly discrete or very skew. The
estimates of the fixed and random parameters will ill be consstent when the Normality
assumption is untrue, but the standard error estimates cannot be used to obtain confidence
intervas or to test Sgnificance except in large samples.

One way of attempting to ded with this problem is to develop estimators which are based
upon dternative digributiond assumptions, and in laer chapters we shal adopt this
approach when dedling with discrete and ordered response data. Seltzer (1993) gives an
example, usng Gibbs sampling, based on the assumption that the response variable has at-
digtribution, and this approach can be extended to other continuous but skew digtributions.

An dternative procedure isto modify the standard error and confidence interva estimates so
that they are less dependent on distributiona assumptions, of whatever kind. One of the
pendties of this is tha the resulting sgnificance tests and confidence intervas will tend be
wider, or more ‘conservativeé, than those derived under a particular digtributiona
assumption.

Congder firg the fixed pat of the modd and the usud IGLS edimate of the fixed
parameters based upon the random parameter estimates

b =(XVIX) XV
The covariance matrix of these estimatesis
cov(b ) = (X™V X)XV H cov(Y)IV X (X TV 1X)?

where cov(Y) =V and is unknown. The usud procedure is to subgtitute the estimated Vv,

but this will generdly lead to standard errors which are too small. A robust estimator is
obtained by replacing cov(Y) by YY", namdy the cross product matrix of the raw
resduas, which is a congstent estimator of V. Thisis done for each highest level block of V
in order to saisfy the block diagondity dructure of the modd. This edimator is a
generdisation of the estimator given by Roydl (1986) for a sngle level modd which uses
only the diagond dementsof YY'.

For the random parameters an analogous result holds. It is aso possible to derive robust
estimators for resduds, but these generdly are not useful because the estimate for each
residua corresponding to a higher level unit uses the corresponding value of YY" and this
can give very unstable estimates.

We now apply 3.11 to the abortion data analyses and Table 3.5 shows the result for
andysis A of Table 34 and an OLS analyss. The mgor change is in the estimate of the
standard error for leve 1, with only moderate changes for the fixed parameters.

Another gpproach to providing robust sandard errors is to use jacknifing (Miller, 1974).
Thus, if we wished to caculate the standard error for alevel 2 variance in a mode with p
level 2 units, the jacknife procedure would involve recomputing the variance for p
subsamples, each one formed by omitting one level 2 unit, and using the set of these to form
the standard error estimate. The procedure aso gives a revised estimate of the parameter
itself. Longford (1993, chepter 6) gives an example in the andyss of a complex matrix
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sample design and suggests that there may be often a condderable loss of efficiency using
the jacknife method, and it is dso computationdly intensve.

Table 35 Robust standard errorsfor analysisA in table 3.4

Parameter Edimate Modd based se. Robust se.
Fixed:
Constant 0.32
Religion: R. Cathalic -0.80 0.176 0.225
Protestant -0.27 0.098 0.102
Other -0.63 0.127 0.121
Year: 1984 -0.29 0.048 0.050
1985 -0.06 0.048 0.061
1986 0.06 0.048 0.047
Random:
Leve 3
S 5 0.03 0.030 0.020
Leve 2
S 3 0.37 0.043 0.039
Leve 1
g 2 031 0.016 0.022
e0

A more flexible method is that of bootstrapping (See Efron and Gong, 1983 for an
introduction and Laird and Louis, 1987, 1989 for more extensve discussons in the corntext
of a multileved modd). The basic nonparametric bootstrap procedure involves smple
random resampling with replacement of the response variable vaues (or resduasin alinear
model) to generate a single bootstrgp sample. The model parameter estimates are then
reestimated for this sample. This procedure is repeated a large number (N) of times yielding
N sets of parameter estimates which are then treasted as a Smple random sample and used
to derive standard errors or confidence intervals. For a multilevel modd, however, such a
procedure is inadequate since it assumes identicaly distributed responses, athough for
certain models it may be possible to adapt this procedure (see for example Moulton and
Zeger, 1989).

The fully parametric bootstrgp utilises the distributional assumptions of the model in order to
generate Smulated values which are used to estimate bootstrap sets of parameters. Consider
the ample 2-levd modd assuming Normdity

y, = (Xb), +u, +e, var(u)=s;, var(g)=s.

To generate a bootstrap sample we select at random from N(0,s 2) aset of level 2 vaues
u; and for each level 2 unit aset of g from N(O,s ). These are added to (Xb); to
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generate a set of pseudo values y,] which are then treated as a set of responses from which
anew set of bootstrap parameter values, b*,$ " ,$ . is obtained.

e

Once the set of bootstrap values is avallable we can use these to estimate the parameter
covariance matrices or standard errors using the usud sample procedures. Confidence
intervas for the origina parameter estimates or functions of them can be congructed from
these by assuming Normadlity. Alternaively we can congruct intervals nonparametricaly
from the percentiles of the set of empirical bootstrap vaues and where the median vaue for
a parameter or function of parameters deviates subgtantidly from the origind parameter
estimate a bias correction procedure should be used. This involves smoothing the bootstrap
distribution using a standard Normal distribution. We first estimate z, which is the standard

Norma score corresponding to the percentile position of the origina parameter estimate.
Writing 2°®, 2% for the standard Norma deviates corresponding to the required

(symmetric) percentiles ( for example 5% and 95%) we transform back to the bootstrap
digtribution from the standard Normal distribution values

2z,+ 2, 2z +7®

Efron (1988) discusses this and a further correction based on skewness to improve
accurecy.

If we wish to obtain bootdrap estimates for estimated level 2 resduds then for each
bootstrap sample we aso estimate the resduds, G’; . To estimate the ‘ comparative’ variance

of the residuals for each level 2 unit we need to work with T; = 0, - u; and then use these

directly to estimate the required variance, or covariance matrix where there are severd
random coefficients. They can aso be used to construct nonparametric confidence intervas
as above.

The parametric bootstrap procedure can be extended straightforwardly to nonlinear models
as discussed in Chapter 5 and especidly to the discrete response models of Chapter 7. The
only difference is that with, say, a binary response mode, we generate binary (0,1) random
variadbles to produce the pseudo responses rather than Normaly distributed ones.
Waeclawiw and Liang (1994) give an example of this usng the GEE procedure for obtaining
parameter estimates.

Table 3.6 gives parametric bootstrap estimates of standard errors and a centra 90%
confidence interva based upon a Normality assumption and aso a nonparametric estimation
from 500 bootstrap samples for the modd of Table 3.5.

The bootstrap standard arors agree quite well with the model based ones, except for the
level 3 variance. This parameter is based upon only 54 level 3 units as opposed to 264 level
2 and 1056 levd 1 units. This is reflected dso in the bootstrap confidence intervas where
the ronparametric intervas are fairly close to the Normal theory ones except for the level 3
variance. In generd, despite the computationd overhead, bootstrap intervals will be
desrable where effective sample sizes are samdl, especidly for the random parameters.
Where didributions are markedly non Norma the nonparametric intervals are to be
preferred, dthough these will require considerably more bootstrap samples, typicaly more
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than the 500 used here, than are necessary to estimate standard variances and covariances
of the bootstrap distribution, where 100 will often suffice.

3.26 Aggregate level analyses
As we discussed in Section 1.12, there are sometimes occasions when the only data

avallable for andysis have dready been aggregated to a higher levd.

Table 3.6 Bootstrap standard errorsand 90% confidenceintervalsfor AnalysisA in Table3.4

Parameter Modd based se. Bootstrap s.e. Normal C.I. Nonparametric
Adjusted C.I.
Fixed:
Religion: R. Catholic 0.176 0.173 (-1.084, -0.516)) (-1.128,-0.532)
Protestant 0.098 0.100 (-0.429, -0.101) (-0.420, -0.106)
Other 0.127 0.132 (-0.846, -0.414) (-0.805, -0.377)
Year: 1984 0.048 0.048 (-0.365, -0.209) (-0.374,-0.216)
1985 0.048 0.047 (-0.140, 0.014) (-0.141, 0.012)
1986 0.048 0.048 (-0.015, 0.141) (-0.019,0.141)
Random:
Level 3
S 5 0.030 0.022 ([0], 0.066) (0,0.080)
Level 2
S 3 0.043 0.041 (0.302, 0.436) (0.308, 0.438)
Levd 1
S 50 0.016 0.015 (0.284,0.334) (0.288, 0.336)

For example, we may have information on student achievement only in terms of the mean
achievement for each schoal, or information on utilisation of hedth services only in terms of
the total number of episodes for each adminidrative area. We examine the possibilities for
carying out analyses with aggregate level data and explore how far these can provide
information about the parameters of amore disaggregated model.

Congder the smple mode used in chapter 2 for the Junior School Project data with a

response mathematics test score and the earlier mathematics score as a covariate
Vi =bg+byx; +u; +g (3.12)

Suppose that we now aggregate to the school leve by averaging over al pupils in each

school to obtain
y; =by+b,x; +u; +e, (3.13)

If we treet this as asingle level moddl, then the level 1 varianceis s +n;'s? and we can fit
the model by specifying two explanatory variables for the random part, namely

%=1 z;=n®
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with random coefficients ,;, €,; having variances and zero covariance. In many surveysthe

same number of leve 1 units will be sampled from each levd 2 unit, in which case asngle
explanatory variable z, will suffice. The main problem with such an analyss is that the
estimates will be inefficient compared with those from a 2-level modd based on individua
gudent data. Analyss A in Table 3.6 gives the results of an andyds usng just the sngle
explanatory varigble z, and andysis B additionally uses z,; and so is equivdent to asingle
level weighted regresson modd. In both anayses we have included the proportion of nor+
manua students and the proportion of girls as explanatory variables, that is the average
vaues of the corresponding (0.1) dummy variables.

Table 3.7 School level analysis of JSP data.

Parameter Estimate (s.e)) Estimate (s.e) Estimate (s.e.)
A B C

Fixed

Constant 018 0.16 0.16

8-year score 0.091 (0.019) 0.092 (0.020) 0.094 (0.021)

Gender( Propn. boys) -0.34(0.30) -0.31(0.30) -0.29 (0.29)

S. Class (Propn. N.M.) 0.00(0.20) 0.00 (0.28) -0.01 (0.27)

Random

S 30 0.11 (0.022) 0.11 (0.040) 0.08 (0.024)

S 20 0.08 (0.37)

S 0.00 (0.02)

S 51 0.004 (0.004)

-2(log likelihood) 3133 31.28 29.44

In comparison with andyss C in table 3.1 while the coefficient of the 8 year maths score
remains unchanged, those for gender and socid class change markedly. We aso see how
the standard errors are substantidly greater. In fact, dthough the number of students per
school varies between 3 and 49, theincluson of z,; haslittle effect.

For these data we know that the dope of the 8-year score is random across schoals. In this
case modd (3.13) becomes

Y; =bo +byX; +Uy; +UyX; +€; (3.14)

and we obtain the additional contributions to the variance of the aggregated leve 2 units
2,2

S ulX.j ’ 25 uOlX.j

Andyss C in table 3.6 shows the results of fitting this modd. This is directly comparable

with anadlyss C in 3.1 and we can see that dthough the estimate of the level 2 variance is

amilar, we have a poor estimate of the random coefficient variance, and unlike andyss B it

is not possible to estimate a separate level 1 variance because of the smal number of unitsin
the anayss.
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If there is complex varidion a level 1, such as we fitted in table 3.2, then for such an
explanatory varidble, say z,;, we would obtain the further contributions to the variance for

the aggregated mode for unit j
2 2 2 2
2Seozzz.j /nj’ Sed L /nj
i

The firg of these terms can be fitted as a covariance and the second as a variance, by
defining appropriate explanatory variables. In the present case the data are not extensive
enough to dlow us to fit these additiond variables. We dso note tha the vaues of the
squared explanatory variables in the second of these expressions will often not be available
for aggregated data.

If we have an initid 3-level model, and data are aggregated to level 2, we need to specify
properly the level 2 random variation resulting from the aggregation process. Failure to do
this, may dlow us to fit random variation a leve 3, but any interpretation of this may be
problematic because it may have arisen s0lely as a result of misspecifying the variation a
level 2. For example, if we have an explanatory variable which is strongly correlated with
the size of the level 2 units, and we fail to include a random coefficient for z,; a level 2, we

may well be adle to fit a random coefficient for it a leve 3, but the usud interpretation of
such a coefficient would be inadmissble

We now look at what happens to the fixed part coefficients when aggregation takes place
and we have dready seen that the vaues of the coefficients for gender and socid class
change. Consider the model

Yij =bo +byx; +byX; +u; +g (3.95)

where the coefficient for x; in the aggregated model is now b, +b,. We saw in table 3.1

that the coefficient for the school mean 8year score was very smdl, so that we would
expect the coefficient for this in the aggregated modd to be smilar, which table 3.6
confirms. For gender and socid class the coefficients of the corresponding aggregated
variables from a 2-level andysis are repectively -0.06 and -0.09, which when added to the
(nonraggregated) coefficients for gender and socid dass give vaues of -0.09 and -0.06
respectively. These are rather different from those in table 3.6, but the standard errors are
very large. Where there is a contextua or compositiond effect, whether through the mean
agoregated vaue, or some other datistic derived from the student leve distribution as
discussed in section 2.9, then an aggregated analysis will not dlow us to obtain separate
edimates for the individua and compositiona coefficients.

In summary, we have seen that it is sometimes possible to modd aggregated data, but this
has to be carried out with care, and any interpretations will be constrained by the nature of
the true, underlying, non-aggregated modd. In addition, the precisons of the estimates
obtained from an aggregated andysis will generaly be much lower than those obtained from
a full multilevel andyss. A discussion of the aggregation issue can dso be found in Aitkin
and Longford (1986).
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3.27 Meta analysis

The term Meta Analyss (Hedges and Olkin, 1985) refers to the pooling of results of
separate studies, dl of which are concerned with the same research hypothesis. The am is
to achieve greater accuracy than that obtainable from a single study and aso to dlow the
investigation of factors responsble for between-study variation. Each study typicdly
provides an edtimate for an ‘effect’, for example a group difference, for a ‘common’

response and the origind data are unavailable for analyss. In generd the response measure
used will vary, and care is needed in interpreting
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them as meaning the same thing. Furthermore, the scdes of measurement will differ, so that
the effect is usudly sandardised usng a suitable within-study estimate of  between-unit
gandard deviation. If the study result derives from a multilevel modd, then this estimate will
be based on the levd 1 variance, or where this is complex on an estimate pooled over the
effect groups being compared. It is important that comparable estimates are used from each
sudy. This implies that the specification of the level 1 units is comparable and that the
sources of higher leve variation are properly identified. For example where each study
compares teaching methods using a number of schools the within-school between student
variation would be appropriate for standardisation, which implies that the studies concerned
should provide estimates of this usng suitable multilevel techniques. We consider the case
where only a sngle effect is of interest, but the generdisation to the multivariate case is
straightforward (see chapter 4).

For the j-th study we define the standardised effect d; where this is a dimensionless

quantity. It may, for example, be a corrdation coefficient, a standardised regresson
coefficient, a group difference, or a weighted group difference. We require an estimate of
the variance of d;, say s f and more generdly we require the variance of a dimensionless

function having the generd form

o A .
a Wby /s 4 (3.16)
h

where the th are parameter estimates from the j-th study. For moderately large numbers of

level 1 units, we can ignore the variation in the estimate of the level 1 standard deviation
($4) and caculate the variance of the numerator of (3.16) using the estimated covariance

matrix of the coefficients. Where the number of levd 1 unitsis smal, however, we will need
to take into account the sampling variance of this estimate and, assuming independence,
obtain the required variance using the standard formula for the variance of aratio of random
variables. Hedges and Olkin (1985) discuss a number of procedures for providing such
esimatesin the sngle level case. We can now write asmple mode asfollows

2 2
d,=d+v,+u;, var(u)=s;, var(v,)=s, (3.17)

where sj2 is now assumed known and treated as an offset in the random part of the model

(see ds0 appendix 5.1), d is the populaion parameter of interest and SVZ is the between
study variance of the standardised effect. We can add covariates representing study factors
to 3.17 in an atempt to explain betweensudy differences which is a further am of Meta
Analyss sudies. Bryk and Raudenbush (1992) present an analysis which compares studies
of teacher expectations of student ability and attempts to explain sudy differences.

There are a number of practical problemswith Meta Analyss sudies. One of theseis where
the sample of studies used is subject to systematic bias. This can occur, for example if some
studies do not provide sufficient deata to estimate a standardised difference and they are a
specid group. Another common problem arises where the analysis is based upon published
gudies and those studies which found ‘non datidticdly significant’ results tend to remain

unpublished. This implies that the digtribution of results is censored with the smdler ones
tending to be missng, a Stuaion known as the publication bias effect. Vevea (1994)
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discusses the possihility of weighting the sudies, thet is the units in the modd (3.17), usng a
suitable function of the dtatigtica sgnificance level associated with each effect, in order to
compensate for the selective excluson. Thus we could carry out aweighted analys's (section
3.4) where the weights are, say, proportiona to the significance level. Vevea dso consders

the possihility of estimating the weights.
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Chapter 4
The multivariate multilevel model

4.1 Multivariate Multilevel models

In chapters 2 and 3 we have conddered only a single response variable. We now look at
models where we wish smultaneoudy to model severd responses as functions of
explanatory variables. As we shdl see, the ability to do this provides us with tools for
tackling a very wide range of problems. These problems include missing data, rotation or
matrix designs for surveys and prediction models. We develop the modd using a dataset of
examination results.

The data consst of scores on two components of a science examination taken in 1989 by
1905 students in 73 schools and colleges. The examination is the Generd Certificate of

Secondary Education (GCSE) taken at the end of compulsory schooling, normaly when
dudents are 16 years of age. The first component is a traditional written question paper
(marked out of atota score of 160) and the second consists of coursework (marked out of
atota score of 108), including projects undertaken during the course and marked by each
student's own teacher. The overall teachers marks are subject to externa ‘'moderation’ using
a sample of coursework. Interest in these data centres on the relaionship between the
component marks at both the school and student level, whether there are gender differences
in this relationship and whether the varigbility differs for the two components. Creswell

(1991) has afull description of the dataset.

4.2 Thebasic 2-level multivariate model

To define amultivariate, in the case of our example a 2-variate, model we treet the individud
udent as aleve 2 unit and the ‘within-student' measurements as level 1 units. Each levd 1
measurement ‘record’ has a response, which is either the written paper score or the
coursawork score. The basic explanatory variables are a set of dummy variables that
indicate which response variable is present. Further explanatory variables are defined by
multiplying these dummy variables
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Table 4.8 Datamatrix for examination example.

I ntercepts Gender
Student Response Written Coursework Written Coursework
1 (femdle) Vi1 1 0 1 0
1 Yor 0 1 0 1
2 (male) Yio 1 0 0 0
2 Y2 0 1 0 0
3 (female) Yis 1 0 1 0

by individua leved explanatory variables, for example gender. The data matrix for tree
individuas, two of who have both measurements and the third of who has only the written
paper score, is displayed in Table 4.1. The firgt and third students are femde (1) and the
second ismale (0).

The modd iswritten as

Yi =DazZy +DoZy +02yX; +b1,2 X Uz +U,Z,
1 lifwritten { _1 y _11if femalei
i ~Lojf coursaNorkg’ i =% A % T o maleg (4.10

Var(ulj) =S o Var(uzj) =S o, Cov(ulju2j) =S e

N

There are severd festures of thismodd. Thereisno leve 1 variation specified because leve
1 exigts soldy to define the multivariate sructure. The level 2 variances and covariance are
the (resdud) between-student variances. In the case where only the intercept dummy
variables are fitted, and since every student has both scores, the model estimates of these
parameters become the usua betweenstudent estimates of the variances and covariance.
The multilevd estimates are daidicdly efficient even where some responses are missing,
and in the case where the measurements have a multivariate Norma digtribution they are
maximum likdihood. Thus the formulation as a 2-levd modd dlows for the efficient
edimation of a covariance matrix with missng responses.

In our example the students are grouped within examination centres, so that the centre isthe
level 3 unit. Table 4.2 presents the results of two models fitted to these data.

The firg andyss is smply (4.1) with variances and a cvariance for the two components
added at level 3. In the second andyss additiona variance terms for gender have been
added.

In both analyses the females do worse on the written paper and better on the coursework
asessment. There is a greater variability of marks on the coursework eement, even though
this is marked out of a smdler tota, and the intra- centre correlations are gpproximeately the
same in the firg analyss (0.28 and 0.30). This suggests that the 'moderation’ process has
been successful in maintaining a Smilar relative between-centre variation for the coursework
marks. The correlation between the two components is 0.50 at the student level and 0.41 at
the centre levd.
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Table 49 Bivariate modelsfor written paper and cour sewor K responses.

Fixed Estimate (s.e) Edgtimate(s.e)

Constant: Written 495 495
Coursework 69.5 69.1

Gender:  Written -25(0.5) -25(0.5)
Coursework 6.9(0.7) 73(LY

Random

Leve 3:

S 31 48.9(9.5) 49.6 (9.5

S 12 252(9.1) 355(11.3)

S 52 77.1(14.8) 106.6 (21.7)

S 14 -15.9(7.8)

S o4 -374(13.2)

s 54 415 (11.7)

Leve 2:

S 31 1243 (4.1) 1242 (4.1)

S w2 74.6 (3.9) 736 (3.9)

S 32 183.2(6.1) 189.1(8.6)

S, -125(4.7)

-2 log(likelihood) 29718.8 29664.7

The subscripts refer to the following explanatory variables: 1 = writing intercept, 2 = coursework
intercept, 3 = writing gender, 4 = coursework gender.

In the second analysis we see that the betweenstudent variance for coursework is smaller
for the femaes (164.0) compared to that for the maes (189.1) and for the centres the
coursework variance for femaes is dso smdler (73.3) than for males (106.6). There
appears to be no difference in the variances for the written paper.

Note how the standard error of the coursework gender coefficient increases with the more
precise specification of the coursework variation at both levels. Thisis another aspect of the
effect we saw when fitting a multilevel model as opposed to asingle level modd.

4.3 Rotation Designs

We have dready seen that fully balanced multivariate designs are unnecessary and randomly
missing responses are  handled automaticaly. As Table 4.1 shows, the basc 2-levd
formulation does not formally recognise that a response is missng, snce we only record
those present. We now look at designs where responses are effectively missng by design
and we see how this can be useful in anumber of circumstances.

In many kinds of surveys the amount of information required from respondents is so large
that it is too onerous to expect each one to respond to al the questions or items. In
education we may require achievement information covering a large number of aress, in
surveys of busnesses we may wish to have a large amount of detailed information, and in
household questionnaires we may wish to obtain information on a wide range of topics. We
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congder only measurements that are used as responsesin amodd. If we denote the totdl set
of responses as{ N} then we choose p subsets{ N.,i =1,... p} each of whichissuitable for
adminigtering to asubject (leve 1).

When choosing these subsets we can only estimate subject-level covariances between those
responses that appear together in a subtest. It is therefore common in such designs to ensure
that every possible pair of responses is present. If we wish to estimate covariances for
higher level units such as schools it is necessary only to ensure that the relevant par of

responses are assigned to the some schools - a large enough number to provide efficient
estimates. The subjects are assigned a random to subtest and higher level units are dso
assigned randomly, possibly with stratification.

Each subset is viewed formaly as a multivariate response vector with randomly missng
vaues, dthough the missng observations are produced by desgn. As we saw in the
previous section, we can fit a multivariate regponse mode for such data and obtain efficient
edimates for the fixed part coefficients and covariance dructures a any levd. In this
formulation, the variables to be used as explanatory variables should be measured for each
level 1 unit. We shal discuss how to ded with missng explanatory variable vauesin chapter
12. We give an example using educationa achievement data

4.4 A rotation design example using Sciencetest scores

The data come from the Second International Science Survey carried out by the
International Association for the Evauation of Educational Achievement (Rosier, 1987).
Table 4.3 shows how items from three science topic areas are distributed over test papers
or forms and the numbers of items in each topic area. The tests conssted of a core form
taken by dl students plus a randomly sdlected pair out of the four additiond forms. The
sudy was carried out in 1984 in some 24 countries. We discuss here the results for

Hungary.

Table4.10 Numbersof itemsin topic areas. Grade8

Form Earth Science Biology Physics
1 (Core) 6 10 10

2 - - 7

3 - 4 -

4 - 4

Because the number of itemsin the firgt additiona form was very smal, and likewise in some
of the other forms for some subjects, only the subsets shown from additiona forms 2 - 4 are
used. We aso divide each subtest score by the total numberof items in the subtest so asto
reduce each score to the same scale. There are 99 schools with 2439 students and atotal of
10971 responses.
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Table4.11 Science attainment estimatesfor Hungary | EA study.

Fixed

Earth Science Core
Biology Core
Biology R3
Biology R4
Physics Core
Physics R2

Earth Science Core (girls- boys)
Biology Core (girls- boys)
Biology R3 (girls- boys)
Biology R4 (girls- boys)
Physics Core (girls- boys)
Physics R2 (girls- boys)

Estimate (s.e))

0.838 (0.0076)
0.711 (0.0100)
0.684 (0.0109)
0591 (0.0167)
0.752 (0.0128)
0.664 (0.0128)

-0,0030 (0.0059)
-0,0151 (0.0066)
0.0040 (0.0125)
-0.0492 (0.0137)
-0.0696 (0.0073)
-0.0696 (0.0116)

Random. Variances on diagonal; correlations off-diagonal
Leve 2 (Schoal)

E.Sc. core Biol. core Biol R3 Biol R4 Phys. core Phys. R2
E.Sc. core 0.0041
Bial. core 0.68 0.0076
Biol R3 051 0.68 0.0037
Biol R4 0.46 0.68 045 0.0183
Phys. core 0.57 0.90 0.76 0.63 0.0104
Phys. R2 054 0.78 0.57 0.65 0.78 0.0095
Level 1 (Student)
E.Sc. core Bial. core Biol R3 Biol R4 Phys. core Phys. R2
E.Sc. core 0.0206
Biol. core 0.27 0.0261
Biol R3 012 013 0.0478
Biol R4 0.14 0.27 0.20 0.0585
Phys. core 0.26 0.42 011 027 0.0314
Phys. R2 0.22 0.33 0.14 0.37 041 0.0449

We see that the intercorrdations at the student level are low and higher at the school leve.
Onereason for thisis the fact that there are few itemsin each subtest so that the reigbility of
the tests is rather low. This will decrease the correlations at the student level but less so at
the school leve. In chapter 10 we shall see how we can make corrections for unreligbility.
Because of the low rdiabilities the joint andys's does not result in a marked improvement in
efficiency when we compare this andysis with an analyss for a sngle subtest. For example,
if we fit a univariate modd for the Physics R2 subtest, using the 1226 students responding to
that subtest, we obtain fixed part estimates of 0.665 (0.0132) and -0.073 (0.0124) which
are close to those above and with standard errors only dightly higher.

In order to provide the most precise estimates we treated the subtests separately, athough
we would generdly wish to make inferences for each subject area, combining over the tests.
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The natural way to do thisis to form a weighted average of the subtest scores, in this case
weighting by the number of items in each subtest. This, for the biology core and subtests we
would form the weighted sum with weights 0.556, 0.222 and 0.222 respectively. This gives
edimates for the boys and (girls - boys) of 0.68 (0.009) and -0.02 (0.007). We can

compare this with the weighted combination of the core and two subtests, diminating any
gudents with missing data. This results in only 399 students with complete data and the
corresponding estimates are 0.68 (0.013) and -0.008 (0.015). In this case, even though the
individud levd 1 corrdaions are rdaivdy amdl, the gan in eficdency is subdantid,

especidly for inferences about the gender difference which in the second andysisislessthan
its standard error.

Another way to combine the subtests would be to form, for each student, a score based
upon the items which the student responded to. Thus, for Biology the 399 students taking
the core and both rotated forms would have a score out of 18 items; and there would be
823 and 807 students respectively with scores out of 14 items with 410 students having only
ascore out of the core test. Since the scores are out of different total's, we would expect the
between student and between-school variances to differ and this is the case; the between
student variance for the 10 core test score is 0.00013 compared to that for the 18 item core
and two rotated forms score of 0.00021. Thus, we would need to fit separate variance and
covariance terms in generd for each of the combination and in effect treat the four
combinations as separate responses in order to obtain efficient estimates. Furthermore, we
would aso tend to obtain high correlaions between these combination scores that could
leed to numericd edimation problems, so that in genera this procedure is not
recommended.

4.5 Principal Componentsanalysis

We have dready seen in section 4.1 that the covariance matrix for a multivariate response
vector where there are missing data can be efficiently estimated by arranging for the
multivariate structure to condtitute a 'dummy’ level 1. When the variables have a multivariate
digribution the resulting estimates are maximum likelihood or restricted maximum likelihood.

Theam of principa components andyssisto find alinear function of aset of variateswhich
has the maximum variance, subject to a suitable condraint. In the single level case we
require to maximise the variance of w'y where W is the vector of weights defining the linear
function of the variates y, and W isthe covariance matrix of y, namdy

L=wWv, ww=1

The solution is given by the eigenvector associated with the largest eigenvaue of W, that is
the solution of

W- 11]=0 (4.11)

We define a second function by the set of weights that maximises the variance subject to the
function being uncorrdaed with the first function. The solution is given by the eigenvector
asociated with the second largest eigenvaue, and subsequent functions can be defined
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amilarly (Lawley and Maxwell, 1971). The variates are usudly standardised to have equd
variances.

We note that the covariance (or correation) matrix W can be a resdua matrix, after
regressng on explanatory variables. Thus, if we wished to form a principa component for
the four science subjects of the previous section, we may wish to use the residua covariance
matrix, after adjusting for gender differences. We now, however, have a choice of two
covariance matrices, the between-student and the between-school one. If we choose the
betweenstudent matrix, then we would interpret the principa component as that which had
been adjusted for school differences. In forming the derived summary variable(s) we would
not use the actual observed variaes but the level 1 estimates of them, that is the level 1
resduds, the y,;, Gy,; of (4.1).

We could aso choose to summarise the level 2 covariance matrix, and in this case we would
use the schoal level resduds as the variates in the linear function. If the principa component
andysis has been carried out on the residuas from a multivariate multilevd andyss then we
may wish to regard the school level principa component as a convenient summary measure
of school differences.

Table 4.5 shows the student level and school leve principd component weights for the
Science data. Since the measures are designed to be on the same scae we work directly
with the covariance matrices.

Table 4.12 Principal Component weights for science test scores and percentage variation
accounted for.

Subject Between-student Between-school
Earth Science Core 0.17 021
Biology Core 0.29 0.40
Biology R3 031 021
Biology R4 0.63 059
Physics Core 0.35 0.46
Physics R2 052 043
% variation 41% 2%

As might be expected, the components both have positive weights. At the school levd, the
percentage variation accounted for by the first component is high suggesting that school

Science performance may ussfully be summarised by this weighted function of the individud
schoal level subject resduas. Also, the two sets of weights are fairly smilar. This suggests
that if we wished to summarise the individua subject scores into a Sngle index, we could do
this using the student level weights, or even the weights obtained using the totd covariance
metrix.

4.6 Multiple Discriminant analysis

Given a st of variates we can seek a linear function of them that best discriminates among
groups and this leads to the following definition. If Y is the vector of group means then we
require a set of weights W such that w'y has maximum variance, subject to the within-
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group variance of w'y being constrained, for example equal to 1.0. The solution is the
vector associated with the largest root of

|WB- IWN|:O

for the between-group (W;) and within-group (W) covariance matrices. For just two
groups this gives the usud 'Fisher’ discriminant function. As in Principd Components
andysis we can find further vectors that discriminate best, subject to being uncorrdated with
al the previous vectors. The function of the variates w 'y can then be used, for example, to
classfy anew unit into the 'nearest’ group.

In the 2-level case our groups are the level 2 units so that we require the covariance
matrices from both levels. Usng the Science data example the first vector is given by the
weights 0.41 -0.07 1.00 0.26 0.31 0.13 and explains for about 48% of the variation. The
next two vectors account for 19% and 13%. It is difficult to interpret these weights and the
function would seem to have limited usefulness for discriminating between schools.

4.7 Other Procedures

There are other gpplications of multivariate modds and we will be usng many of the results
of this chapter later. We shall aso see in chapters 5 and 7 how mixtures of continuous and
discrete response variables can be handled using extensons to the procedures of this
chapter. The &bility to modd bivariate responses is used in chapter 9 to ded with event
duration models.
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Chapter 5
Nonlinear multilevel models

5.28 Nonlinear models

The models of Chapters 1-4 are linear in the sense that the response is a linear function of
the parameters in the fixed part and the eements of V are linear functions of the parameters
in the random part. In many applications, however, it is appropriate to consder modes
where the fixed or random parts of the modd, or both, contain nonlinear functions. For
example, in the sudy of growth, Jenss and Bayley (1937) proposed the following function
to describe the growth in height of young children

yij =a, +altij + uan Ut +eaij - &Xp (bo +b1tij + ubOj +ub1jtij +ebij) (5.12)

a1jij

where t; is the age of the j-th child a the i-th measurement occasion. Generdised linear

modes (McCullagh and Nelder, 1989) are a specid case of nonlinear models where the
response is a nonlinear function of a fixed part linear predictor. Models for discrete data,
such as counts or proportions fal into this category and we shdl devote chapter 7 to
studying these. For example, a2-level log linear mode can be written

E(M)=p;, P; =exp(X;b);) (513

where m; is assumed typicaly to have a Poisson digtribution, in this case across level 1

units. Note here, that in the multilevel extension of the andard single levd modd, the linear
predictor contains random variables defined at level 2 or above.

In this chapter we consider a generd nonlinear modd. Later chapters will use the results for
particular applications.

5.29 Nonlinear functions of linear components

The following results are an extension of those presented by Goldstein (1991) and gppendix
5.1 gives detals. Where the random variables are not part of the nonlinear function, the
procedure gives maximum likelihood estimates (see gppendix 5.1). In the case where the
level 1 variation is non Norma the procedure can be regarded as a generdisation of
quasilikdihood estimation (McCullagh and Nelder, 1989) and such modds are discussed in
chapter 7.

Redtricting attention to a 2-level structure we can write afairly generd modd asfollows
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yij = Xlijbl+ ('jz)ulj + (']Delij + f (X2ijb2 +Z§§)U2j +Zz(ilj)92ij)+--- (5.19)
where the function f is nonlinear and where the +... indicates that additional nonlinear
functions can be included, involving further fixed part explanatory varidbles X or random
part explanatory variables a levels 1 and 2, respectivdly Z®, Z@. The modd is first
linearised by a suitable Taylor series expanson and this leads to consideration of a linear
model where the explanatory varidbles in f are transformed using firg and second
derivatives of the nonlinear function. Note that the linear component of (5.3) istreated in the
dandard way, and that the random variables a a given leve in the linear and nonlinear
components may be correlated.

Congider the nonlinear function f . Appendix 5.1 shows that we can write this as the sum

of afixed part component and a random part. The Taylor expanson for the random part up
to a second order gpproximation for the ij-th unit isas follows

fij = fij (Heen) +(Z§ﬁ)u2j +Z§ilj)ezij)fiﬂ(Ht)

HZDuy; + Z5ey ) f06H,) /2 (5.15)
The firgt term on the right hand dde is the fixed part vdue of f at the current ((t+ 1)-th)
iteration of the IGLS or RIGLS dgorithm, that is ignoring the random part. The other two
terms involve the firg and second differentids of the nonlinear function evauated at the
current values from the previous iteration. We have

2 1 — 2 1 2 _ 2 2
E(Zz(ij)UZj + Zz(ij)eZij) =0, E(Zz(ij)UZj + Zz(ij)eZij) =S, TS,
2 _ 52 @7 2 _ =) oT (5.16)
S a Z2ij WuZZij y S e ZZ'j WeZZ'j
We write the expansion for the fixed part value as
fi (Heg) = £ (H) + X (040 - byy) fit(H,) (5.17)
whereb, ,,, b,, arethe current and previousiteration vaues of the fixed part coefficients.

We can choose H, to be either the current value of the fixed part predictor, thet is X,;b,,

or we can add the current estimated residuas to obtain an improved gpproximation to the
nonlinear component for each unit. The former is referred to as a'margind’ (quasilikelihood)
modd and the latter as a 'penalised’ or "predictive (quasilikelihood) model (see Bredow and
Clayton, 1993, for afurther discussion). We can also choose whether or not to include the
term in (5.4) involving the second derivative and we would expect its inclusion in generd to
improve the estimates. Its incluson defines a further offset for the fixed part and one for the
random part (see appendix 5.1). We shdl illudrate the effect of these choices in the
examples given in chapter 7. Further detalls of the estimation procedure are given in
Appendix 5.1. In practice general models such as (5.1) may pose considerable estimation
problems. We notice that the same explanatory variables occur in the linear and nonlinear
components and this can lead to ingtability and failure to converge. Further work in this area
is required.
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Table 5.1 gives expressons for the first and second differentids for some commonly used
nonlinear models.

Table5.13 Differentialsfor some common nonlinear models.

Modd Eunction First differential Second differential
f(X) f (x) f «((x)
loglinear e* e* e*
logit (1+e ) (A+e) ' @+e)t  (1+e)'(a+e)?(1- e
log-log e-ex e & (e - De'e e
inverse X! - X2 2% 3

5.30 Estimating population means

Congder the expected vaue of the response for a given set of covariate values. Because of

the nonlinearity thisis not in general equd to the predicted value when the random variables
in the nonlinear function are zero. For example, if we write the variance components mode

(5.2

p; =exp(by+ byx; +u;)

and assuming Normadlity for u; we obtain

¥
E(p,1%) = exp(b, +b,x,) G"F (u;)du, = exp(b, +b,x; +s 2/2)
-¥

Where f isthe dengty function of the Normd distribution. Zeger et d (1988) congder this
issue and propose a ‘population average mode for directly obtaining population predicted
vaues by diminating random variables from the nonlinear component. In generd, however,
this gpproach is less efficient when the full mode with random variables within the nonlinear
function is the correct modd. The population predicted vaues, conditionad on covariates,
can be obtained if required, as above, by taking expectations over the population. An
gpproximation to this can be obtained from the second order terms in (5.1.4) with higher
order terms introduced if necessary to obtain a better gpproximation. Alternatively we may
generate alarge number of smulated sets of vaues for the random variables and for each set
eva uate the response function to obtain an estimate of the full population distribution.

5.31 Nonlinear functionsfor variances and covariances

We saw in chapter 3 how we could model complex functions of the leve 1 variance. As
with the linear component of the mode, there are cases where we may wish to mode
variances or covariances as nonlinear functions. In principle we can do this a any level but
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we restrict our attention to level 1 and to the variance only. In chapter 6 we give an example
where the covariances are modelled in thisway.

Suppose that the level 1 variance decreases with increasing vaues of an explanatory variable
such that it gpproaches a fixed value asymptoticaly. We could then modd this for a 2-leve
modd, say, asfollows

var(e;) = exp(b, - b, X;)

where b, , b, are parameters to be estimated. Such amodel aso guarantees that the level
1 vaiance is pogtive which is not the case with linear models, such as those based on
polynomias. The estimation procedure is analogous to that described above and details are
givenin Appendix 5.1.

5.32 Examplesof nonlinear growth and nonlinear level 1 variance

We give firg an example of amode with a nonlinear function for the linear component and
we then consider the case of anonlinear level 1 variance function.

We use an example from child growth, condsting of 577 repeated measurements of height
on 197 French Canadian boys aged from 5 to 10 years (Demirjian et d, 1982) with
between 3 and 7 measurements each. This is a 2-levd dructure with measurement
occasions nested within children. We fit the following verson of the Jenss-Bayley curve to
illustrate the procedure

y; =exp(by + bt +b,t7 +bt +u, o +u, b ) +a, +e,; (5.18)

50 that the fixed part is an intercept plus a nonlinear component and the random part
variance a leve 2 is part of the nonlinear component. The results are given in table 5.2,
using the first order gpproximation with prediction based upon the fixed part only. We shdl
compare the performance of the different gpproximationsin chapter 7.

The levd 1 variance is smdl and of the order of the measurement eror of heght
measurements. The garting vaues for this model need to be chosen with care, and in the
present case the model was run to convergence without the linear intercept a, which was
then added with a starting value of 100. Bock (1992) uses an EM dgorithm to fit a nonlinear
2-level modd to growth data from age 2 years to adulthood usng amixture of threelogistic
Curves.

The second example uses the JSP dataset where we studied the level 1 variance in chapter
3. We will fit mode B of Table 3.1 with a nonlinear function of the levd 1 variance instead
of theleve 1 variance as a quadratic function of the 8-year-score. Thisleve 1 variance for
theij-thlevel 1 unitis exp(b, +b; x;;) and table 5.3 shows the model estimates.

The estimates are amost identicd to those of modd B of table 3.1 asisthe likdihood vaue.
Figure 5.1 shows the predicted level 1 variance for this modd and modd B of Table 3.1.
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Fig5.1Level 1varianceasafunction of 8-year Mathsscore

Table5.14 Nonlinear model estimateswith first order fixed part prediction. Ageis measured about 8.0 years.

Fixed coefficient Edgtimate(s.e)
Intercept (linear) 90.3

Intercept (nonlinear) 358

Age 0.15(0.10)
Age squared -0.016 (0.02)
Age cubed 0.002 (0.004)

Nonlinear model level 2 covariance matrix (s.e.)

Intercept Age
I ntercept 0.025 (0.003)
Age -0.0027 (0.0003) 0.00036 (0.00005)

Level 1variance =0.25

In these data the nonlinear function gives very smilar results to the quadratic one. It is clear,
however, that where the variance asymptoticaly approaches a constant vaue, for extreme
vaues of an explanatory variable, alinear or even quadratic gpproximation may be expected
to fail. In the present case alinear function does predict a negetive leve 1 variance within the
range of the data. An example where a nonlinear function is necessary is in growth deta,
described in chapter 6, where the level 1 (within-individud) variation will decresse towards
a congtant vaue at the approach to adulthood.
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Table5.15 Nonlinear level 1 variancefor JSP data.

Parameter Estimate (s.e.)
Fixed:

Constant 317

8-year score 0.58(0.03)
Gender (boys- girls) -0.34(0.27)
Social class (Non Man - Man) 0.76 (0.30)
School mean 8-year score 0.01(0.12)
8-yr score x school mean 8-yr score  0.02 (0.01)
Random:

Level 2

s 30 2.87(0.89)
Suo1 -0.17 (0.07)
S 51 0.012 (0.007)
Leve 1

b, 2.74.(0.06)
bl* -0.10 (0.02)

5.6 Multivariate Nonlinear M odels

We can use the procedures of this chapter to fit multivariaste models by ausing level 1 to
define the multivariate structure and usng the linearisation procedures described in this
chapter for higher levels. In generd, the response variables will have different nonlinear link
functions, some of which may be linear. Thus, for example we might fit a model where one
response, say a mathematics test score, is a linear function of explanatory variables and a
second response, say whether or not the student has a ‘podtive  attitude towards
mathematics, is binary. For each levd we will have variances for each response and
covariances among the coefficients random éat that level, where these are specified for the
transformed modd. Such amode is discussed in chapter 7.

We may dso have multivariate modds where the leve 1 variances are different nonlinear or
linear functions of explanatory variables with covariances between the coefficients in the
different nonlinear or linear functions.
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Appendix 5.1.

Nonlinear model estimation

5.1.33 Modelling linear components

We congder firgt only asingle nonlinear term of the form
= f (Xyb, +Z2u,, +Z{e,) (5.19.)

2ij
The addition of linear termsto thismoded is discussed in chapter 5
At the (t+ 1)-th iteration we expand (5.1.1) for both fixed and random parts as follows
/
fi (H) + X, (0,0, - b, ) F/(H) +
11
(2(2) (1)e2|] ) flj (H ) + (Zz(ﬁ)u + ZZ(I]J_)%ij )2 fij (Ht)/2

2ij 21 2ij

(5.1.20)

in terms of parameter vaues estimated at the t-th iteration. The first line of (5.1.2) updates
the fixed part of the mode and in the specia case of a Sngle level quaslikelihood modd

provides the updating function. The quantity f; (H,)- X, b, f; '(H,) istreated as an offset

to be subtracted from the response varidble. The first term in the second line defines alinear
random component based on the explanatory variables transformed by multiplying by the
firg differential. We need to specify H, and consder the distribution of the second term in
the second line of (5.1.2).

If we choose H, = X;b,,, thisis equivaent to carrying out the Taylor expansion around
the fixed part predicted value. If we choose H, = X;b, +Z50,, +Z{é,,, this expands

around the current predicted vaue for the ij-th unit and we replace the second line of
(5.1.2) by

(Zas, (U - Gy) + Z5 (5 - €)) i (H)

+(Zzij (u2j 21) + Zzu (e2ij - éZij))2 fij//(Ht)/Z

We thus have the further offset from the linear term to be added to the response
(Zas O + Z55/85) T (H)

A discusson of these gpproaches in the context of multilevel generdised linear models is
given by Bredow and Clayton (1993). Wolfinger (1993) synthesises some of the literature

based upon this ‘predictive’ approach. All these methods use only the first order termsin
(5.1.2).

From the second line of (5.1.2), where the Taylor expansion is about zero, we have
(2) (Y (2) @ 2 _o2 2
E( ij e2|]) 0 E( ZZlJ %ij) =S +Sze

-7 T — 7@ (1)T (5.1.21)
Szu = ZZij VVuZZij ) Sze = Z;;W.Z5;
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To incorporate the second order terms we treat (s 2 +s %) f"/(H,) /2 as an additiond
offset in the fixed part and in the random part of the model we need to consider the variation
of the second term in the second line of (5.1.2). If we assume Normadlity then dl third
moments, formed from the product of the two terms in the second line of (5.1.2), are zero
and we have

Var(zéi?uzj +Zz(i1j)eZij)2 =2(s iu +S je) (5.1.22)
90 that we need to define the additional random variables
Z,=sat"(H) 142, Zy=s%t"(H) /142

which are uncorrelaed and with variances constrained to be equa to 1.0. Equivalently we
canform Z:Z", ZZ. as offsets for the response vector vec(Y Y") in the estimation of

the random parameters. Having modified the response variable by removing the necessary
offsets we are left in the fixed pat with a modified response, say Y( with a modified
explanatory variable matrix, say X(. We do likewise for the random part of the modd and
then carry out a sandard iterative procedure, updating the differentid functions at each

iteration

Where the Taylor expansion is taken about the current values of the resduas we require
(2) ~ 2 (1) A 2
E[Z; (Uy; - Uy;)]” + E[Zy (& - &;)]

which leads to the ‘ conditiond’ variances described in Appendix 2.2, o that we substitute
these variances, W, and W; , for W, and W, in the dove expressons for the fixed and

random offsets.

To edimate resduas we note that, having adjusted the response using the offsets, we have
on the right hand side of the modd, for the Taylor expansion about zero, the fixed part
together with the random terms

(Zz(ﬁ)UZj + Zz(;)ezij) fij/(Ht) +[(Zéi?uzj' + Zz(ﬁ)ezij )2 - (s iu +S ie)] fij//(Ht) /2

Each resdud and its square appear in this expresson, and since third order moments are
zero, we can gpply the usud linear estimation for the residuas as described in Appendix 2.2.
The weight matrix V is based upon both the linear and quadratic terms of the above
expression. We carry out an anaogous procedure for the case where the Taylor expansion
is based upon the current residua estimates.

The above can be extended in a straightforward way to more than two levels and of course
to multivariate models. For the first order gpproximation the procedure outlined here is
closdly rdated to that given by Lindstrom and Bates (1990) for 2-level repeated measures
data who consder a first order expanson about the unit-specific predicted vaues.
Gumpertz and Pantula (1992) consder a variance components modd where the fixed part
predictor is nonlinear.

For generdised linear modds Waclawiw and Liang (1993) consder a generdised estimating
equations approach (see chapter 2), usng a unit-specific predictor. A full likelihood based
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method for a repeated measures model with binary responses is given by Garret et d.
(1993).

For smdl samples, as discussed in Appendix 2.1, we should use the unbiased (RIGLS,
REML) procedure to obtain corresponding unbiased quasilikelihood estimates.

5.1.34 M odelling variances and covariances as nonlinear functions

In section 2.6 we saw that the random parameters were estimated by regressng the
observed cross-product matrix of resduas on a set explanatory variables which defined the
gppropriate variances and covariances a each level. Using the notation in Appendix 2.2 we
have the following linear modd for the random parametersb”

Y =vec(YYT) = X'b", E(Y") =vec(V) (5.1.23)

We can now apply the same procedure for the specification and estimation of a nonlinear
mode as above. We illudrate this for the case where the level 1 variance is an exponentia
function of a covariate X, defined in terms of the Kronecker product asin Appendix 2.2,
namdly for the t-th dement of X'b”™ (which is on the diagond of V) the level 1 variance
contribution is

si=f()=exp(byx, +b;x,), X, ={x}, b’ : (5.1.24

)

P o O *
Q I-O

_ab
&

As in the linear function case we form the firdt differential f' = f , multiply X, , X, by this

and edimate the parameters of the resulting trandformed linear modd. This will involve
introducing an offset for Y© and congtructing the following level 1 explanatory varigbles for
the estimation of b ", setting their covariance to zero

{Xo xP(boXe +byx )}, {3, exp(boXy +byx )}

Because we are esimating only nonlinear functions of linear components here and not
adding approximations to a further random component, the estimates obtained are exact
maximum likelihood or restricted maximum likelihood estimates.

In chapter 5 we give an example of modd (5.1,6) and in chapter 6 we develop a specid
case of a nonlinear mode for covariances. We note that the parameters b, b, are not
necessarily positive when moddling (5.1.6) and athough we would normaly regard such
level 1 parameters as variances, in this case as in section 3.1 they are Smply parameters to
be edimated. As with nonlinear moddling in generd it is important to have reasonable
dating vaues These might be obtained by trid and eror or by making preiminary
edimates of variances for various vaues of the rdlevant explanatory variable and regressing
their logarithms on the level 1 explanatory variables.
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5.1.35 Likelihood values

The log likelihood for the generd multilevel modd, gpart from a congtant and assuming
multivariate Normdity is given (Appendix 2.2) by

logL =- tr(V''S)- loglV[, S=YT, Y=Y-Xb (5.1.25)

An gpproximation to this for nonlinear models of alinear component is given by subdtituting
the nonlinear function f(Xb) for Xb in (5.1.7) with the transformed random parts of the
mode! incorporated into V in the usua way. If we use the predicted resduds to form H,

then we omit these from the likdlihood calculation but add the offset term defined in (5.1.2)
to Xb. Likewise, in the second order model, we have to add the corresponding offsetsto V.
This procedure is equivalent to computing the ordinary likelihood using the modified
response and explanatory variables Y(, X« at convergence.

The edimates of - 2loc L computed in this way can be used for approximate tests of
hypotheses and for congructing confidence intervals. In chapter 7 when we consider
discrete data models with non Normd level 1 random variation (for example binomid) we
may often be able to treat this variation as gpproximately Norma and carry out the same
procedure and such a procedure will give us an gpproximate log quasilikelihood which may
be used smilarly. In some cases, however, for example when the responses are binary (0,1)
this datigtic is too unreliable to use and we can base gpproximate inferences upon the
esimated variances and covariances of the parameters. More accurate inferences based
upon bootstrap confidence intervals can be obtained as described in Chapter 3.

When modelling variances and covariances as nonlinear functions the estimates obtained are
exact maximum likdihood asisthevaueof -2loc L.
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Chapter 6
Repeated measuresdata

6.36 M odelsfor repeated measures

When measurements are repeeted on the same subjects, for example students or animals, a
2-levd hierarchy is established with measurement repetitions or occasions as level 1 units
and subjects as leve 2 units. Such data are often referred to as ‘longitudina’ as opposed to
‘cross-sectiona’ where each subject is measured only once. Thus, we may have repested
measures of body weight on growing animas or children, repested test scores on students
or repeated interviews with survey respondents. It is important to distinguish two classes of
models which use repested measurements on the same subjects. In one, earlier
measurements are treated as covariates rather than responses. This was done for the
educationa data analysed in chapters 2 and 3, and will often be more gppropriate when
there are a small number of discrete occasions and where different measures are used at
each one. In the other, usudly referred to as ‘repested measures modds, dl the
measurements are treated as responses, and it is this class of modes we shdl discuss here.
A detalled description of the digtinction between the former ‘conditiond’ modds and the
latter 'unconditional’ models can be found in Goldstein (1979) and Plewis (1985).

We may aso have repetition at higher levels of a data hierarchy. For example, we may have
annual examindtion data on successve cohorts of 16-year-old students in a sample d
schoals. In this case the school isthe levd 3 unit, year isthe leve 2 unit and student the level
1 unit. We may even have a combination of repetitions at different levels: in the previous
example, with the students themsaves being measured on successve occasions during the
years when they take their examination. We shdl dso look at an example where there are
responses a both level 1 and leve 2, that is specific to the occasion and to the subject. It is
worth pointing out that in repeated measures moddstypicaly most of the variaionis et leve
2, 0 that the proper specification of a multilevel mode for the data is of particular
importance.

The link with the multivariate data models of chapter 4 is aso gpparent where the occasions
are fixed. For example, we may have measurements on the height of a sample of children at
ages 11.0, 12.0, 13.0 and 14.0 years. We can regard this as having a multivariate response
vector of 4 responses for each child, and peform an equivadent analyss, for example
relaing the measurements to a polynomid function of age. This multivariate approach has
traditionaly been used with repeated measures data (Grizzle and Allen, 1969). It cannat,
however, ded with data with an arbitrary spacing or number of occasions and we shdl not
congder it further.

In dl the models conddered s0 far we have assumed that the level 1 resduds are
uncorrelated. For some kinds of repeated measures data, however, this assumption will not
be reasonable, and we shdl investigate models which dlow a serid corrdation structure for
these resduds.
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We ded only with continuous response variables in this chapter. We shdl discuss repesated
measures models for discrete response data in chapter 7.

6.37 A 2-level repeated measur es model

Congder adata set congsting of repested measurements of the heights of a random sample
of children. We can write a smple modd

Yi =bo +byX; +e (6.26)

This model assumes that height (Y) is linearly related to age ( X)) with each subject having
their own intercept and dope so that

E(boj)=bo, E(blj)=b1
var(by) =S5, var(by)=sy, cov(by,b,)=s.,, va(g)=s:

Thereis no redtriction on the number or spacing of ages, so that we can fit a sngle model to
subjects who may have one or severa measurements. We @n clearly extend (6.1) to
include further explanatory variables, measured ether at the occasion leve, such as time of
year or date of hedth, or at the subject level such as birthweight or gender. We can dso
extend the basic linear function in (6.1) © include higher order terms and we can further
model the level 1 residud o that theleve 1 variance is afunction of age.

We explored briefly a nonlinear mode for growth measurements in chapter 5. Such models
have an important role in certain kinds of growth moddling, especidly where growth
gpproaches an asymptote as in the gpproach to adult status in animals. In the following
sections we shdl explore the use of polynomia modds which have a more generad
applicability and for many gpplications are more flexible (see Goldstein, 1979 for a further
discusson). We introduce examples of increasing complexity, and including some nonlinear
models for level 1 variaion using the results of chapter 5.

6.38 A polynomial model example for adolescent growth and the prediction
of adult height

Our firgt example combines the basic 2-leve repeated measures mode with a multivariate
modd to show how a generd growth prediction model can be constructed. The data consst
of 436 measurements of the heights of 110 boys between the ages of 11 and 16 years
together with measurements of their height as adults and estimates of their bone ages a each
height measurement based upon wrigt radiographs. A detailed description can be found in
Goldstein (1989b). We first write down the three basic components of the modd, starting
with a smple repeated measures modd for height using a 5-th degree polynomid.

5 2
1 8 (D h 2 (D h (€N}
Yim =a bn X ta Uy’ X +e
o TS (6.27)

where the level 1 term €; may have a complex structure, for example a decreasing variance
with increesing age.
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The measure of bone age is aready standardised since the average bone age for boys of a
given chronologica age is equd to this age for the population. Thus we modd bone age
usng an ovedl constant to detect any average departure for this group together with
between-individua and within-individud varigion.

1
P =5+ 8 uP + 6

h=0 (6.28)
For adult height we have a smple mode with an overdl mean and leve 2 vaiation. If we
had more than one adult measurement on individuals we would be gble to estimate dso the
leve 1 variation among adult height measurements; in effect measurement errors.

y? =b{ +u? (6.29)
We now combine these into asingle modd using the following indicators
d{V =1, if growth period measurement, O otherwise
d{? =1, if bone age measurement, 0 otherwise
d¥¥ =1, if adult height measurement, O otherwise
® ® ® DY+ d@(h@ + & (D 4 e
=dj (a b +au X +e?)+d P (by? +a uPx; +67)
h=0
(6.30
+d(3)(b(3)+u ) )

At level 1 the smplest modd, which we shal assume, is that the resduds for bone age and
height are independent, athough dependencies could be created, for example if the modd
was incorrectly specified at level 2. Thus, leved 1 variation is specified in terms of two
variance terms. Although the modd is drictly a multivariate model, because the level 1
random variables are independent it is unnecessary to specify a 'dummy’ level 1 with no
random variation as in chapter 4. If, however, we alow correlation between height and bone
age then we will need to specify the modd with no variation at leve 1, the variances and
covariance between bone age and height at level 2 and the between-individud variation &
leve 3.

Table 6.1 shows the fixed and random parameters for this model, omitting the estimates for
the between-individud variaion in the quadratic and cubic coefficients of the polynomia

growth curve. We see that there isalarge correlation between adult height and height and
amdl corrdations between the adult height and the height growth and the bone age
coefficients. This implies that the height and bone age measurements can be usad to make
predictions of adult height. In fact these predicted vaues are Smply the estimated residuas
for adult height. For a new individud, with information available & one or more ages on
height or bone age, we smply estimate the adult height resdua using the model parameters.
Table 6.2 shows the estimated standard errors associated with predictions made on the
basis of varying amounts of informetion. It is dear that the main gain in efficiency comes with
the use of height with asmdler gain from the addition of bone age.
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Table6.16 Height (cm) for adolescent growth, bone age, and adult height for a sample of boys.
Age measured about 13.0 years. Level 2 variances and covariances shown; correlationsin

brackets.

Parameter
Fixed

Adult Height
Intercept
Group (A-B)

Height:
Intercept
Age
Age 2
Age3
Age*
Age5
Bone Age:
I ntercept
Age

Random
Level 2

Adult Height
Adult Height 62.5
Height intercept 495 (0.85)
Age 1.11(0.09)
Bone Agelntcpt. 057 (0.08)

Level 1 variance
Height 0.89
Bone age 0.18

Estimate (s.e.)

1744
0.25 (0.50)

1530
6.91 (0.20)
043 (0.09)

-0.14(0.03)
-0.03(0.01)
0.03 (0.03)

021 (0.09)
0.03 (0.03)

Heightintercept  Age

54,5
1.14(0.09) 25
3.00 (0.44) 0.02 (0.01)

Bone Age Intcpt.

0.85

The method can be used for any measurements, either to be predicted or as predictors. In
particular, covariates such as family size or socid background can be included to improve
the prediction. We can aso predict other events of interest, such as the etimated age at

maximum growth veloaity.

Fig 6.17 Standard errors for height predictions for specified combinations of height and bone age

measur ements.

Bone age measures
None

110

Height measures (age)

None 11.0 11.0
120

43 4.2

79 39 38
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110 120 79 3.7 3.7

6.39 M odelling an autocorrelation structure at level 1.

So far we have assumed tha the level 1 resduas are independent. In many Stuations,
however, such an assumption would be fase. For growth measurements the specification of
level 2 variation serves to mode a separate curve for each individua, but the between-
individud variation will typicaly involve only a few parameters, as in the previous example.
Thus if measurements on an individuad are obtained very close together in time, they will tend
to have smilar departures from that individud's underlying growth curve. That is, there will
be ‘autocorrelation’ between the level 1 residuas. Examples arise from other aress, such as
economics, where measurements on each unit, for example an enterprise or economic
systemn, exhibit an autocorrelation structure and where the parameters of the separate time
seriesvary across units at level 2.

A dealed discussion of multilevel time series modds is given by Goldgtein et d (1994).
They discuss both the discrete time case, where the measurements are made at the same
st of equad intervds for dl level 2 units, and the continuous time case where the time
intervas can vary. We shdl develop the continuous time mode here since it is both more
generd and flexible.

To smplify the presentation, we shdl drop the level 1 and 2 subscripts and write a genera
model for the level 1 residuds asfollows

cov(ee, ) =s2f(9) (6.31)

Thus, the covariance between two measurements depends on the time difference between
the measurements. The function f (s) is conveniently described by a negative exponentia
reflecting the common assumption that with increasing time difference the covariance tends
to afixed vaue, as?, and typicaly thisis assumed to be zero

f(s) =a +exp(- g(b, z9)) (6.32)

where b isavector of parameters for explanatory variables z. Some choices for g are given
in Table 6.3.

We can gpply the methods described in Appendix 5.1 to obtan maximum likelihood
estimates for these modds, by writing the expansion

f(sh,2) ={1+§lk b, z.9(H)}f (H,) - %bk,tﬂzkg(Ht)f(Ht) (633
)

s0 that the modd for the random parametersis linear. Full detalls are given by Goldsten et
a (1994).
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6.40 A growth model with autocorrelated residuals

The data for this example consst of a sample of 26 boys each measured on nine occasions
between the ages of 11 and 14 years (Harrison and Brush, (1990). The measurements were
taken gpproximately 3 months apart. Table 6.4 shows the estimates from a model which
assumes independent level 1 resduds with a congtant variance. The modd dso includes a
codne term to moded the seasond variation in growth with time measured from the beginning
of the year. If the seasonal component has amplitudea and phaseg we can write

a cos(t +g) =a, cos(t) - a, sin(t)
In the present case the second coefficient is estimated to be very close to zero and is set to

zero in the following modd. This component results in an average growth difference between
summer and winter estimated to be about 0.5 cm.

We now fit in table 6.5 the mode with g = b, which is the continuous time version of the
first order autoregressive model.

The fixed part and level 2 estimates are little changed. The autocorreation parameter implies
that the correlation between residuals 3 months (0.25 years) apart is 0.19.
Table 6.18 Some choicesfor the covariance function g for level 1 residuals.

g-= bOS For equal intervalsthisisafirst order
autoregressive series.

_ 2 2 . . L
g= bOS + bl(tl + tz) + b2 (t1 + t2 ) For.tlme.pomtstl, tz. th|5|mpllesthat the
varianceis a quadratic function of time.

1 b.sif no replicate For replicated measurements this gives an
g= | 0 estimate of measurement reliability
i b, if replicate exp(-b,).
g=(b,+byz, +b,z,;)s The covariance is allowed to depend on an
) : individual level characteristic (e.g. gender)
and atime-varying characteristic (e.g. season
of the year or age).
N -1 Allows aflexible functional form, wherethe
g ::'bOS+bls , >0 time intervals are not close to zero.
1

0, s=0
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Table6.19 Height asa fourth degree polynomial on age, measured about 13.0 years. Standard errors
in brackets; correlationsin bracketsfor covarianceterms.

Parameter
Fixed
I ntercept

age
age’
3
age
age*
cos (time)

Random
leve 2

Intercept
age

Egtimate(s.e)

1489
619 (0.35)
217 (0.46)

0.39(0.16)
-155(0.44)
-0.24 (0.07)

Intercept age

616 (17.1)
8.0(0.61) 2.8(0.7)
14(0.22) 09(0.67)

0.20 (0.02)

age’

0.7 (02)

Table 6.20 Height asa fourth degree polynomial on age, measured about 13.0 years. Standard errors
in brackets; correlationsin bracketsfor covariance terms. Autocorrelation structurefitted for level 1

residuals.
Parameter

Fixed
Intercept

age”
cos (time)

Random
leve 2

I ntercept

Estimate(s.e)

1489
6.19(0.35)
2.16 (0.45)

0.39(0.17)
-155(0.43)
-0.24.(0.07)

Intercept age

615 (17.1)
7.9(0.61) 2.7(0.7)
1.5 (0.25) 09(0.69)

023 (0.04)
6.90 (2.07)

age’

06(02)
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6.41 Multivariaterepeated measures models

We have dready discussed the bivariate repeated measures mode where the leve 1
resduas for the two responses are independent. In the generd multivariate case where
correlations e level 1 are dlowed, we can fit a full multivariate modd by adding a further
lowest level as described in chapter 4. For the autocorrelation modd this will involve
extending the modds to include cross corrdations. For example for two response variables
with the modd of table 6.5 we would write

g =SS, eXP(- b1,9)

The specid case of a repeated measures model where some or al occasonsarefixed is of
interest. We have dready dedt with one example of this where adult height is treated
separately form the other growth measurements. The same agpproach could be used with, for
example, birthweight or length at birth. In some studies, dl individuas may be measured at
the same initia occason and we can choose to treat this as a covariate rather than as a
response. This might be gppropriate where individuas were divided into groups for different
trestments following initid measurements.

6.42 Scaling acrosstime

For some kinds of data, for example educationd achievement scores, different
measurements may be taken over time on the same individuds so that some form of
gandardisation may be needed before they can be modeled usng the methods of this
chapter. It is common in such cases to standardise the measurements so that at each
measuring occasion they have the same population ditribution. If thisis done then we should
not expect any trend in ether the mean or variance over time, dthough there will ill, in
general, be betweenindividud variation. An dternative standardisation procedure is to
convert scoresto age equivalents, that isto assgn to each score the age for which that score
is the population mean or median. Where scores change smoothly with age this has the
atraction of providing a readily interpretable scale. Plewis (1993) uses a variant of thisin
which the coefficient of variation a each age is dso fixed to a congtant vaue. In generd,
different sandardisations may be expected to lead to different inferences. The choice of
gandardisation is in effect a choice about the gppropriate scale dong which measurements
can be equated o that any interpretation needs to recognise this. A further discusson of this
issueis given by Plewis (1994).

6.43 Cross-over designs

A common procedure for comparing the effects of two different trestments A, B, isto
divide the sample of subjects randomly into two groups and then to assign A to one group
followed by B and B to the other group followed by A. The potentid advantage of such a
design is that the betweenindividud variation can be removed from the trestment
comparison. A basic model for such a design with two treatments, repested measurements
onindividuas and asingle group effect can be written as follows
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Vi = Do+ DXy + DXy + Uy + Uy X 6 (6.34)

where X, isadummy variable for time period and X, isadummy varigble for trestment.
In this model we have not modelled the responses as a function of time within trestment, but
this can be added in the standard fashion described in previous sections. In the random part
at level 2 we dlow betweenindividud variation for the trestmert difference and we can dso
gructure the level 1 variance to include autocorrdation or different variances for each
trestment or time period.

One of the problems with such designsis so called ‘carry over’ effects whereby exposure to
an initid trestment leaves some individuals more or less likely to respond postively to the
second treatment. In other words, the u,; may depend on the order in which the trestments
were gpplied. To modd this we can add an additiona term to the random part of the modd,
sy U, dy; , where dg; isadummy variable which is 1 when A precedes B and the second
trestment is being applied and zero otherwise. Thiswill dso have the effect of dlowing leve
2 variances to depend on the ordering of treatments. The extenson to more than two
trestment periods and more than two trestments is straightforward.
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Chapter 7
Discreteresponse data

7.44 M odelsfor discreteresponse data

All the modds of previous chapters have assumed that the response variable is continuoudy
digtributed. We now look at data where the response is essentialy a count of events. This
count may be the number of times an event occurs out of afixed number of ‘trids in which
case we usudly ded with the resulting proportion as response: an example is the proportion
of deathsin a population, classfied by age. We may have a vector of counts representing
the numbers of events of different kinds which occur out of a tota number of events an
example is given in chapter 3 where we studied the number of responses to each, ordered,
category of a question on abortion attitudes.

Statisticad models for such data are referred to as ‘generdised linear models (McCullagh
and Nelder, 1989). A 2-level modd can be written in the generd form

pi; = f(Xb;) (7.35)

where P;; is the expected value of the response for the ij-th level 1 unit and f isanonlineer
function of the ‘linear predictor’ X;; b ;. Note that we alow random coefficients at level 2.
The modd is completed by specifying a digtribution for the observed response Y Ip i
Where the response is a proportion this is typicaly taken to be binomia and where the
response is a count taken to be Poisson. Equation (7.1) is a pecid case of the nonlinear
model studied in chapter 5 and we shdl be using the results given there. It remains for us to

goecify the nonlinear ‘link’ function f. Table 7.1 lists some of the standard choices, with
logarithms chosen to base e.

In addition to these we can dso have the ‘identity’ function f *(p)=p , but this can
cregte difficulties dnce it dlows, in principle, predicted counts or proportions which are
respectively lessthan zero or outside the range (0,1). Nevertheless, in many cases, using the
identity function produces acceptable results which may differ little from those obtained with
the nonlinear functions. In the following sections we consider each common type of model
in turn with examples.

Table7.21 Some nonlinear link functions.

Response f- 1(p ) Name
Proportion |0g{ (p ) / (]_- P )} logit
Proportion log{- log(1- p)} complementary log log
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Vector of proportions |0g(ps / pt) (s=1...,t-1 multivariate logit

Count log(p ) log

7.45 Proportionsasresponses

Consider the 2leve variance components modd with a sngle explanatory variable where
the expected proportion is modelled using alogit link function

Py ={1+exp(-[b,+ bx; + Lbj])}-l (7.36)

The observed responses Y; are proportions with the standard assumption that they are
binomidly digtributed

y; ~ Bin(p;,ny) (7.37)
where I; is the denominator for the proportion. We aso have
Var(yijlpij) :pij(l' pij)/nj (7.38)

We now write the model in the standard way including the level 1 varidtion as

Yi =P + &7, zij=\/pij(1-pij)/nij, s.=1 (7.39)

Using this explanatory varidble Z and congraining the level 1 variance associated with this
to be one we obtain the required binomid variance in equation (7.4). When fitting a model
we can dso alow the level 1 variance to be estimated and by comparing the estimated
variance with the vaue 1.0 obtain atest for ‘extra binomid’ variaion. Such variation may
aise in a number of ways.

If we have omitted aleve in the modd, for example ignored household clustering in a survey
with one or more individuals sampled from a household, we would expect a greater than
binomia variation at the individud level. Likewise, suppose the individuas and households
were nested within areas and we chose to cdlassfy individuas, say by gender and 3 socid
class groups giving 6 cdls in each area. If we treat these as the level 1 units so that the
response is a proportion, then we no longer have a binomid variance since these
proportions are based upon the sum of separate binomid varigbles with differing
probabilities. Here the variance for cdl | within an areawould have the form

[E(p,)1- E(p,)-s?]/n,

where n, isthe cell size. To fit such amode we would specify an extralevel 1 explanatory
varisble equd to ]/\/ﬁ for the j-th cell, with variance parameter a level 1 which was
dlowed to be negative (see chapter 3). More generaly, we can fit a modd with an extra
binomid parameter together with a further term such as above to give the following leve 1
variance sructure (omitting subscripts)

[sep(1- p)+s;]/n
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We do not, of course, know the true value of p;; or p; sothat at each iteration we use

estimates based upon the current values of the parameters. Because we are using only the
mean and variance of the binomid digtribution to carry out the estimation, the estimation is
known as ‘ quadilikelihood' (see appendix 5.1).

Another way of moddling such extra binomia variation, which has certain advantages, isto
insert a ‘pseudo level’ above levd 1. Thus for individuas sampled within households, leve
1 would be thet of the individua and we would specify level 2 asthat of the individuas aso
to give exactly 1 leve 1 unit per leved 2 unit. We specify binomid varidion a leve 1 and &
level 2 we can now fit further random coefficients. For example, if we fit a random
coefficient for the explanatory variable with a variance which can be alowed to be negative

this is equivaent to specifying an extra leved 1 vaiable ]/\/n7 as above. In the above

J
example where individuds are classfied by gender and socid class we can create aleve 2
unit coinciding with each leve 1 unit, fit binomia variation a level 1 and add leve 2 variaion
which is a function of gender and cid class for example an additive function with 4
parameters (see chapter 3). We may wish to model the betweenarea variation of the cell
proportions in terms of a simple variance term, rather as inversely proportiond to n; . Inthis

case we would choose a Smple dummy variable structure rather than explanatory variables
proportiona to J/ﬁ This*pseudo level’ procedure israther amilar to the way in which a

meta andyss with known leve 1 variation is moddled (chapter 3).

In chapter 5 we made the digtinction between models where the current level 2 resdud
estimates were added to the linear component of the nonlinear function when forming the
Taylor expangon in order to work with alinearised model, and those cases where they were
not. The former is referred to as predictive quasilikdihood (PQL) and the latter margina
quasilikdihood (MQL). In many gpplications the MQL procedure will tend to underestimate
the values of both the fixed and random parameters, especialy where 1 is smal. In

addition we pointed out that greater accuracy is to be expected if the second order
goproximation is used rather than the first order based upon the firgt term in the Taylor
expanson. Also, when the ssample size is smdl the unbiased (RIGLS, REML) procedure
should be used. Appendix 7.1 gives expressions for the second differentials required for the
second order procedure. To illugtrate the difference table 7.2 presents the results of
smulaing the following modd where the responseis binary (0,1). The example assumes one
moderate and one large level 2 variance.

logit(p;;) = by + b yX; + Uy,
Yi ~ Bin(pij 1)

var(y,;) =05, 10
b,=05 b,=10

There are 50 level 2 units with 20 level 1 unitsin each leved 2 unit. The following results are
based upon 400 smulations of the above model for each variance vaue.
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Table 722 Mean values of 400 simulations. Empirical standard error in first bracket; mean of
estimated standard errorsin second bracket (IGLS).

Trues 2 =05

MQL first order
0.386(0.115)(0.130)
0.448(0.126)(0.129)

0.934(0.154)(0.147)

PQL second order
0.480(0.157)(0.152)
0.499(0.139)(0.138)

1.018(0.168)(0.154)

Trues 2 =10

MQL first order
0.672(0.157)(0.188)
0.420(0.145)(0.149)

0.875(0.147)(0.145)

PQL second order
0.964(0.278)(0.255)
0.500(0.171)(0.172)

1.017(0.171)(0.158)
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Here, the denominator is 1.0 in dl cases. It is clear that the MQL first order modd
underestimates al the parameter vaues, whereas the second order PQL mode produces
estimates close to the true values. The estimates given are based upon IGLS. In every case
convergence was achieved in less than 10 iterations. Very smilar estimates for the fixed
coefficients are obtained using RIGLS, and for the level 2 variances the PQL estimates
become 0.498 and 0.996 respectively, which are even closer to the true vaues. In addition,
the averages of the standard errors given by both models are reasonably close to those
caculated empiricaly from the replications. If we caculate 95% confidence intervas for the
parameters in the second order PQL model using the estimated standard errors and
assuming Normality then for the variance we find that about 91% of the intervasindude the
true value and for b, and b, about 95% do so. Hence, inferences about the true values
would not be too mideading. The results of Table 7.2 are based upon a balanced data set
with equad numbers of levd 1 units within each leve 2 unit. Further, limited, smulations
suggest that even where the data are very unbaanced, for example with some level 2 units
containing only a single level 1 unit, the PQL second order estimates remain close to the
true values. These estimates appear to have good properties even with average observed
probabilities as smal as 0.1 or aslarge as 0.9 and alevd 2 variance of 1.0 for the sample
gructure of this example.

More generdly, when the average observed probability isvery smdl (or very large), if many
of the leved 2 units have few leve 1 units and there are very few leve 2 units with large
numbers of level 1 units, we will often find that where the response is binary, there will be
many level 2 units where the responses are dl zero. In such a case convergence often may
not be possible and even where estimates are obtained, in generd they will not be unbiased.
This problem can be avoided by having a sufficient number of large level 2 units where there
is adequeate response heterogeneity, and in such cases we can obtain satisfactory estimates
even where the average probabilities are very smdl or large. Further work on this issue is
reported by Goldstein and Rasbash (1996). In dl the following examples of this chapter we
shall use the second order PQL estimates, athough in one case convergence could not be
obtained so that second order MQL estimates have been used.

7.46 An examplefrom a survey of voting behaviour

The data were collected as part of a series of surveys carried out in Britain between 1964
and 1992 known as the British Election Studies (Heath et d, 1991). The respondents were
interviewed following parliamentary generd eections and here we use the data from the
elections which took place in 1983, 1987 and 1992. The response is whether the
respondent voted for the Conservative party as opposed to the Liberal or Labour parties.
The response is either one (voted Conservetive) or zero, with the denominator aways equa
to one. Those who didn’'t vote or voted for other parties are excluded. The leve 2 unit isthe
year and the level 3 unit is the parliamentary congtituency Some congtituencies were sampled
in dl three years. There are 8052 leve 1 units, 780 level 2 units and 475 level 3 units. An
dternative formulation is to specify a2-level mode fitting variances and covariances for each
year at level 2. This uses 6 parameters, however, as opposed to
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Table 723 Weighted analysis of Conservative voting preference. Subscript v denotes level 3, subscript u
denoteslevel 2. AnalysisD isequally weighted. Binomial variation at level 1.

Modd Estimates(s.e)

Parameter A B C D

I ntercept 0.173 0.188 0.153 0.172
Pet. Bourg. (Class?2) 0.50 (0.09) 0.49 (0.09) 0.63 (0.16) 0.51 (0.09)

.Manua  (Class3) -0.88 (0.05) -0.91 (0.06) -0.85 (0.09) -0.89 (0.05)
1987 -0.05 (0.07) -0.06 (0.07) -0.04 (0.10) -0.05 (0.07)
1992 0.02 (0.08) 0.01 (0.07) 0.11 (0.10) -0.04 (0.08)

I nteractions

Sc2 x 1987 -0.24 (0.21)

Sc3 x 1987 0.02 (0.13)

Sc2 x 1992 -0.14 (0.22)

Sc3x 1992 -0.21 (0.14)

Random

S3 0.37 (0.05) 0.37 (0.07) 0.36 (0.07) 0.38 (0.05)

S0z -0.22 (0.09) -0.21 (0.09)

s 0.33(0.20) 0.33(0.21)

S0z -0.02 (0.06) -0.02 (0.06)

S22 025 (0.11) 0.24(0.11)

S 0.18 (0.09) 0.19 (0.09)

s? 0.04 (0.04) 0.03 (0.04) 0.03 (0.04) 0.05 (0.04)

u

two for the present model. In fact the present modd is equivaent to the 2-levd modd with
the assumption of a constant covariance between years and equal betweencondtituency
variance a each year. A preiminary test indicates that the 3-level modd is an adequate fit.

The explanatory variables used are year and socid class (classfied as Non-manud, Petty
Bourgeoise and Manua including foremen). Table 7.3 shows the results of 3 modds of
increasing complexity fitted to the data.

Also, fitting extra-binomia variation a leve 1 gives a variance etimate of 0.97 with a
gandard error of 0.16 indicating little departure from the binomia assumption.

In 1992 Scotland was oversampled so that each voter in Scotland had four times the
probability of incluson as one in the rest of Britain. Weighted andyses have been carried out
with voters in 1983 and 1987 having a weight of 1.0, those in Scotland in 1992 having a
weight of 0.28 and those in the rest of Britain in 1992 having a weight of 1.12 so that the
average weight in 1992 is 1.0. For comparison, the last column in Table 7.3 shows the result
of the unweighted (equaly weighted) andyss. The 1992 edtimate is now larger, reflecting
the fact that in 1992 Scotland was relatively more anti-Conservative. This illugtrates the
importance of weighting, as discussed in Chapter 3. If we include region as a factor in the
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modd, with Wales as the base category, we see that the weighted and unweighted andyses
again produce

Table 7.4 Analysis of Conservative voting preference, i ncluding Region; differentially weighted and
equally weighted. binomial variation at level 1.

Parameter Differentially weighted Equally weighted
I ntercept -0.461 -0.483
Petit Bourg. 0.48 (0.09) 0.50 (0.09)
Manual -0.85 (0.05) -0.85 (0.05)
1987 -0.05(0.07) -0.05 (0.07)
1992 -0.005 (0.07) 0.02 (0.07)
Scotland -0.05 (0.20) 0.07 (0.19)
North 0.33(0.17) 0.34(0.18)
Midlands 0.90 (0.18) 0.91(0.18)
Southwest 1.00 (0.20) 1.01(0.22)
Southeast 0.90 (0.17) 0.91(0.18)
Random
S \210 0.24 (0.04) 0.24 (0.04)
S io 0.025 (0.04) 0.043(0.04)

different results. This time the unweghted andyss overestimates support for the
Conservatives in 1992 overdl and especidly in Scotland, dthough as in Table 7.3 the
standard errors associated with these effects are large. Table 7.4 displays the reaults.

Figure 7.1 shows the Norma score plot for the congtituency (level 3) resduds. The extreme
vaues represent condtituencies with very high or very bw proportions of Conservative
voters. The smdler dope of the line in 7.1 a the extremes indicates a smdler variation
among these condituencies. Since such condituencies are typicdly associated with high
proportions of nortmanua and high proportions of manua voters respectively, we next fit a
modd where we alow different betweencongtituency variances for these groups, and the
results are shown as analyss B of 7.3. With (0,1) binary data the likdlihood ratio test
datigtic is unrdiable and s0 we carry out an gpproximate test on the random parameters for
the null hypothesis that the additiona variation for socid class groups 2 and 3 is zero. We
obtain an gpproximate chi squared of 13.3 on 5 degrees of freedom corresponding to a P
vaue of 0.02. The between-congtituency variance is the same for socid class groups 1 and
2 (0.36) but greater for the manua group (0.54). The remaining parametersin the mode are
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little changed and a normd resdud plot for the basic condituency resduds shows a
somewhat more linear relationship.

For the fixed coefficients, in andysis B a test for equdity of year effects produces a non
significant result (C 2 = 0.77). It is possible, however that there is an interaction between
socid class and year, that is there are year differences within socid class groups. Andysis
C shows the result of fitting the gppropriate interaction terms. A test for the sgnificance of
these gives a chi squared of 4.9 with 4 degrees of freedom, o that there does in fact seem
to be little evidence of any interaction.
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Figure 7.4 Normal residual plot for constituencies: AnalysisA in Table 7.3

7.47 Modelsfor multiple response categories

In this section we extend the model for a single proportion as outcome to the case of a set of
proportions, for example the proportions voting for dl three politicad parties in the example
of the previous section. The response is now multivariate and we can define a generdisation
of the ordinary logit model to define a multivariate logit as follows for a smple 2leve
variance components model

(S)
| IJ g_b(5)+b(5) + (s) =1 t-1
0og p (t) 1 )ﬂj Uj , S=1,...., (7.40)

where there are t response categories. Choosing one category (t) as the base category
avoids redundancy and a sngular covariance matrix and hence the need to introduce
generalised inverses into the edtimation. There are cases where this procedure is
ingppropriate and we discuss these below. Thus (7.6) specifies the mode for each of the

d

remaining t - 1 categorieswith @ p;" = 1. When t=2 this reduces to the ordinary logit
h=1

model.

We treet the t - 1 response categories as a multivariate response vector as described in
chapter 4 usng dummy variables with no variation at levd 1 and thetrue level 1 covariance
matrix specified a level 2. For example, in the case of the three response categories of the
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voting behaviour example, t=3 and we specify a bivariate model where level 2 describes the
betweentindividud variation. If we make the standard assumption that the observed
response proportions follow a multinomia digtribution then the level 2 covariance matrix has
the form

PPa- p) 0

] ] -

¢ P
q'jlg . . + (7.41)

¢ . . N

g - pij(l)p ij(t—l) . S pi?_l)(l' pijt_ 1))5

where n; is the tota number of responses over al categories. In the voting behaviour
example thisis dways one since each individua votes for just one party.

We can cresate the covariance structure (7.7) as follows. Define the explanatory variables

Zy =Py Iy, Zoy =Py 12N
7.42
Zgj = - Pjj /\/20" Pij :{pi(jS)} (7.:42)

and specify Z, to have arandom coefficient a level 1 with variance congtrained to 1.0 and
Z, Z, to have random coefficients a level 2 congtraining their variances to zero and their

covariance to 1.0. This produces the sructure (7.7) and extra multinomia variation can be
achieved by dlowing the variance and covariance to be different from 1.0 but constraining
them to be equa. Leve 3 then defines variation between higher leve units, for example
years or congtituencies.

The response vector itsdf is not redtricted to a single classification. Thus, suppose we had a
response which was an individud’s first voting preference crossclassified by their second
preference. This produces 9 response categories of which just one contains the vaue 1 for
eech individud. A ‘main effects mode extension to (7.6) would express the probability of
any particular combination of first and second preferences as an additive function of aterm
for the first and aterm for the second preference as follows

(1% 0
Ioggi” G—i=bg® +bi? +b{¥x, +b{¥x, +u* +ul, s=1,..,t-1
P @

For the random parameters it would be reasonable to attempt to fit a model where the

covariances between the uf®, u’*” were zero in order to reduce the number of random

parametersin the model.

To see how we can interpret the parameters of these models we write, from (7.6)

log(p;” /p§?)=(bg” - b?)+(b " - bT)x +(u" - u) (7.9)
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o that aunit change in x; multiplies the ratio of the r-th and s-th response probabilities by

exp(b " - b?). Likewise a difference of d in the residuas or in the intercept terms
multipliesthisratio by €

This formulation of the multicategory response modd is adequate for models such as (7.6)
where coefficients are fitted for each response category (except the base). There are other
models, however, where we may wish to fit a function defined across the categories. This
will often be the case when there are alarge number of ordered categories where we wish
to study linear, quadratic, etc. trends across the categories, dthough as we point out later
there will often be more satisfactory procedures for such cases based upon consideration of

the cumul ative probabilitiesp ', p . +p,.....

Where we do wish to treat the categories symmetrically and define a function across the

response categories we replace the intercept term bo(s) in (7.6) by such a function. If we
assume alinear function then (7.6) can be written as

(S)O
Iogg;(t)' o tGW +(bo+b W) +u?, s=1.t-1 (7.0

where W is the score assigned to category s. We might aso wish to structure the level 2
variation, for example writing u® = u,, +u,,w®. Such a model will be especialy useful

where the number of categories becomeslarge.

In (7.10) the choice of base category is no longer irrdevant since the score assigned to this
category does not gppear in the modd. We can avoid this difficulty by defining the
multivariate logistic over al the response categories 6=1,...,t) and in (7.10) the levd 2
resulting covariance matrix will not be sngular so long as the set of response  category
probabilities is predicted usng fewer responses than there are categories. An dterndive
formulation, using the Poisson with alog link function as described below, will often be more
convenient.

7.48 An example of voting behaviour with multipleresponses

We now look at the voting data, with the response being the 3-category choice of party;
Consarvative, Liberd or Labour. Table 7.5 gives the results of the andyss usng the same
explanatory variables as in Table 7.3 but omitting year at level 2. We have chosen Labour,
1983 and Non Manud as the base categories. The estimation uses the second order
gpproximation without residuas. It was not possible to obtain convergence for the
procedure using the expansion about the current residud estimates.

The reaults for the Conservetive voters are broadly in line with those from the analyss in
Table 7.3. For the Liberds we see that there is greater support among the manud socid
class than the petit bourgeoise and relaively more support in 1987 than either 1983 or
1992. At the condtituency level there appears to be little corrdation between the
Conservative and Libera support. It should be remembered, however, that we have only
fitted a variance components model a congtituency level and there may be more subgtantia

126



corrdations within socid class groups or in different years, but we shdl not pursue this
further.

Table 7.5 Analysisof Conservativeand Liberal voting preferences.

Modd Estimates(s.e)

Conservative Liberal
Intercept 0.86 (0.06) 0.22 (0.06)
Pet. Bourg. 0.29 (0.08) -0.36 (0.16)
Manual -1.07 (0.05) 0.46 (0.09)
1987 -0.09 (0.06) 0.20 (0.10)
1992 -0.25 (0.07) -0.13(0.10)
Random
Level 2:
variance 0.27 (0.04) 0.24 (0.04)
covariance 0.007 (0.03)

7.49 Modelsfor counts

Instead of using a set of proportions as the response we can consider the underlying event
counts as the set of responses. Thus, for example in the voting data, suppose we classfy
individuas by three socid class and three year categories. In each of the nine cdls within
each level 2 unit we have counts of the numbers voting for each party, which yieds 27
counts. The expected number of individuas voting for each party can be written

— (s)

my; = M;p ijS

where s indexes the three parties, i indexes the nine cells within each level 2 unitand M, is
the number of individuds in the j-th level 2 unit. Our inferences are therefore conditiona on
these totals. We write corresponding to (7.6)

log(my;) =log(M;) + bs” + b Fx; +ui”, s=1..t (7.12)

Theterm log(M,) is afixed part offst and when using such offsets it may be better to

centre them about their mean in order to avoid numerical ingtabilities. Corresponding to the
multinomia assumption we now make the assumption of a Poisson didribution for the
observed counts ng. , which are assumed conditionally independent with

sij 1
E(nsij):msij, Var(nsijlrns'j)zrnsij

For the voting data we can now define a two level model where & level 2 we have the
condituency and the level 1 units are the set of counts for the classfication of party by year
and socid class. A basic additive modd will have explanatory variables conggting of an
intercept, two dummy variables for party, two dummy variables for year and two for socid

class. We would normdly aso wish to include interactions between party and year and
party and socid class.

The level 1 varidion is specified using the predicted number for each level 1 unit and the
esimation follows the same pattern as for the binomid modd, usng the corresponding

127



expressonsgiven in Table 5.1. The leve 1 random part will be defined by a dummy variable
equal to the square root of the predicted count and with variance constrained to one where
aPoisson digtribution is assumed..

There are some applications where the response is a count and we do not require an offs,
or where the offset is effectively congtant. For example, if we were interested in the number
of timesindividuas visted their generd practitioner or physician in a year, we could collect
data over a one year period for dl individuds and study the variation in counts across
practitioners (level 2) according to individual and practitioner characteritics.

There are variations on the Poisson ditribution assumption which we may wish to use. For
example, the negative binomia distribution can be obtained from a process whereby the
response is generated by counting the number of incidents for each leve 1 unit and where,
conditiona on the fitted explanatory variables and higher level terms, the mean count for
eech levd 1 unit has a gamma digribution with index v. This leads us to consder level 1
vaiance functions of the generd form k,m+ k,m?, where k, = 1 gives the negative binomid
digribution with k, =1/v. We could add further terms or consider even a nonlinear
function.

7.50 Ordered responses

In chapter 3 we analysed a study where the response was a scale where the score ranged in
vaue from 0 to 7, that is, there were 8 ordered categories. Such response scaes are
common and asin our example, are often analysed by assigning scores and then treating asif
they were continuous. While this may often be satisfactory, there are Situations, for example
where the didribution is very skew, where such a procedure is questionable. One possible
dternative, mentioned in the preceding section, is to assgn scores to the categories of the
response variable and then carry out an anays's based upon the multinomia or Poisson

mode, usng al the response categories in the andyss. Such a procedure, however,

typicdly relies on choosing a suitable scoring system, just as does the continuous response
model. One posshility in these cases is to assgn scores by minimising a measure of
between-unit disagreement as in correspondence analysis or dud scaling (Greenacre, 1984,
Goldgtein, 1987c). In this section we shdl look a procedures which avoid any of the
arbitrariness of assumptionsinvolved when assigning numerical scores.

To exploit the ordering we shdl base our modds upon the cumulative response
probabilities rather than the response probabilities for each category. We define these as

1
h
E(yf)=g® =ap;”, s=1..t-1 (7.12)
h=1
where yifs) are the observed proportions out of atota n; and s now indexes the ordered

cumulative categories. If we assume an underlying multinomia distribution for the category
probabilities the cumulative proportions have a covariance matrix given by

(s)

cov(y,”,y5 ") =0 (- gi")In;, SET (7.13)
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We can therefore fit modds to these cumulative proportions (or counts conditiond on a
fixed totd) in the same way as with the multinomia response vector, subgtituting the
covariance matrix (7.13) for (7.7). A discusson of these and related modds is given in
McCullagh and Nelder (1989),

A common modd choice isthe proportional odds modd which usesalogit link namey
— -1
gf ={1+eqp- [a© +(Xb),]} (114

where the negative coefficient of (Xb ), implies that increesing vaues of this linear
component are associated with  increasing probabilities with increasing s. We aso require
a®f£a®@ . £a®?,

Ancther choice isthe proportional hazards modd which usesalog log link to give
gi(jS) ={1- exp- [a © +(Xb)ij]} (7.15)

An important special case of these models is where the categories are ordered in time so

that a * can be modelled as a function of time, and satisfying the above order relationship
among these parameters. Some choices would be

a® =dlog(t,), a® =dt, (7.16)

Such amodd might be used in developmenta studies where individuas pass through a set of
time ordered stages. In studies of children, for example, it is possble to identify ‘milestones
of development through which children pass, sarting with none until al have been passed
when developmenta ‘maturity’ is reached. A repested measures study would count the
number passed a each time point so yielding a cumulative proportion in relation to time and
other covariates. We would then be able to fit a 2leve modd with variation between
individuds involving any of the parameters in (7.14), (7.15) or (7.16). In the extreme case
with just a sngle milestone, these modd's are equivaent to the event duration models we
consider in chapter 9.

Another example of longitudind discrete response data is where, a each measurement
occasion, we have a vector of ordered categorica responses and each individud in the
study responds to one category. The cumulative response vector for each individud at each
occasion then contains zero for each response category less than the category to which the
individua responds and a one for that category and each higher one. We can modd thetime
dependence within the set of explanatory variables X, and we would normdly wish to
include the possibility of interactions between the a ©® and time. In such amodd the basic
covariance structure given by (7.13) represents the betweenoccasion covariation. Thus,
athough the data structure is represented by level 1 as the categories, level 2 as occasion
and levd 3 asindividud, the higher levd variation is only estimated at leve 3. This can be
compared to the smple binary response model where the binomia response variance is that
between occasons, and the structure defines occasion as level 1 and individua as level 2
gnce there is a Sngle response for each occason. We aso note that Smilar consderations
goply to dl the multicategory response modds, with higher level variation estimated at leve
3 and above, as pointed out also in section 7.4.
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7.51 Mixed discrete- continuousresponse models

An extenson of the multivariate modds considered in chapter 4 is where some of the
responses are continuous and some are discrete. For example, in arepeated measures study
we may have aresponse which is the (discrete) maturity stage that an individud has reached
as well as continuous measurements such as height and weight. In some circumstances we
may wish to treet, say, the maturity stage as the response, conditiona on height and weight
and further covariates, including age. In other Stuations, for example if we are interested in
prediction systems as in chapter 6, then we would wish to consder al the measurements as
responses, conditiona on covariates. In another example, suppose we have measurements
on smoking habit, including whether someone smoked and if so a what rate. We can
congder this as a bivariate response modd where each individud has a binary response for
whether or not they smoke and if they do a further response for the number smoked per

day.
We shall develop the mode for the case of individua smoking habits with one binary and
one continuous response and then look a the more general case of severd binary

responses. The extenson to several responses of each type is straightforward as is the
extenson to multicategory responses and count data.

As in the gandard multivariate multilevdl modd we have no varidion at level 1 and & leve
2, that of the individud, we have a binomid variance associated with the smoking/no
smoking response and a between-individua variance for the number smoked. The variance
for the binary response is the usud binomid variance and that for the continuous response is
a parameter to be estimated. At higher levels, the variances and covariances will be defined
in the standard fashion using the linearisation procedure for the binomia response. For a 2-
level modd with individuas nested within, say, households we write the following model

Vi =d; exp{1+exp[(- X,b ) + Uy 1}
+die1jk +(1' di)[(xzbz) +u2k +e2jk]
d, =1 if binary, O if continuous

(7.17)

In the generd case an individud can have any combination of responses, as in the maturity
example and the individua leve covariance will have the form of a (adjusted) biserid
covariance (1- P ;)P ;i (%14 - ¥2;) » Where ), is the estimated probability of a positive
response, and Y, , ¥, are respectively the predicted vaues of the continuous response for
a pogitive and negative binary response. We can fit this usng an extra covariance term in the
modd a the individud leve, condrained to have the above vdue. If we assume that
Yok - Yoy IS condtant then we can fit this term by defining a further explanatory variable
equd to the exigting variable defining the binomid variation & the individud leve, and fitting
just a covariance term between this further explanatory varigble and the exising binomia
explanatory varidble. This gives the required esimate of §,;, - ¥,;. In the smoking
example, snce nortsmokers do not have any number smoked, this covariance term does
not exis.
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A paticular case of interest is where we have two responses which are proportions.
Suppose, for example, that in an educational survey we know the proportion of studentsin
each school who pass an English exam and dso the proportion who pass a Mathematics
exam, but we have no information about how many pass or fail one or both. In other words,
for the 2 x 2 table containing the numbers in each passffall category we only have the
numbersin the margins. The level 2 covariance, in terms of the predicted proportions has the
form By - PP 2 - 1T We are prepared to assume that p ), isafunctionof p ),

and P, Sy proportiona to ther product, then with edimates of the margina

probabilities available from the modd, the level 2 covariance estimate dlows usto obtain an
edimate of the joint probability of success on both Mathematics and English for a given st
of explanatory variables. Note that the procedure depends upon the assumption of binomia
variation. Of course, if we had dl the origind information then we would fit a modd where
there was a response for each cell of thetable.

This gpproach may aso be of use where separate surveys are conducted within the same
level 2 units and each one produces a proportion as response. If there is overlap between
the samples used, then there will exist leve 2 covariances, and if information about the
detailed nature of the overlgp is available it will be possble in principle to obtain estimates of
the joint probabilities.
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Appendix 7.1

Differentials for some discrete response models

The Logit - Binomial model

f =[1+exp(- Xb)]™*

f¢= f[1+exp(Xb)]™*

f@= f §1- exp( Xb)][1+exp(Xb)]™*

The Logit - Multinomial (Multivariate L ogit) model

t-1
f¢9 = fO[1+ J exp(Xb™)][1+ § exp(Xb®)]*

hts h=1

f & =f¢[1- 2f©]

The Log - Poisson model

f =exp(Xb)

f¢=exp(Xb)

f ¢&=exp(Xb)

Thelog log - Binomial model
f =1- exp[- exp( Xb )]
fe=(1- f)exp(Xb)

f@= f ¢1l- exp(Xb)]
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Chapter 8
Multilevel cross classifications

8.9 Random cross classifications

In previous chapters we have consdered only data where the units have a purdy
hierarchica or nested structure. In many cases, however, a unit may be classified dong more
than one dimension. An example is students classfied both by the school they attend and by
the neighbourhood where they live. We can represent this diagramatically as follows for
three schools and four neighbourhoods with between one and Sx Students per
school/neighbourhood cell. The cross classfication is at leve 2 with sudents at leve 1.

School 1 School 2 School 3
Neighbourhood 1 XXXX XX X
Neighbourhood 2 X XXX XXX XXX
Neighbourhood 3 XX X XXX X
Neighbourhood 4 XXX X X X X

Figure 8.1 A random cross classification at level 2

Another example is in a repeated measures study where children are measured by different
raters at different occasions. If each child has its own set of raters not shared with other
children then the cross classfication is @ level 1, occasions by raters, nested within children
a leve 2. This can be represented diagramaticdly as follows for three children with up to 7
measurement occasions and up to three raters per child.

We see that the cross classification takes place entirdy within the leve 2 units. We note that,
by definition, alevel 1 cross classficaion has only one unit per cdl. We can, however, aso
view such a cross classfication as a specid case of a level 2 cross classfication with, at
most, asingle level 1 unit per cell. It seems appropriate to view such cases as leve 1 cross
classfications only where the substantive context determines that there is a most one unit
per cell (see section 8.6).

Child 1 Child 2 Child 3
Occasion: 1234567 12346 147
Rater 1 XX XXX
Rater 2 X X XXX
Rater 3 XXX XX
Rater 4 XXXXX
Rater 5 X XX
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Rater 6 X

Figure82 A random crossclassification at level 1.

If now the same st of ratersisinvolved with al the children the crossing is & level 2 as can
be seen in the following diagram with three raters and three children and up to five
occasions.

Child 1 Child2 Child 3
Occasion: 1234 12 12345
Rater 1 XXX X X
Rater 2 X XX
Rater 3 X XX

Figure8.3 A random crossclassification at level 2.

Figure 8.3 is formaly the same Sructure as Figure 8.1 with the level 1 variance being that
between occasiors.

These badc cross cdassficaions occur commonly when a smple hierarchicad  structure
breaks down in practice. Consider, for example, a repested measures design which follows
a sample of students over time, say once a year, within a set of classes for asngle school.
We assume firgt that each class group is taken by the same teacher. The hierarchical
gructure is then a three level one with occasions grouped within students who are grouped
within classes. If we had severa schools then schools would condtitute the level 4 units.
Suppose, however, that students change classes during the course of the study. For three
sudents, three classes and up to three occasons we might have the following pattern in
Figure 8.4..

Student 1 Student 2 Student 3
Occasion: 123 12 123
Class/teacher 1 XX X X
Class/teacher 2 X
Class/teacher 3 X XX

Figure 8.4 Studentschanging classes/teachers.

Formaly this is the same structure as Figure 8.3, that is a cross classficetion at leve 2 for
clases by gudents. Such designs will occur dso in pand or longitudind Studies of
individuas who move from one locdity to another, or workers who change their place of
employment. If we now include schools these will be classfied as levd 3 units, but if
students aso change schools during the course of the study then we obtain alevel 3 cross
classfication of students by schools with classes nested at level 2 within schools and
occasions as the level 1 units. The students have moved from being crossed with classes to
being crossed with schools. Note that since students are crossed at level 3 with schools they
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are dso automatically crossed with any units nested within schools and we do not need
separatey to specify the crossing of classes with students.

Suppose now that, instead of the same teachers taking the classes throughout the study, the
classes are taken by a completely rew set of teachers every year and where new groupings
of students are formed each year too. Such a structure with four different teachers at two
occasons for three sudentsis given in Figure 8.5.

Student 1 Student 2 Student 3
Occasion: 12 12 12
Teacher 1 1 X X
Teacher 2 X
Teacher 3 2 X X
Teacher 4 X

Figure 8.5. Students changing teachersand groups

Thisis now a cross classfication of teachers by students at level 2 with occasion asthe leve
1 unit. We note that most of the cdlls are empty and that there is & most one level 1 unit per
cdl so that no independent between occasion variance can be estimated as pointed out
above. In fact we can adso view this asaleve 1 cross classfication of teachers by students,
with missing data, and occason can be moddled in the fixed part, for example usng a
polynomid function of age. Raudenbush (1993) gives an example of such a design, and
provides detalls of an EM estimation procedure for 2-leve 2-way cross classifications with
worked examples.

We can have adesign which isamixture of those given by Figure 8.4 and Figure 8.5 where
some teachers are retained and some are new at each occasion. In this case we would have
a cross classfication of teachers by students at level 2 where some of the teachers only had
observations at one occason. More generdly, we can have an unbaanced design where
each teacher is present a a variable number of occasions. Other examples of such designs
occur in pand studies of households where, over time, some households split up and form
new households. The totd set of dl households is crossed with individud at leve 2 with
occason & leve 1. The households which remain intact for more than one occasion provide
the information for estimating leve 1 variation.

Occasion 2
Teacher 1 Teacher 2 Teacher 3
Teacher 1 XXX XX X XX
Occasion1l  Teacher 2 XX XXXX
Teacher 3 X XXX XX XX

Figure 8.6. Teacherscross classified by themselves at two occasions

With two occasions where we have the same teachers or intact groups we can formulate an
dternaive cross classfication design which may be more appropriate in some cases. Instead
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of cross cdassfying students by teachers we consder cross classifying the set of dl teechers
at the first occasion by the same set at the second occasion, as follows.

We have 22 gtudents who are nested within the cross classfication of teachers at each
occasion. The difference between tis design and that in Figure 8.4 is anaogous to the
difference between a two-occason longitudind desgn where a second occasion
measurement is regressed on a first occason measurement and the two-occasion repeated
measures desgn where a measurement B related to age or time. In Figure 8.6 we are
concerned with the contribution from each occasion to the variation in, say, a measurement
made a occason 2. In Figure 8.4 on the other hand, dthough we could fit a separate
between teacher variance for each occasion, the response varigble is essentidly the same
one measured a each occason. Designs such as that of Figure 8.6 are useful where, for
example, measurements are made on the same set of students and schools at the sart and
end of schooling, as in school effectiveness studies, and where students can move between
schools. In such cases we may dso wish to introduce a ‘weight’ to reflect the time spent in
each school, and we shall discuss this below.

We now set out the structure of these basic models and then go on to consider extensons
and specid cases of interest.

8.10 A basic cross classified model

Goldgtein (19874) sets out the generd structure of a model with both hierarchica and cross
classfied structures and Rasbash and Goldstein (1994) provide further eaborations. We
condder firs the smple modd of Figure 8.1 with variance components at levd 2 and a
snglevarianceterm at leve 1.

We dhdl refer to the two dlassifications at level 2 using the subscripts j,, j, and in generd
parentheses will group classifications at the same level. We write the mode as

Yicin = XiguinP F U, +Uj, +€¢;,) 8.1)
The covariance structure at level 2 can be written in the following form

_ 2
COV(Yi(1,1) Y (1,1)) =S

_ 2
COV(yi(jlmyi’(jiiz)) =Sy,

— 24?2
Var(yi(jljz)) - Cov(yi(hjz)yi/(jljz)) =S, *S,,

(8.2)

Note that if there is no more than one unit per cell, then modd (8.1) is dill vaid and can be
used to specify aleve 1 cross classfication as defined in Section 8.1.

Thus the level 2 variance is the sum of the separate classfication variances, the covariance
for two leve 1 units in the same classification is equd to the variance for that classfication
and the covariance for two level 1 units which do not share either classfication is zero. If we
have a modd where random coefficients are included for ether or both classfications, then
andogous dructures are obtained. We can dso add further ways of classfication with
obvious extensons to the covariance structure.
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Appendix 8.1 shows how cross classified models can be specified and estimated efficiently
using a purdy hierarchicd formulation and we can summarise the procedure usng the
ample modd of 8.1. We specify one of the dassfications, most efficiently the one with the
larger number of units, as a standard hierarchicd leve 2 classfication. For the other
classfication we define a dummy (0,1) varigble for each unit which is one if the observation
belongs to that unit and zero if not. Then we specify that each of these dummy variables has
a coefficient random at level 3 and in addition congrain the resulting set of leve 3 variances
to be equd. The variance estimate obtained is that required for this classfication and the
leve 2 variance for the other classfication isthe one we require for that.

If we have athird classfication at level 2 then we can obtain the third variance by defining a
amilar st of dummy variables with coefficients varying at level 4 and variances congtrained
to be equa. This procedure generdises draightforwardly to sets of severd random
coefficients for each classfication, with dummy variables defined as the products of the basic
(0,1) dummy variables used in the variance components case and with corresponding
variances and covariances congtrained to be equd within classfications. In generd a p-way
cross classification a any level can be modelled by inserting sets of random variables at the
next p-1 higher levels. Thus in a 2-level modd with two crossed classfications a level 1 we
would obtain a three levd modd with the origind level 2 at level 3 and the leved 1 cross
classfications occupying levels 1 and 2.

8.11 Examination resultsfor a cross classification of schools

The data consst of scores on school leaving examinations obtained by 3435 students who
attended 19 secondary schools cross classified by 148 primary schools in Fife, Scotland
(Paterson, 1991). Before their transfer to secondary school at the age of 12 each student
obtained a score on a verba reasoning test, measured about the population mean of 100
and with a population sandard deviation of 15.

The modd is asfollows

Yiciin) = Po 101X, HU;, HU, +&,) (8.3)

and the reaults are given in Table 8.1. Random coefficients for verba reasoning were dso
fitted but the coefficients are estimated as zero.

Ignoring the verbal reasoning score we see that the between-primary school variance is
estimated to be more than three times that between secondary schools. The principa reason
for thisis that the secondary schools are on average far larger than primary schools, so that
within a secondary school, primary school differences are averaged. Such an effect will often
be observed where one classfication has far fewer units than another, for example where a
small number of schools is crossed with a large number of small neighbourhoods or a small
number of teachers is crossed with a large number of students at level 1 within schoals. In
such circumstances we need to be careful about our interpretation of the relative sizes of the
variances.

Table 8.1 Analysis of Examination Scores by Secondary by Primary school attended. The
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subscript 1 refersto primary and 2 to secondar y school.

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
Fixed A B C
I ntercept 550 5.98 599
Verbal Reasoning - 0.16 (0.003) 0.16 (0.003)
Random
2 1.12 (0.20) 0.27 (0.06)
S
U)o
2 0.35(0.16) 0.011 (0.021) 0.28 (0.06)
Uc2)0
S 2 81(0.2) 4.25(0.10) 4.26 (0.10)

[<]

When the verba reasoning score is added to the fixed part of the modd the between
secondary school variance becomes very smdl, the between primary school variance is dso
consderably reduced and the level 1 variance dso. The third andys's shows the effect of
removing the cross classfication by primary school. The between secondary school variance
is now only alittle smdler than in andyss A without verbd reasoning score. Using andysis
C done, which istypicaly the case with school effectiveness studies which control for initia
achievement, we would conclude that there were important differences between the
progress made in secondary schools. From andyss B, however, we see that most of thisis
explained by the primary schools attended. Of course, the verba reasoning score is only one
measure of initid achievement, but these results illudtrate that adjusting for achievement at a
single previous time may not be adequate.

8.12 Computational considerations

AndyssA in Table 8.1 took about 40 seconds per iteration on a 66 Mhz 486 PC using the
ML 3 software, gpproximately ten times longer than andyds C. Thisrdative downessis due
to the Sze of the single leve 3 unit which contains dl the 3435 levd 1 units. For very much
larger problems the computing consderations will become of greater concern, so that some
procedure for speeding up the computations would be useful.

In the present andyds there are 120 cdlls of the cross classfication which contain only one
Sudent. If we diminate these from the analys's we obtain two digoint subsets containing 14
and 5 secondary schools. There are a further 24 odls containing two students and if these
are removed we obtain sx digoint subsets the largest of which contains eight secondary
schools. Table 8.2 shows the estimates from the resulting anayses.

The only subgtantial differenceisin the between secondary school variance which is anyway
poorly estimated. The first analysis took about 15 seconds and the second about Sx
seconds. Such computationa advantages in some cases may well outweigh a dight loss in
precison.
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Table 82 Examination scoresfor Secondary by Primary school classification omitting small cells.

Parameter Estimate (s.e.) Estimate (s.e.)
Fixed £ 1 student £ 2 students
I ntercept 6.00 6.00
Verbal reasoning 0.16 (0.003) 0.16 (0.003)
Random

s jm 0.27 (0.06) 0.25 (0.06)
S i ) 0.004 (0.021) 0.028 (0.030)
s 2 4.28(0.11) 4.29 (0.11)

8.13 Interactionsin cross classifications

Consder the following extenson of equation (8.1)
Yiciin = XiguinP ¥Uj, *U, Ui + &0, (8.4)

We have now added an ‘interaction’ term to the model which was previoudy an additive
one for the two variances. The usua specification for such a random interaction term is thet

it has ample variance s:m across dl the levd 2 cdls (Searle et d, 1992). To fit such a

modd we would define each cdl of the cross classification as alevd 2 unit with a between
cdl vaiance sjm, asngle levd 3 unit with a variance su21 and asngle levd 4 unit with a

variance suzz. The adequacy of such amodd can be tested againgt an additive mode using a
likelihood ratio test criterion. For the example in Table 8.1 thisinteraction term is estimated
as zero. While this indicates that the cross classification is adequate, because the between
secondary <chool variance is so smal we would not expect to be able to detect such an
interaction.

Extensons to this model are possible by adding random coefficients for the interaction
component, just as random coefficients can be added to the additive components. For
example, the gender difference between students may vary across both primary and
secondary schools in the example of section 8.3 and we can fit an extra variance and
covariance term for this to both the additive effects and the interaction.

8.14 Level 1 cross classifications

Some interesting models occur when units are bascdly cross classfied at levd 1. By
definition we have a desgn with only one unit per cdl, as shown for examplein

Figure 8.2 and we can aso have aleve 2 cross dassfication which is formaly equivaent to
aleve 1 cross classfication where there is just one unit per cell asin Figure 85. This case
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should be digtinguished from the case where a level 2 cross classfication hgppens to
produce no more than 1 level 1 unit in acdl as aresult of sampling, so that the confounding
occurs by chance rather than by design.

A 2-levd variance components model with a cross classfication at level 1 can be written as
Yiii = XD U +8; +8; + &), (85)

where for level 1 we use a draightforward extenson of the notation for a level 2 cross
clasdfication. Theterm g, ; ; is andogous to the interaction term in (8.4). To specify this

model we would definethe u; asrandom at level 4,the g ; € ; asrandom at levels 3 and 2,

each with a dngle unit and the interaction term random across the cells of the cross
classfication a levd 1, within the origind level 2 units.

Suppose now that we were able to extend the design by replicating measurements for each
cdl of the levd 1 cross classfication. Then (8.5) would refer to a 3leve modd with
replications as level 1 units, and which could be written as follows where the subscript h
denotes replications

Yniini = K0 U 8, +6,; + 6, (8.6)

Since (8.5) isjust modd (8.6) with one unit per cel, we could interpret the ‘interaction’
vaiance in (8.5) as an estimate of the extent to which the additive variances of thecross
classfication fail to account for the total level 1 variance.

So caled ‘generdisability theory’ models (Cronbach and Webb, 1975) can be formulated
as leve 1 cross cdlassfications. The basc modd is one where a test or other instrument
condgting of a st of items, for example ratings or questions, is administered to a sample of
individuds. The individuds are therefore cross classfied by the items at level 1 and may be
further nested within schools etc. a higher levels In educationd test settings the item
responses are often binary so that we would apply the methods of chapter 7 to the present
procedures in a straightforward way. Since each individua can only respond once to each
item this an example of agenuine leve 1 cross dassfication.

8.15 Cross-unit member ship models

In some circumstances units can be members of more than one higher level unit a the same
time. An example is friendship patterns where a any time individuas can be members of
more than one friendship group. Another example is where children belong to more than one
‘extended’ family which indudes aunts and uncles as wdl as parents. In an educationd
system students may attend more than one inditution. In al such cases we shal assume that
for each higher level unit to which a lower level unit belongs there is a known weght,
summing to 1.0 for each lower leve unit, which represents, for example, the amount of time
goent in that unit. We may adso have data where, dthough there is no cross-unit
membership, there is some uncertainty about which higher level unit some lower leve units
belong to. For example, in a survey of students information about their neighbourhood of
resdence may only be available for a few students for larger geographica units. For these
cases it may be possble to assign aweight for each of the congtituent neighbourhoods which
is in effect a probability of belonging to each based upon available information. Such a
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dructure can be andysed formdly as a cross-unit membership modd with most students
having asingle weight of 1.0 and the remainder zero.

Consder the 2-leve variance components modd (8.1) with each level 1 unit belonging to at
most two level 2 unitswherethe j,, j, subscripts now refer to the same type of unit.

Yiciin = Xy D Wy Uy Wy U 65

W. +W,. =1 (8.7)

1ij, 2ij,
The overdl contribution at level 2 is therefore the weighted sum over the leve 2 units to
which each level 1 unit belongs. Thisleads to the following covariance structure

_ 2 2,2
var(y,.i,)) = (Wﬁj1 +W,; )S , +S

i,
_ 2

COV(Yi(1i,) Yieinin) ) = (Way, Wayg, + Wiy, Wi, )S |
_ 2

COV(Yi (1, Yiaian ) = Woii, Waig,S

This has the structure of a standard 2leve cross dassfied modd with the additiona
congraint s 2 =s?2, =s ? and where the explanatory indicator varigbles Z,, Z, described in
Figure 8.1.1 in appendix 8.1 have the value 1 replaced by the rlevant weights for each level
1 unit. As with the standard cross classfication this model can be extended to include
random coefficients and genera p-unit membership (see Appendix 8.1).

8.16 Multivariate cross classified models

For multivariate models the responses may have different structures. Thus in a bivariate
model one response may have a 2leve hierarchica structure and the other may have a
cross classfication at leve 2. Suppose, for example that we measure the height and the
mathematics attainment of a sample of students from a sample of schools. The mathematics
attainment is assessed by a different sat of teachers in each school and the heights are
measured by a sngle anthropometrist. For the mathematics scores there is alevel 1 cross
classfication of students within each school whereas for height there is a 2-leve hierarchy
with students nested within schools. Height and mathematics attainment will be correlated at
both the student and the school level and we can write amodd for this structure as follows

Yhiin i =d1h(x1(ili2)jb1+u1j +q1'1j +e]j2j)+d2h(X2iljb2 +u2j +e2i1j)

cov(uljuzj) =S, cov(eﬂljeZilj) =S
d,, =1if mathematics, Oif height, d, =1-d,

(8.9)
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where dl other covariances are zero. Thiswill therefore be specified as a 4-levd modd with
the bivariate sructure as level 1 and leve 2 units being individud students. There will be a
gangle leve 3 unit with the coefficients of the dummy variables for teachers having variances
random & thislevel, with level 4 being that of the schoal.

Fndly, we have dready mentioned that cross classfied modds can have a discrete
response and the models of chapter 7 can be fitted. We can dso fit, for example, time series
models as discussed in chapter 6 and in generd cross classified structures can incorporate
all the types of models which can be fitted for purely hierarchica structures.
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Appendix 8.1

Random cross classified data structures

Weilludrate the procedure using a 2-level modd with crossing e leve 2.
The 2-leve cross classified modd, using the notation in Appendix 2.1, can be written

gl
Yiciin = XicinP t & i, th,

% (8.1.1)
* 8 Zoni, Yanj, 6

Parentheses group the ways of classification at each level. We have two sets of explanatory
variables, type 1 and type 2, for the random components defined by the columns of
Z,(n" pqa), Z,(n" p,g,) where p,, p, arerespectively the number of categories of each
classification.

Z,={zy}, Z,={zy,}
Zyi. = Zyy 1 J;=m, for m- thtype 1 level 2 unit, O otherwise
Zonij, = Znm If ], =m, for m- thtype 2 level 2 unit, O otherwise

These varigbles are dummy variables where for each level 2 unit of type 1 we have g,
random coefficients with covariance matrix W, and likewise for the type 2 units. To

amplify the exposition we redtrict ourselves to the variance component case where we have

Wy, =S (21)2’ Wy, =S (22)2
FTTY 8.1.2
ECVYT) 2V, + 28 {yal ()2 +Za(88y21 )22 (612

Condder figure 81 in chapter 8 where schools are ordered within
neighbourhoods. The explanatory variables will have the following structure for the first 8
students

It is clear that the second term in (8.1.2) can be written as

2 T _ 1.2 T
Zl(s(l)ZI(pl))Zl = Js y,J

where J isa(nx 1) vector of ones. The third term is of the generd form Z\W,Z! , namdly a
level 3 contribution where in this case there is only a sngle levd 3 unit and with no
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covariances between the random coefficients of the Z,, and with the variance terms
congrained to be equa to asingle vaue, 5(22)2.

i1 iz Zy Z3, Zi3 Zy, Zy Zy Zy
11 11 1 0 0 0 1 0 0
21 21 1 0 0 0 1 0 0
31 31 1 0 0 0 1 0 0
41 41 1 0 0 0 1 0 0
51 12 1 0 0 0 0 1 0
6,1 22 1 0 0 0 0 1 0
71 13 1 0 0 0 0 0 1
12 21 0 1 0 0 1 0 0

Figure8.1.1 Explanatory variablesfor level 2 crossclassification of Figure 8.1

More generdly we can specify a level 2 cross classfied variance components mode by
modelling one of the classifications as a standard hierarchical component and the second as
a st of dummy explanatory variables, one for each category, with the random coefficients
uncorrelated and with variances constrained to be equal. If this second (type 2) classfication
has further explanatory variables with random coefficients as in (8.1.1) then we form
extended dummy varigble ‘interactions’ as the product of the basic dummy variables and the
further explanatory variables with random coefficients, so that these coefficients have
variances and covariances within the same type 2 leve 2 unit but not across units. In
addition the corresponding variances and covariances are congtrained to be equal.

To extend this to further ways of classfication we add levels. Thus, for a three way cross
classfication at level 2 we choose one classification, typicaly that with the largest number of
categories, to modd in standard hierarchica fashion at level 2, the second to mode with
coefficients random at level 3 as above and the third to mode in a smilar fashion with
coefficients random at level 4. The same principle applies to cross classfications a leve 1
nested within level 2 units. The leve 1 cross dassfication is modelled as a 2-leve hierarchy
with the origind leve 2 units becoming level 3 units We can adso dlow smultaneous
crossing a more than one level. Thus for example, if there is a 2-way cross classfication at
level 1 and a 3way cross classfication at leve 2, we will require five levels, the first two
decribing the level 1 cross dassfication and the next three describing the level 2 cross
classfication.

Chapter 8 discusses the leve 2 cross unit membership model where level 1 units can belong
to more than one level 2 unit with predetermined weights. Because the structure imposed
above levd 2 replicates thet a leve 2 we need only in fact specify asingle level 2 unit with
explanatory variable desgn matrix Z containing dummy weight vectors and W, asdiagona

of order equal to the number of level 2 units, and elementsequal to s 2.
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Chapter 9
Multilevel event history models

9.52 Event history models

This class of modes, aso known as surviva time models or event duration models, have as
the response variable the length of time between 'events. Such events may be, for example,
birth and deeth, or the beginning and end of a period of employment with corresponding
times being length of life or duration of employment. There is a consderable theoreticd and
goplied literature, especidly in the fidd of biodatistics and a ussful summary is given by
Clayton (1988). We consider two basic approaches to the modelling of duration data. The
fird is based upon 'proportiona hazard' models. The second is based upon direct modelling
of the log duration, often known as 'accelerated life modds. In both cases we may wish to
include explanatory variables.

The multilevel gtructure of such models arises in two generad ways. The firg is where we
have repeated durations within individuas, analogous to our repeated measures modds of
chapter 5. Thus, individuas may have repested spdls of various kinds of employment of
which unemployment is one. In this case we have a 2-level modd with individuds a levd 2,
often referred to as a renewa process. We can include explanatory dummy variables to
digtinguish these different kinds of employment or states. The second kind of model is where
we have a sngle duration for each individud, but the individuds are grouped into level 2
units. In the case of employment duration the leve 2 units would be firms or employers. If
we had repested measures on individuas within firms then this would give rise to a 3-leve
structure.

9.2 Censoring

A characterigtic of duration data is that for some observations we may not know the exact
duration but only that it occurred within a certain interva, known as interval censored data,
was less than a known vaue, left censored data, o greater than a known vadue, right
censored data. For example, if we know at the time of a study, that someone entered her
present employment before a certain date then the information avallable is only tha the
duration is longer than a known vaue. Such data are known as right censored. In another
cae we may know that someone entered and then left employment between two
measurement occasions, in which case we know only that the duration lies in a known
interva. The models described in this chapter have procedures for deding with censoring In
the case of the parametric models, where there are relatively large proportions of censored
data the assumed form of the digtribution of duration lengths is important, whereas in the
partidly parametric modes the digtributional form isignored. It is assumed that the censoring
mechaniam is non informétive, that isindependent of the duration lengths.

In some cases, we may have data which are censored but where we have no duration
information a al. For example, if we are sudying the duration of firs marriage and we end
the study when individuas reach the age of 30, al those marrying for the first time after this
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age will be excluded. To avoid bias we must therefore ensure that age of marriage is an
explanatory variable in the mode and report results conditiona on age of marriage.

There is a variety of modds for duration times. In this chapter we show how some of the
more frequently used modes can be extended to handle multilevel data structures. We
condder first hazard based models.

9.3 Hazard based modelsin continuoustime

The underlying notions are those of survivor and hazard functions. Condder the (sngle
level) case where we have measures of length of employment on workers in a firm. We
define the proportion of the workforce employed for periods greater than t as the survivor
function and denoteit by

S(t) =1- F(t) =1- C)tf (u)du

where f (t) isthe dengty function of length of employment. The hazard function is defined
as

h(t) = f (t)/ S(t)

and represents the ingtantaneous risk, in effect the (conditiond) probability of someone who
isemployed a timet, ending employment in the next (smdl) unit interva of time.

The smplest mode is one which specifies an exponentid digtribution for the duration time,
f(t)=1e' (t3 0) which gives h(t) =1, so that the hezard rate is constant and
S(t) =e''. In generd, however, the hazard rate will change over time and a number of

dternative forms have been studied (see for example, Cox and Oakes, 1984). A common
oneis based on the assumption of a Weibull digtribution, namely

g(t) — (a /t)ealn(t)+de—e

or the associated extreme vaue digtribution formed by replacing t by u=¢€'. Another
gpproach to incorporating time-varying hazards is to divide the time scde into a number of
discrete intervas within which the hazard rate is assumed condant, that is we assume a
piecewise exponentid digtribution. This may be ussful where there are 'naturd’ units of time,
for example based on mengrud cyclesin the andysis of fertility, and this can be extended by
classfying units by other factors where time varies over categories. We discuss such discrete
time modelsin alater section

aln(t)+d

The most widely used modds, to which we shall devote our discussion, are those known as
proportional hazards models, and the most common definition is h(t;h) =1 (t)e". The
term h denotes a linear function of explanatory variables which we shdl modd explicitly in
section 9.5. It isassumed thet | (t), the basdline hazard function, depends only on time and
that al other variation between units is incorporated into the linear predictor h. The
components of h may aso depend upon time, and in the multilevel case some of the

coefficients will dso be random variables.
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9.4 Parametric proportional hazard models

For the case where we have known duration times and right censored data, define the
cumulative basdine hazard function L(t):d: (Wdu and a variable w with mean

m=L (t)e", taking the value one for uncensored and zero for censored data. It can be
shown (McCullagh and Nelder, 1987) that the maximum likelihood estimates required are
those obtained from a maximum likelihood andysis for this modd where w is treated as a
Poisson variable. This computationa device leads to the loglinear Poisson modd for the i-th
observation

In(m.) =In(L (t.)) +h. (9.44)

where the teem L (t,) is treated as an offsat, that is a known function of the linear
predictor..

The smplest case is the exponentid distribution, for which we have L (t) =1 t. Equation
(9.2) therefore has an offset Ir (t,) and theterm Ir (I )isincorporated into h. We can model
the response Poisson count using the procedures of chapter 6, with coefficients in the linear
predictor chosen to be random at levels 2 or above. This gpproach can be used with other
digtributions. For the Weibull didtribution, of which the exponentid is a specid case, the
proportiona hazards modd is equivaent to the log duration modd with an extreme vaue
didribution and we shdl discussits estimation in alater section.

9.5 The semiparametric Cox model

The most commonly used proportional hazard modes are known as semiparametric
proportiona hazard modds and we now look at the multilevel verson of the most common
of thesein more detall.

Condder the 2-leve proportiona hazard model for the jk-th levd 1 unit

h(t; X;) =1 (ty) exp(X;by) (9.45)

where X, isthe row vector of explanatory variables for the level 1 unit and some or al of
theb, arerandom at level 2. We adopt the subscriptsj,k for levels one and two for reasons
which will be gpparent below.

We suppose that the times at which alevd 1 unit comes to the end of its duration period or
fails are ordered and at each of these we consider the total risk set'. At failuretime t;, the

risk st consgsts of al the levd 1 units which have been censored or for which a failure has
not occurred immediately preceeding time t;, . Then theratio of the hazard for the unit which

experiences afalure and the sum of the hazards of the remaining risk set unitsis

exXp (X, g Pre)
é exp(X;by)

ik
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which is smply the probability that the failed unit is the one denoted by j (k¢ (Cox, 1972).
It is assumed thet, conditiond on the X, , these probabilities are independent.

Severd procedures are available for edimating the parameters of this modd (see for
example Clayton, 1991, 1992). For our purposes it is convenient to adopt the following,
which involves fitting a Poisson or equivaent multinomiad mode of the kind discussed in
chapter 7.

At eechfaluretime | we define aresponse variate for each member of therisk set

1lifiistheobserved failure

Vi) 0 if not

i
I
|
where i indexes the members of the risk st, and j,k levedl 1 and leve 2 units. If we think of
the basic 2-level modd as one of employees within firms then we now have a 3-level modd
where ech level 2 unit is a particular employee and containing n;, level 1 unitswhere n,, is
the number of risk sets to which the employee belongs. Leve 3 is the firm. The explanatory
variables can be defined a any levd. In paticular they can vary across falure times,

dlowing 0 cdled time-varying covariates. Overdl proportiondity, conditiond on the
random effects, can be obtained by ordering the failure times across the whole sample. In
this case the marginal relaionship between the hazard and the covariates generdly is not
proportiond. Alternatively, we can consder the fallure times ordered only within firms, so
that the mode yields proportiona hazards within firms. In this case we can sructure the data
as congging of firms at levd 3, faluretimes a levd 2 and employees within risk sets at leve

1. In both cases, because we make the assumption of independence across failure times
within firms, the Poisson variation is & level 1 and there is no variation a leve 2. In other
words we can collgpse the mode to two levels, within firms and between firms.

A smple variance components mode for the expected Poisson count is written as

Py =&xp(a, + X,b+u,) (9.46)
where thereis a'blocking factor' a, for each failure time. In fact we do not need generaly to
fit dl these nuisance parameters. instead we can obtain efficient estimates of the model

parameters by moddling a, as asmooth function of the time points, usng, say, alow order
polynomid or aspline function (Efron, 1988) .

For the modd which assumes overdl proportiondity an esimator of the basdine surviving
fraction for an individud inthe k-thfirm at ime h, where X, =0, is

S =en(-a e'™)

I£h

and the estimate for an individua with specific covariate values X, is

For the modd which assumes proportiondity within firms these two expressons become
respectively
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én - exp(_ é eé|) éiexp(xjkb)-'-ak}

1£h

Where we fit polynomids to the blocking factors, the &, are estimated from the polynomid

coefficients, and the surviving fraction can be plotted againg the time associated with each
interva.

9.6 Tied observations

We have assumed o far that each failure time is associated with a single failure. In practice
many falures will often occur a the same time, within the accuracy of measurement.
Sometimes, data may aso be ddiberately grouped in time. In this case dl the falures a
times | have a response equa to 1. This procedure for handling ties is equivaent to tha
described by Peto (1972) (see dso McCullagh and Nelder, 1989).

9.7 Repeated measur es proportional hazard models

As in the case of ordinary repeated measures models described in chapter 6 we can
condder the case of multiple episodes or durations within individuas with between and
within individud variation and possibly further levels where individuas may be nested within
firms, etc.. The models of previous sections can be applied to such data, but there are
further considerations which arise. Where each individua has the same fixed number n of
episodes. We can treat these, as in chapter 5, as condtituting n variates so that we have an
n-variate modd with an (n X n) covariance matrix between individuas. The variates may be
ather redly distinct measurements or smply the different episodesin afixed ordering. Thisis
the modd considered by Wel et d (1989) who define proportiondity as within individuds.
We can dso modd a multivariate structure where, within individuas, there are repeated
episodes for a number of different types of interval. For each type of interval we may have
coefficients random et the individua level and these coefficients will generdly adso covary a
thet level.

Often with repested measures models the first episode is different in nature from subsequent
ones. An example might be the first episode of a disease which may tend to be longer or
shorter than subsequent episodes. If the first episode is treated as if it were a separate
variae then the subsequent episodes can be regarded as having the same didtribution, asin
the previous section.

Another possble complication in repested measures data, asin chapter 5 is that we may not
be able to assume independence between durations within individuas. This will then lead to
serid corrdation models which can be estimated using the procedures discussed in chapter
6 for the parametric log duration models discussed below.

9.8 Exampleusing birth interval data

The data are a series of repeated birth intervals for 379 Hutterite women living in North
America (Larsen and Vaupe, 1993; Egger, 1992). The response is the length of time in
months from birth to conception, ranging from 1 to 160, with the firg birth interva ignored
and no censored information. This gives 2235 birthsin dl.
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There is information avallable on the mother’s birth year, her age in years a the sart of the
birth interval, whether the previous child was dive or dead, and the duration of marriage at
the start of the birth interval. Since we have a large number of women each with arddively
small number of intervals we have assumed overal proportiondity, with failure times ordered
across the whole sample. Table 1 gives the results for a variance components andyss and
one where severd random coefficients are estimated. A fourth order polynomia was
adequate to smooth the blocking factors.

Table 9.1 Proportional hazards model for Hutterite birth intervals. In the
random part subscript O refersto intercept, 1 to previous death.

Parameter Estimate (s.e.) Estimate (s.e.)
Fixed A B
I ntercept -3.65 -3.64
Mother’ s birth year - 1900 0.026 (0.003) 0.026 (0.003)
Mother’s age (year - 20) -0.008 (0.014) -0.004 (0.014)
Previous death 0.520(0.118) 0.645 (0.144)
Marriage duration (Months) -0.003 (0.001) -0.004 (0.001)
Random
s 2O 0.188 (0.028) 0.188 (0.028)
u

S L1 0.005 (0.088)
s 51 0.381 (0.236)

The only coefficient estimated with a non-zero variance &t level 2 was whether or not the
previous birth died, but a large sample chi squared test for the two random parameters for
this coefficient gives a P-value of 0.01 on 2 degrees of freedom. An increase on the linear
scaleis associated with a shorter interva. Thus the birth interval decreases for the later born
mothers and dso if the previous birth is a degth. The interval is somewhat shorter the longer
the marriage duraion with little additiond effect of maternd age. This apparent lack of a
substantia age effect seems to be a consequence of the high corrdation (0.93) between
duration of marriage and age. Higher order terms for duration and age were fitted but the
edimated coefficients were smdl and not sgnificant a the 10% level. The between
individua standard deviation is about 0.4 which is comparable in sze to the effect of a
previous death. The betweentindividud sandard deviation for a mode which fits no
covariaes is 0.45 so that the covariates explain only a smal proportion of the between+
individud variaion. Figure 9.1 shows two average estimated surviving fraction curves for a
woman aged 20, born in 1900 with marriage duration 12 months. The higher one is for
those where there was a previous live birth and the lower where there was a previous degth.
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Figure 9.1 Probability of exceeding each birth interval length; live birth upper, previousdeath lower.

9.9 Thediscretetime (piecewise) proportional hazards model

Where time is grouped into preassgned categories we write the survivor function at time
interval |, the probability that failure occurs after thisinterval, as 5. Thisgives

f|:§-1'3’ h|:f|/5|-11 So:]-

Thisgives
A
5=0@-h)

which can be used to estimate the survivor function from a set of estimated hazards.
For the proportiona hazards modd (9.2) and a 2-levdl modd the expected hazard is given
(Aitkin et a, 1989) by
_ X by +
Py =1- exp(- e ")

log{- log(1- p ()} = Xby +a,
where, as before, the a ,, are congtants to be estimated, one for each time interval. This

leads to a modd where the response is a binomid variate, being the number of deaths
divided by the number in the risk set at the Start of the interval (see dso Egger, 1992). Any
censored obsarvetions in an interva are excluded from the risk set. The estimation follows
that for the logit binomia model described in chapter 7, except that we now require the first
and second  differentias of the log log function, namely
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fe=exp(p- €"), faw=(1-¢€")exp(p-€").

Asin the Cox modd, we can fit a polynomia function to the successive time intervals, rather
than the full st of blocking factors. The data will be ordered within level 2 units so that a
risk set in generd will extend over severd such units. A generd procedure is to specify the
response for each level 1 unit as binary, that is zero if the unit survives the interva and one
if not, with the gppropriate a,, in the fixed part. Thus a2-level model will become specified
as a 3-levd modd with the binomid variation at level 1 and the actud level 1 unitsat leve 2.
The modd can be further extended to polytomous outcomes, or ‘competing risks , where
severd different kinds of fallure can occur. The andyss follows the same pattern, but with
the response being a multinomid variate and the corresponding models of Chapter 7 can be
applied with a different linear predictor for each outcome category.

9.10 Log duration models

For the accderated life mode the ditribution function for duration is commonly assumed to
be of the form

f(t; X,b) = f,(te*)e™”

where f; is a basdline function (Cox and Oakes, 1984). For a 2-level modd this can be
written as

l; =In(t;) = X;b, +¢ (9.48)

which is in the standard form for a 2level modd. We shdl assume Normdity for the
random coefficients a level 2 (and higher levels) but a level 1 we shdl sudy other
ditributiond forms for the e, . The level 1 distributiond form is important where there are

censored obsarvations. We firs condder the common choice of an extreme vdue
digribution for the log duration L, conditional on X b, which as we noted above, implies

=y
an equivaence with the proportiona hazards model. Omitting level subscripts we write
f(l;:a,d)=ae*exp(-e®™) - ¥ <|<¥ (9.49)

2

E(L) =a" (d- g), var(L)=6212, g= 05772

For (9.5) thisgives

Py = Pr(L> lij) =1- exp(- € alij+dij)
pg=a.exp{-e 2ty gralitd (9.50)

Where the differentid is for use in the estimation of censored data and is with respect to b
in the expression below.
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The mean of L is incorporated into the fixed predictor. If we have no censored data we
estimate the parameters for the modd given by (9.5) by treeting it as a standard multileve
modd. We note that the estimation is grictly quaslikdihood since we are usng only the
mean and variance properties of the level 1 didribution. If we assume a smple leve 1
variance then we can iterativey edimate a from the above relationship and we dso obtan
for the 2-level modd (9.5)

d; =g+a(X;b;)

Where there is complex variation a level 1 then a will vary with the levd 1 units To
estimate the survivad function for agiven leve 2 unit we firgt condition on the covariates and
random coefficients, thet is X..b . , and then use (9.7).

=y

We can choose other didtributiond forms for the log duration distribution. These include the
log gamma digribution, the Norma and the logigtic. Thus, for example, for the Norma
digribution we have

pi; =1- F(z)

Pg=1(z)/s.

z; =[lj - (Xb);]l/s ¢

where F, f are the cumulaive and dengty functions of the standard Norma distribution.

Quasllikelihood estimates can be obtained for any suitable distribution with two parameters.
The possihility of fitting complex variation a level 1 can be expected to provide sufficient
flexibility usng these didributions for most purposesing these didtributions for most
pUrposes.

Table9.2. Log duration of birth interval for Hutterite women. Subscript 1 refersto birth year, 2to age
and 3 to previousdesath.

Parameter Estimate(se) Estimate(se) Estimate(s.e.)
Fixed A B C
Intercept 197 196 197
Mother’s birth year - 1900 -0.021 (0.002) -0.021 (0.002) -0.021 (0.002)
Mother’s age - 20 -0.005 (0.010) -0.005 (0.010) -0.005 (0.010)
Previous death -0.435 (0.079) 0436 (0.079) -0.438 (0.089)
Marriage duration (Months) 0.003 (0.001) 0.003 (0.001) 0.003 (0.001)
Random
Level 2
s2 0.127 (0.017) 0.114 (0.052) 0.121 (0.054)
S o1 -0.001 (0.002) -0.001 (0.002)
s2 0.0001 (0.0001) 0.0001 (0.0001)
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S w2 -0.004 (0.003) -0.005 (0.003)
S w2 0.0001 (0.0001) 0.0001 (0.0001)
s2, 0.0005 (0.0003) 0.0006 (0.0003)
Level 1

S go 0.549 (0.018) 0.533(0.018) 0.522 (0.018)
s? 0.200 (0.108)

-2 loglikelihood 5305.9 5295.5 5290.8

9.11 Censored data

Where data are censored in log duration models we require the corresponding probabilities.
Thus, for right censored data we would use (9.7) with corresponding formulae for interva or
left censored data For each censored observation we therefore have an associated
probability, say p;; with the response variable vaue of one.

This leads to a bivariate modd, in which for each leve 1 unit the response is dther the
continuous log durétion time or takes the value one if censored with corresponding
explanatory variables in each case. There are badicdly two explanatory variables for the
level 1 variaion, one for the continuous log duration response and one for the binomid
response. In the former case we can extend this for complex leve 1 variation, as in the
example andyss below. For the latter we use the standard logit modd as described in
chapter 7, possibly dlowing for extra-binomiad variaion. The random parameters a leve 1
for the two components are uncorreated. When carrying out the computations, we may
obtain garting values for the parameters using just the uncensored observations.

Since the same linear function of the explanatory variables enters into both the linear and
nonlinear parts of this modd, we require only asingle set of fixed part explanatory variables,
athough these will require the gppropriate transformation for the logit response as described
in chapter 7. We dso note that any kinds of censored data can be modelled, so long asthe
corresponding probabilities are correctly specified.
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Figure9.2. Level 1residualsby Normal scoresfor AnalysisB in Table 9.2

We can readily extend this modd to the multivariate case where severd kinds of durations
are measured. This will require one extra lowest level to be inserted to describe the
multivariate structure, with level 2 becoming the between-observation level and level 3 the
origind leve 2. For the logit part of the modd we will dlow corrdations at level 2 where
these can be interpreted as point-biserid corrdations.

For repeated measures models where there are different types of duration we can choose to
fit amultivariate modd. Alternatively, as discussed in chapter 4, we may be able to specify a
smpler modd where the types differ only in terms of a fixed part contribution, or perhaps
where there are different variances for each type with a common covariance. As pointed out
earlier, we may sometimes wish to treet the first duration length separately and this is readily

done by specifying it as a separate response.
9.12 Infinite durations

It is sometimes found that for a proportion of individuds, their duration lengths are
extremely long. Thus, Some employees remain in the samejob for life and some patients may
acquire a disease and retain it for the rest of ther lives. In sudies of socid mobility, some
individuas will remain in a particular socid group for afinite length of time while others may
never leave it: such models are sometimes referred to as mover-stayer models. We can treat
such durations asif they were infinite. Since any given sudy will lagt only for afinitetime, itis
impossible to distinguish infinite times from those which are right censored. Neverthdess, if
we make suitable digtributional assumptions we can obtain an estimate of the proportion of
infinite survive times
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For a constant g, given an unobserved duraion time, the observation is ether right
censored with finite duration or has infinite duration so that we replace the probability p;; by

I, =(@-a)p; +qg. In generd g will depend on explanatory variables and an obvious
choicefor amodd is

logit (q;) = Xij(q)b(q) (9.51)
The coefficientsin (9.8) may adso vary acrossleve 2 units.

Where the observation is not censored we know that it has a finite duration so that for the
infinite duration parameters we have a response variable taking the vaue zero with predictor
gven by {1+exp- (1- g; 3% The full model can herefore be specified as a bivariate

modd where for observed durations we have two responses, one for the uncensored
component |; and the one for the parameters b@. For the censored observations thereis a

single response which takes the value one with predictor function
{1+exp- [(1- g;)p; +q; |

We can extend the procedures of chapter 7 to the joint estimation of b, b®@ | noting that
for the censored observations when estimating b , we have

| $(b) =(1- g;)p{
and for estimating b we have

| g(b®)=(1- py)a ¢
9.13 Exampleswith birth interval data and children’s play episodes

Wefirg look again at the Hutterite birth interval data. Since al the durations are uncensored
we apply astandard modd to the log(birth interval) vaues. Results are given in Table 9.2,

We see that we can now fit the year of birth and age as random coefficients & levd 2. A
joint test gives a chi-squared vaue of 10.4 with 5 d.f. P=0.065, and they are each
separately sgnificant with a sgnificance level of 6%. We have sgnificant heterogeneity a
levdl 1 where the variance within women is greater where there has been a previous degth
with a chi squared on 1 df. of 4.7, P=0.03. As before, mother’s birth year and previous
degth
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Figure 9.3 Estimated survival functionsfor women with previouslive births (upper) and a previous
death; born in 1900, age 20, 12 months marriage.

are associated with a decrease and duration of marriage with anincrease in birth interval.
The edimated surviving fraction will in genera depend on the level 1 digtributiond
assumption. Inthe

present case, as shown in Figure 9.2, the level 1 standardised residuals show little departure
from Normdity and Figure 9.3 shows the estimated surviving fraction based on Normadlity
for women born in 1900, with marriage duration 12 months, aged 20 and with a previous
live birth.

Figure 9.3 is amilar to Figure 9.1 based on the proportiona hazards modd. In fact, the two
lines actudly cross at about 30 months, as aresult of the different level 1 variances for those
with a previous live birth as opposed to a deeth.

We now look a some data which exhibit more extensive variance heterogeneity a level 1.
They measure the number of days spent by pre-schoal children either a home or in one of
gx different kinds of pre-school play activity. For each of 249 children there were up to 12
periods of activity.

The response is the logarithm of the number of days and covariates are the type of episode,
with home chosen as the base category and the education of the mother measured on a 7-
point scae ranging from no education beyond minimum school leaving age (0) to university
degree (6). Nineteen of the episodes were right censored and twenty five were left
censored, being less than one day.

The multilevel gructureisthat of episodes within children. The modd is dso multivariate with
the type of play as Sx response variables, covarying at the level of the child.
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Table9.3 Log duration analysis of children'splay episodes: Extreme value distribution.

Parameter
Fixed A (se) B (se)
I ntercept 219 218
Play 1 -012(0.12) -013(0.12)
Play 2 0.20 (0.08) 0.18 (0.08)
Pay 3 0.00(0.13) 0.00 (0.13)
Play 4 0.87(0.12) 0.95(0.12)
Play 5 0.28 (0.09) 0.28 (0.09)
Play 6 0.15(0.09) 0.14 (0.08)
Mother Educn. -0.05 (0.02) -0.05(0.02)
Random Level 1
Overdll 0.75
Home 0.76
Pay 1 123
Play 2 0.83
Pay 3 0.79
Pay 4 040
Play 5 0.65
Play 6 0.57
Leve 2 covariance matrix. AnalysisA (analysis B in brackets)

Pay 1 Play 2 Play 4

Pay 1 0.34(0.0)
Play 2 0.11(0.0) 0.20(0.17)
Play 4 -0.28 (0.0) 0.13(0.09) 0.07 (0.23)

Table 9.3 shows the results of an analysis where there is a Single between-child variance and
where it is dlowed to differ for each type of episode. The between episode-within-child
vaiance is ds dlowed to vary for different episodes. The levd 1 residuds for the
continuous response part of the modd show some evidence of non Normadity and we
therefore show the results for the extreme vaue distribution. Because of the relatively smdll
amount of censoring there is little difference for the parameter estimates between analyses
meaking other distributional assumptions.

We see thet there is quite substantia variation at both levels. At levd 2 there was between
children variation only for play types 1,2 and 4. A proportiona hazards mode fitted to these
data did not show any between-child variation. In generd, the semiparametric proportiona
hazards modd will not detect some of the relationships apparent from fitting parametric
modd s dthough it has the advantage that it does not make strong distributiona assumptions.
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figure9.4 Estimated surviving probability of play episodes.

Figure 9.4 shows the predicted probabilities of home and play type 1 episodes lasting
beyond various times expressed in log (days). The crossing of the lines is now much clearer
as a consequence of the different level 1 variances.
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Chapter 10
Multilevel modelswith measurement errors

10.8 Errorsof measur ement

Many measurements are made with subgtantid error components, especidly in the socid
and biologica sciences. If the measurement were to be repeated we would not expect
adways to get an identica result. In some cases, such as the measurement of individud height
or weight, the errors may be so smdl that they can safely be ignored in practice. In other
cases, for example for educationd tests and attitude measures, this usualy will not be true
and a failure to ignore errors may lead to incorrect inferences. Fuller (1987) provides a
comprehensive account of methods for dedling with measurement errorsin linear models and
this chapter extends some of those procedures to the multilevel modd. The basic modd for
measurement errors in a 2-leve modd for the h-th explanatory variable and the response is
asfollows

Y; =Y; G
Xpii = Xpij T My (10.1)

Cov(qijqi’j ) = COV(rThj m-. /j ) = O

Where upper case |etters denote the observed measurements and lower case the underlying
‘true’ measurements. Thus, we can think of these true measurements as being the expected
vaues of repeated measurements of the same unit where the measurement errors are
independent and are aso independent of the true vaues. We define the reliability of the h-th
explanatory variable

R, =Si /S = (S - Sew) Six (102)

that is the variance of the true vaues divided by the variance of the observed vaues. This
immediately raises two problems. When we are measuring such things as attitudes or
educationd achievement, we cannot carry out repeat measurements to obtain estimates of
the s, because the measurement errors cannot be assumed to be independent. Another
way of viewing this is to say that the process of measurement itsdf has changed the
individua being measured, so that the underlying true value has dso changed.

The second problem is that we have to define a suitable population. The dfinition of
religbility is population dependent, so that for example, if the measurement error variance
shzm remains constant but the population heterogeneity of the true vaues increases then the
relidbility will increese. Thus, the rdiability may be lower within population subgroups,
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defined by socid status say, than in the population as awhole. In particular, the rdiability of
atest score may be smdler within level 2 units, say schools, than across dl students.

In this chapter we shdl assume that the variances and covariances of the measurement
errors are known, or rather that suitable estimates exists. The topic of measurement error
esimation is a complex one, and there are in generd no smple solutions, except where the
assumption of independence of errors on repested measuring can be made. The common
procedure, especidly in education, of using ‘internd’ measures based upon correlaiond

petterns of test or scale items, is unsatisfactory for a number of reasons and may often result
in reiability estimates which are too high. Ecob and Goldstein (1983) discuss these and
propose some dternative estimation procedures. McDonad (1985) and other authors
discuss the exploration and estimation of measurement error variances within a sructurd

equation modd, which has much in common with the suggestions of Ecob and Goldstein
(1983). Because estimates of measurement error variance are generdly impreciseiit is useful

to sudy the effects of varying them and we will illudtrate thisin examples

10.9 Measurement errorsin level 1 variables

We use a two level modd to show how measurement errors can be incorporated into an
andyss. A full derivation is given in Appendix 10.1. We write for the true mode

Yi = (xb )ij + (Zuu)j + (Zee)ij (10.3)

where for now we assume that the explanatory variables for the random variables are
measured without error which will be true for variance component models. We assume that
it is this true modd for which we wish to make estimates. In some Stuations, for example
where we wish smply to make a prediction for a response variable based upon observed
values then it is appropriate to treat these without correcting for measurement errors. If we
wish to understand the nature of any underlying relationships, however, we require estimates
for the parameters of the true modd.

For the observed variables (10.3) gives
Y, =q - (mb )ij +(Xb )ij + (Zuu)j + (Zee)ij

(10.4)
In Appendix 10.1 we show that the fixed effects are estimated by
TN
b=M, MXy
M, = X'VIX- G, (10.5)
o i
Co ={as’s o
1
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where s (im)m IS the covariance between the measurement errors for explanatory variables

h, h, for the i-th level 1 unit. The last expression in (10.5) is a correction matrix for the
measurement errors and has e ements which are weighted averages of the covariances of the
measurement errors for each level over dl the level 1 units in the sample with the weights
being the diagona dements of V™" In variance component models this is a Smple average
over the level 1 units, and in the common case where the covariance matrix of the
measurement errors is assumed to be constant over level 1 units we have

Cy =1 VO, W, = {Sh nym} (10.6)

An gpproximation to the covariance matrix of the estimates is given in Appendix 10.1 asis
an expression for the estimation of the random parameters. For the constant measurement
error covariance case with no measurement errors in the response variable this covariance
meatrix is given by
~-1 T;-1 N)-2 -1
M, (XV X+XV T X)M_

e ~ (10.7)
T, =(b"W, b)I -

and in the estimation of the random parametersthe term T, _ is subtracted from YY" at each
iteration. It is important in some agpplications to alow the measurement error variances to
vay as a function of explanatory variables. For example, in perinatd dudies, the
measurement of gestation length may be quite accurate for some pregnancies where careful
records are kept but less so in others.

Where the explanatory variables have random coefficients the above results are modified
somewhat and the detalls are given in Appendix 10.1.

10.10 Measurement errorsin higher level variables

Where varidbles are defined a levd 2 or above with measurement erors we have
anadogous results, with details given in Appendix 10.1. Thus the correction term to be used
in addition to C\M with a constant measurement error covariance matrix in a2-levd modd is

Cy, = (é} 3V, W, (108)

where J, isavector of onesof length n and V, isthej-th block of V.

A case of particular interest is where the level 2 variable is an aggregation of a leve 1
variable. Woodhouse et d (1995) consder this case in detall and give detailed derivations.
Consder the case where we have aleved 2 variable which isthe mean of aleve 1 variable

1 o
X1 =n_a X
j |

The variance over the whole sample is therefore given by
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var(X;.) cov( Xy X,i)
Var(Xllj):an]”+nj(1- nj) n2 Ll
j i

1 (10.9)

2 n; - 1 2
=S (Xl) t——Sy ( X1)
j n;

where we assume constant variances and covariances within level 2 units for the X;;. The
number of level 1 units actualy measured in the j-th level 2 unit is n; out of atotal number
of units N ;. Straightforward estimates of the parameters can be obtained by carrying out a
variance components andysis with X,; as responsg, fitting only the overdl mean in the fixed
part, S0 that the covariance isthe level 2 variance estimate.

For the true vaues we have an anaogous result where now we congider the variance of the

mean of the true vaues for all the levd 1 units in each levd 2 unit. There are, in effect, two
sources of error in X, ;. Thereisthe error inherent in the level 1 messurement X, which is

averaged across the leve 1 units in each leve 2 unit and there is the sampling error which
occurs when n <N, that is not dl the units in the levd 2 unit are measured. Thus the true

vaue is the average for dl the levd 1 units in each levd 2 unit of the true levd 1
measurements. Since the measurement errors are assumed independent we have

1 N, -1 10.10
Var(xl.j)_N (1)(X1)+ N 3(2)()(1) ( )

j i

This gives us the following expresson for the required measurement error variance for the
aggregated varigble

, &1 R10 ® 10
Sim = gﬁ Njg(l)(xl) Q_ W;S(z)(xl) (10.11)

wheretherdigbility R isestimated from theleve 1 variation.

If both the level 1 observed variable and its aggregate are included as explanatory variables
then clearly their measurement errors are correlated and the correlaion is given by

1- R
n 5(21)()(1).

j

In the expressons for the correction matrices, we have consdered the separate
contributions from levels 1 and 2. Where there is a ‘cross-levd’ corrdaion between
measurement errors as above then we add the level 1 varigble to W, using (10.11) for the
covariance together with a zero variance. The measurement error variance for the leve 1
explanatory variable becomes a component of W,,,. A detailed derivation of these resultsis
given by Woodhouse et a (1995).

Table 10.1 Eleven year Normalised mathematics score related to 8 year score, gender and social class
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for different eight year scorelevel 1 reliabilities; adjusting for measurement errorsat level 1only.

Parameter A (Ri=1.0) B (R:=0.9) C (R:=0.8)

Fixed Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

I ntercept 014 011 0.08

8 year score 0.095 (0.0037) 0.107 (0.0042) 0.122 (0.0050)

Gender -0.044 (0.050) -0.044 (0.050) -0.043 (0.052)

Non Manual 0.15(0.06) 0.11 (0.06) 0.06 (0.06)

Random

s? 0.081 (0.023) 0.081 (0.024) 0.082 (0.024)
u

s? 0423 (0.023) 0.374 (0.023) 0.311 (0.025)
€

Intra-school corrn. 0.16 0.18 0.21

10. 11 A 2-level example with measurement error at both levels.

We use the Junior School Project data reading score at the age of eleven years as our
response with the eight year mathematics score as predictor, fitting aso socid class (Non
manua and Manud) and gender. The scores at age eleven have been transformed to have a
gtandard Normd digtribution. In addition we shdl adlow for measurement errors in both the
test scores. There are atotal of 728 studentsin 48 schoolsin thisanayss.

In the origind analyses of these data (Mortimore et a, 1988) reliahilities are not given, and
for the reasons given above are unlikely to be well estimated. For the purpose of our
andyses we investigate a range of reiabilities from 0.8 to 1.0 to study the effect of
introducing increesing amounts of measurement error.

It can be seen in Table 10.1 that the inferences about the fixed parameters and the level 1
variance and intra-school correlation change markedly in moving from an assumption of zero
measurement error to ardiability of 0.8. The increase in the intra- school correlation reflects
the fact that it is only the level 1 variance which decreases as the rdiahility fals The
difference between the children from non manua and manua backgrounds is considerably
reduced as the reliability decreases.

We now look at the effect of adjusting additionaly for measurement error in the response
vaiadle. To illugrate this we look at the effects on the individua parameters for a range of
vauesfor therdiabilities of both response and explanatory variables.

As the response varigble reliability decreasses, so does the levd 1 variance estimate.
Likewise, as the rdiability of the 8-year score decreases the level 1 variance decreases. The
combined effect of both religbilities being 0.8 produces a variance which is a quarter of the
edimate which assumes no unreliability. WWhen both the reliabilities reach the vaue of 0.7 the
level 1 variance decreases to zero! By contrast the level 2 variance is hardly dtered. For the
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coefficient of the 8 year score and socid class the greatest change is with the reliability of
the 8-year score.

Table 10.2 Parameter estimates (standard errors) for values of explanatory and response variables

Eight year score Response reliability
10 09 0.8
Eight year 10 0.095 0.095 0.095
score reliability 09 0.107 0.107 0.107
08 0122 0122 0.123
Gender Response reliability
10 09 0.8
Eight year 10 -0.044 -0.044 -0.043
score reliability 0.9 -0.044 -0.043 -0.042
0.8 -0.043 -0.042 -0.041
Non manual Response reliability
10 09 0.8
Eight year 10 0.15 0.15 0.16
score reliability 0.9 011 011 012
0.8 0.06 0.06 0.06
Level 2 variance Response reliability
10 09 0.8
Eight year 10 0.081 0.080 0.079
scorereliability 0.9 0.081 0.080 0.079
0.8 0.082 0.081 0.080
Level 1 variance Response reliahility
10 09 0.8
Eight year 10 0423 0.325 0.226
score reliability 09 0.374 0.275 0.177
08 0.311 0.212 0113

As the rdiability decreases so the strength of the relaionship with 8- year score increases,
while the socid dass difference decreases subgstantialy. The gender difference is changed
veay little

Clearly, the requirement of a postive level 1 variance implies particular lower bounds on the
religbilities and messurement error variances, and underlines the importance of obtaining
good estimates of these parameters or at least arange of reasonable estimates. The range
of intra-school correlation coefficients, from 16% to 21% aso ndicates that we need to
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take care in interpreting smal vaues of such coefficients without adjusting for measurement
error.
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10.12 Multivariate responses

To mode multivariate data, as discussed in chapter 4, we specify a dummy (0,1) variable
for each response and corresponding interactions with other explanatory variables. Then
Cy,» Gy, In (10.5) and (10.8) are modified so that for each level 1 or level 2 unit, the

covariance between measurement errors is set to zero when either of the corresponding
dummy variables is zero and likewise for the variances. This is equivaent to specifying the
same covariance matrix of measurement errors for each set of explanatory variables
corresponding to a response variable, with no covariances across these sets. For the
response variables we likewise specify the separate measurement error variances for each
one using the generd procedures in gppendix 10.1.

10. 13 Nonlinear models

Consider the 2level model (5.3) in Chapter 5 where there are measurement errors in the
explanatory variables for the fixed pat of the modd. In this case we can obtan an
agoproximate analysis by usng the observed vaues in the updating formulae and replacing
the measurement error covariancesin (10.5) by

(f))’S (hm (10.12)

where f(i’) is the firg differentia of the nonlinear function for the i-th level 1 unit with a

corresponding expression for level 2 measurement errors. The derivation of (10.12) isgiven
in Appendix 10.1. Where the variables with measurement errors have random coefficients
we likewise replace the corresponding measurement error covariances in section 10.1.3 of
Appendix 10.1 by (10.12).

10.14 M easurement errorsfor discrete explanatory variables

Assume that we have a categorica explanatory variable with r categories. We shall consder
only a dngle such vaiadle, snce multiple varidbles can in principle be handled by
consdering the p-way table based upon them as a single vector. In practice it will often be
reasonable to assume that their measurement errors are uncorrelated so that they can be
considered separately. Likewise we can often assume that measurement errors in discrete
explanatory variables are uncorrdated with those in continuous variables. The following
derivations pardld those given by Fuller (1987, section 3.4). We condder only level 1
explanatory variables, but the extenson to higher leves follows straightforwardly.

Let A; (1xr) be arow vector for the i-th level 1 unit containing a one for the category
which is observed and zeros elsewhere. Let kK, be the probability thet aleve 1 unit with

true category n isobserved in category m. We write
K={k,}, WwhereK_ isthe m- thcolumnof K

and define
X = KA, (10.13)
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If X isthe true value we write

— — T
Ay = X0 Ty BIA X)) =X, K

We dso write

Xy = X5 =M
0 that

E(m, X)) =0

which gives the familiar form for the errors in variables mode where the unknown true

vduex;, is uncorrelated with the measurement eror. The X, become the new set of
observed values and interest is in the regression on the true category values x;;, . The vector

X, consists of asingle vaue of one and the remainder zero. We have
T _ — —_ A T
COV(A, Xy =1n) = Sgym = diag(K) - K Ky

where | isan r-dimengond vector with 1 in the m-th position and zeros elsewhere. For the

i-th level 1 unit define
— T _ _ -1 y
VV(i)m - Cov(mi) |X(i) =l =K S(i)(m)K (10.14)

and we use as our estimate of the covariance matrix of measurement errors the matrix in
(10.14) conditional on the observed A, .

W =W P (xp =Im) U
(ym ~— Wim€ _ Y 10.15
&P(An =1n) g (1015

The term in sguare brackets can be estimated as follows. If r,, i, are the observed and
true vectors of probabilities for the categories, then

m, =K'm,

and given the sample estimate of 1, we can estimate Ir,. The estimate given by (10.15) is
then used & in the case of continuous explanatory variables measured with error. In the
generd modd the number of explanatory variables will generdly be one less than the number
of categories, with one of the categories chosen as the base and omitted.

In practice, the matrix of probabilities K, is normdly assumed congant but can itsdf
depend on further explanatory variables. Often we will not have a good estimate of it, and
we may need to make some smplifying assumptions. In the case of a binary variabdle it may
be possible to assume equa misclassfication probabilities, in which case only a single vaue
needs to be determined, and in practice arange of values can be explored.
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Appendix 10.1 Measurement errors

10.1.1 The Basic 2-level M odel

We consder the 2-levedl modd and write

Yi =Y+ 4

Xhij = Xhij + rnﬂj

cov(qj;q,,) = cov(mym,,,)=0 (10.1.1)
E(g;)=E(m,;)=0

COV(MyiMyi) =S (a,) im

for the h-th explanatory variable with measurement error vector m, and with q as the
measurement error vector for the response. We use upper case for the observed and lower
case for the ‘true values which are the expected vaues of the observed measurements.
Each levd 1 unit may have its own set of measurement error variances. Where we have a
level 2 explanetory varigble, then the measurement error is congtant within aleve 2 unit.

We write the ‘true modd in the generd form

yi = (b)), +(zu); +(ze€); (10.1.2)
which gives the modd for the observed varigbles as

Y, =¢q; - (mb ), +(Xb ), +(z,u); +(z6€); (10.1.3)
m={m}

For the true values write

M, =xVx, M, =xV'y (10.1.4)

b =My M,

Now

XV X = (x+m) "'V (x+m) (10.15)
=XV Ix+mV 'x+xV'm+m'V'm

S0 that

E(X'V*X)=xV x+E(mMV 'm) (10.1.6)

169



If we further assumethat g and m are uncorrelated then we have
E(X'VY)=x'V'ly (10.1.7)

Thus, to estimate the fixed parameters we require E(m'V *m) and we now consider how
to obtain this for measurement errors a both level 1 and level 2. We then consder the
problem of obtaining estimates of the random parameters required to form V.

10.1.2 Parameter estimation

For errors of measurement in level 1 unitsthe (h, h,) dementof E(m'V ™ 'm) is

gs lig i
s (hfhy)jm

_ o i | (10.1.8)
with G, ={@ S 7S () jm}

where N is the totd number of levd 1 units. In the case where each levd 1 unit has the
same covariance matrix of measurement errors we have

Co =t (V )W, Wi ={S iyt (10.1.9)

For errors of measurement in level 2 explanatory variables we have

Gy, =a Ju, )Vj_l‘]m,-,l) Woim (10.1.10)
J

Where W,
Jir ¢ isa(rx s) matrix of ones. In Chapter 10 we discuss how to obtain the W.
variables which are aggregates of level 1 variables.

For the measurement error corrected estimate of the fixed coefficients we have

A

M, = My - Gy - Cy (10.1.12)

For the random component based upon the model with observed variables write the residua
V; = (z,U); +(z€);; +a; - (mb ), v={v;} which gives

is the covariance matrix of measurement errors for the j-th level 2 block, and
for leve 2

2jm

E(w') =V +/§s LT,
(10.1.12)

L=ABWb), T, =ABWb)I, 0

where s

quantity /%s

is the measurement error variance for the ij-th response measurement. Thus the
2 +T, + T, should be subtracted from the sum of products matrix YY" at each

]
iteration, when estimating the random parameters.

The covariance matrix of the estimated fixed coefficients is given by
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M I(XTVIIX + XTVIQV X + XV T+ TLIX) M}
Q=As’

ij " ia

(10.1.13)

This expresson ignores any vaiation in the esimation of the measurement error variance
itsdf, dthough Goldgtein (1986) includes termsfor this.

10.1.3 Random coefficientsfor explanatory variables measured with error

We have assumed =0 far that the coefficients of variables with measurement error are not
random. Where such coefficients are random the above formulae no longer apply and the
‘moment-based’ gpproach encounters severe difficulties (Woodhouse, 1998). Alternative
procedures are currently being studied.

10.1.4 Nonlinear models

Condder first the ase where just the fixed part explanatory variables have measurement
erorsat level 1inthe sngle component 2-level nonlinear modd for thei-th leve 1 unit

Yay = i (X b +random)

which yidds the linearisation

Yo, = L iy (XD) = & by Xt =& by Xy +randomterms (10,114
k k

where the explanatory variables are the observed measurements and the coefficients are the
required ones corrected for measurement error and x(*i)k = f(f )%k - Condider the expangion

of f;, for the measurement error terms, to afirst order gpproximation,
— 9 ¢/
f(i) - f(i)m=0 +a f(i),uk=0rn(i)kbk,t (10.1.15)
k

Thus we can use the observed explanatory variables with measurement error as an
goproximation to the use of the true vaues in the updating formulag, with (f(f))zs i(n,mm
replacing s immm in (10.5). Where the variables with measurement errors have random

coefficients we likewise replace the corresponding measurement error covariances in section
(10.1.3) by the same expressions.
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Chapter 11
Softwar e, missing data and structural equation models

11.8 Softwar e for multilevel analysis

Traditionaly, datisticd andyss packages for the andyss of linear or generdised linear
models have assumed a single levdl modd with a sngle random variable. For the moddls
described in this book such software packages are clearly inadequate, and this led, in the
mid 1980's, to the development of four specid purpose packages for fitting multilevel
models. One of these, GENMOD (Mason et a., 1988), is no longer generdly avalable.
The other threeare HLM (Bryk et d., 1988), MLWIN (Rasbash et d., 1999) and VARCL
(Longford, 1988). A detailed review of these four packages (including ML3 which
subsequently became MLn and then MLwiN ) has been carried out by Kreft et a (1994). In
thar origind form HLM, ML3 and VARCL were desgned for continuous Normaly
distributed response variables and dl three produced maximum likelihood (ML) or restricted
maximum likdihood (REML) estimates. All three were soon able to fit 3-level models and
VARCL and ML3 developed procedures for fitting Binomia and Poisson response models
using the firgt order margind gpproximation described in chapter 5. In addition VARCL is
able to fit a variance components modd with up to nine levels. Subsequently, the mgor
datistical packages, notably BMDP, SAS and GENSTAT, have begun to incorporate
procedures for ML and REML estimation for Norma response models. The packages
EGRET and SABRE will obtan ML egimates for a 2-levdl logit response modd. A
Bayesian package usng Markov Chain Monte Carlo (MCMC) estimation, BUGS, is dso
avalable and MLWiN dlows MCMC edtimation for a range of models. Appendix 11.1
contains details of where these and other programs can be obtained.

The two packages, MLWIN and BUGS, are able to fit nearly dl the models described in
this book, athough not currently structural equation models. These latter models can be
fitted by the program BIRAM, lised in Appendix 11.1. The prograns MIin and MLwiN
dlow an effectively unlimited number of levels to be fitted, together with case weights,
measurement errors and robust estimates of standard errors. They dso have a high leve
MACRO language which will dlow a wide range of gpecid purpose facilities to be
incorporated. A number of the papers referenced in earlier chapters have carried out their
edimation procedures usng speciad purpose Software written in datistical programming
languages such as S-Plus or Gauss. For the most part, however, this approach is
computetiondly inefficient for the andyss of large and complex data sets, and the use of
one of the specid purpose packages is then essentid, even when powerful mainframe
computers are used. The general purpose packages, SAS, GENSTAT and dso MLwiN
dlow awide variety of data manipulations to be carried out within the software whereas the
others tend to demand a somewhat rigid data format with limited possibilities for data
transformations etc.

It is reasonable to expect that the standard multilevel models will soon be available within
most of the mgjor genera purpose statistical packages. For the more complex models, such
as those with multivariate outcomes, nonlinear rdaionships and complex variation at dl

172



leves, it will be importat to have a user interface which asssts understanding the
complexity of structure when specifying models and when interpreting output. Because the
level of complexity of multilevel modes is gregter than that associated with Sngle levd linear
or generdised liner models, the importance of helpful user intefaces cannot be
overemphassad if the best use is to be made of these models. The ability to work
interactively in a graphica environment will dso be important and it will be necessary for
programs to optimise computations o that very large and complex datasets can be handled
within areasonable time (Goldstein and Rasbash, 1992).

11.9 Design issues

When dedgning a sudy where the multilevd nested sructure of a population is to be
modelled, the dlocation of level 1 units among level 2 units and the alocation of these among
level 3 units etc. will clearly affect the precison of the resulting estimates of both the fixed
and random parameters. The Situation becomes more complex when there are random cross
classfications and where there are severd random coefficients. There are generdly
differentia costs associated with sampling more level 1 units within an exigting leve 2 unit as
opposed to sdecting further leve 1 units in a new levd 2 unit. At the present time there
appears to be little empirical or theoreticad work on issues of optimum design for multileve
models..

Some gpproximations for studying the standard errors of the fixed coefficients have been
derived by Snijders and Bosker (1993) in the case of a smple 2-leve variance components
model. They are concerned with students sampled within schools and assume that the cost
of sdecting astudent in anew school is afixed congtant times the cost of sdlecting a student
in an dready sdected school. They aso assume that there is a minimum of 11 students per
school. They tend to find that, where this congtant is greater than 1 and the tota number of
sudents to be sampled is fixed, the sample of schools should be as large as possible,
athough thiswill not necessarily be true for dl the coefficients of interest.

Where cogt information is available, together with some idea of parameter vaues, perhaps
from a pilot sudy, then a guide to design efficiency can be obtained by smulating the effect
of different desgn drategies and studying the resulting characteridics of the parameter
estimates, such as their mean squared errors. Thiswill be time consuming however, since for
each design a number of smulated samples will be required. On the other hand, in certain
aress, such as that of school effectiveness or anima and human growth studies, where
information about costs and parameter vaues is often available, it would be possble to
derive some generdly useful results.

11.10 Missing data

A characterigtic of mogt large scde studies is that some of the intended measurements are
unavailable. In surveys, for example, this may occur through chance or because certain
guestions are unanswered by particular groups of respondents. We are concerned with
missing vaues of explanatory variables in a multilevel modd. An important distinction is
made between dtuations where the existence of a missng data item can be consdered a
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random event and where it is informative and the result of a non random mechanism.
Randomly missing data may be missng ‘completdy at random’ or ‘at random’ conditionaly
on the vaues of other measurements. The following expogition will be concerned with these
two types of random event. Where data cannot be assumed to be missing at random, one
goproach is to attempt to mode the missingness mechanism, and then to predict values from
this model. Such predictions can be treated in Smilar ways to those described below.

We consider the problem of missing data in two parts. First we develop a procedure for
predicting data vaues which are missng and then we study ways of obtaining modd
parameter estimates from the resulting “filled-in” or ‘completed’ data set. The prediction will
use those measurements which are avallable, so that data vaues which are missng a
random conditional on these measurements can be incorporated. Detalled discussions of
missing data procedures are given by Rubin (1987) and Little (1992).

The basic expostion will be in teems of a gngle levd modd for amplicity, pointing out the
extensons for multilevel modds.

11.11 Creating a completed data set

Congder the ordinary linear model
Y, =botb,x; +b,x, +§ (11.2)

for the i-th unit in asingle level modd. Suppose that some of the x,; are missng completely
a random (MCAR) or conditionally missing a random (MAR) conditiond on X, . Label
these unknown vaues x;; . We consider the estimation of these by predicting them from the
remaining observations and the parameter set g for the prediction mode, namely

Ry = E( 1%, Y,9) (11.2)

Where we have multivariate Normal data the prediction (11.2) issmply the linear regression
of X,onX,,Y, where the coefficients of this regresson prediction are obtained from

efficent, for example maximum likelihood, estimates of the parameters of the multivariate
Normd digribution. This can be achieved efficiently using the procedures for modelling
multivariate data described in Chapter 4. We shdl consder the case of non-Normal data
later.

We define a multivariste model with three response variables, Y, X, X, and three
corresponding dummy varigbles, say Z,,,Z,,Z,. Some leve 2 units will have dl three
response variables, but others will have only two where X, is mising. Write this as the 2-
level modd
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Vi = bOjZ(]'j +b1j21ij +b2j22ij’
bo ~N(m,,s7), by, ~N(m,s;), h=12

together with the three covariances to give the (2 x 2) covariance matrix W,, and
covariance vector W, . This modd will produce efficient (ML in the Norma cese)
estimates of the parametersin (11.1)

(11.3)

g = Wi Wy, (11.4)

Thus for any missng vaue we can use the parameters from (11.4) to predict X, from
X,,Y .These predicted vaues are just the estimated level 2 resduas from

(11.3) for the missing vaues. Clearly this procedure extends to any number of variableswith
any patern of missng data We smply formulate the modd as a multivariate response by
introducing dummy variables for each varidble and then estimating the residuds for the
resulting 2level modd and choosing the appropriate resduds to fill in the missing vaues.
This procedure extends in a straightforward way to multilevel data.

Suppose we have atwo level data set with some explanatory variables measured at level 1
and some at level 2 and various values missng. We specify a 3-levd multivariate response
model where some of the responses are a level 2 and some at leve 3. At leve 2 of this
model we estimate a covariance matrix for the origind leve 1 varidbles and at level 3 we
esimate a covariance matrix for al te variables. For the origina leve 2 variables with
missing vaues we esimate the resduas at level 3 and use these to fill in missing vaues. For
the origina leve 1 variables we add the level 3 and the level 2 residuds together to obtain
filledin vaues.

If we were to use the completed data sets in the usud way to fit a multilevel mode the
resulting estimates would be biased because the filled in data are shrunken and have less
variation than the origind measurements. Little (1992) discusses this problem and in the next
section we outline procedures for dedling with it.

11. 12 Multipleimputation and error corrections

The usud multiple imputation (Rubin, 1987) procedure proceeds as follows. The predicted
vaues are adjusted to have their correct, on average, distributional properties

by sampling from the multivariate didtribution of the predicted vaues. Where we have, asin
the above example, just one variable with missng vauesin asingle level Norma modd this
involves a series of random vaues chosen from the Normd digtribution with mean the
resdud etimate X, and variance given by the estimated (comparative) variance of this
resdua esimate. For smal samples, in estimating this variance, we should a so take account
of the sampling vaiaion of the estimaed parameters, for example usng a bootstrap
procedure (Chapter 3). Where the resduds from two different levels are combined, as
described above, severd leve 1 units within the same level 2 unit share the same leve 2
resdua so that we will need to sample from the multivariate digtribution where the variances
are amply the sums of the variances from the two leves and the common covariance is the
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variance of the levd 2 edimate. Where there are severd variables with filled in vaues then
we need to sample from an extended multivariate distribution.

Having generated these ‘ corrections we then fit our multilevel modd in the usua way and
obtain parameter estimates. This process is repeated a number of times, and the find
estimates are suitably chosen averages of these sats of estimates. These find estimates are
asymptoticaly efficient with consstent sandard errors.

This kind of multiple imputation, in practice, has certain drawbacks. The principa oneisthe
amount of computetion required to carry out severd andyses, epecidly in its use with
secondary data where different analysts, often with limited resources, wish to work on the
same data set. As an dterndive, the following procedure is proposed.

For our smple example the imputation procedure implicitly assumes amodd of the form

X, = Ry +W, (11.5)
where the w;, have the variances and covariances for the resduds estimated as above, and

zero means. This modd is smilar to the basc mode (10.1) in chapter 10 for errors of
measurement, except that therole of x;, isnow thet of the ‘true’ value which is unknown. If

we assume that the two terms m the right hand side of (11.5) are uncorrelated, then we
have

var(x,) = var(X,) +var(w) (11.6)

We see therefore that to obtain estimates for the fixed coefficients based upon the true
vaues we can apply the same procedures as in the measurement error case but with
measurement error variances added rather than subtracted from the relevant quantities.
Thus, for a 2level mode we have the following which correspond to (11.5) for a mode
with p explanatory variableswith missng dataat level 1. Weform

My =X VX +C, +C,

o i (11.7)
Cu =1 S 7S eyl

_ o *T -1q* j
Co, = A 1 Jnmm)V) In 04))S nm
J

substituting sample estimates. For the ij-th levdl 1 unit s is the diagona term of V!
ands ié(hlmw is the corresponding covariance (or variance) between the (level 1) resduds

for variables h,,h, where these are both missing. The vector ng(m) containsaoneif , for
the j-th second level unit, varigbles h,h, are both missng and zero otherwise. The term
S {im) is the estimated covariance (or variance) between the (levd 2) resduds for
variables h,,h, . The estimates of the fixed coefficients are given by

b=MM

xx 'V xy
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The extensions for level 2 explanatory variables and discrete variables (see below) are
likewise anad ogous to those described in Chapter 10.

In the sngle level case for a dngle explanaory varidble with missng data, these results
reduce to the following. Order the completed data so that the imputed observations are
grouped together firgt. Then, ignoring any correction for sampling variation, the adjustment is
obtained by replacing (X " X) by

ams? O (11.8)

XTX)+ WL
( )gO Og

where there are n, imputed vaues. Thisis very smilar to the correction described by Bedle
and Little (1975), although these authors use an estimate based upon the observed residuds
calculated from the complete data cases and approximate the covariance matrix by M o

11.13 Discrete variableswith missing data.

Suppose we have one or more categorical explanatory variables as well as continuous
variables with missing vaues. The first stage procedure is to obtain the predicted vaues. We
can do this by tregting al the variables together as a multivariale mode with mixed
continuous and discrete responses as described in Chapter 7. For each categorica variable
we obtain the predicted probabilities of belonging to each category, corresponding to each
dummy variable used in the subsequent anadlysis. For a single levd modd these would be
subgtituted to form the completed data set. For a 2-level modd we would add the level 3
resdua from the initid multivariate modd to each prediction. Thus, where the categorica
varigble is at level 1 then for each level 1 unit where varigbles are missng the dummy

variable values are replaced by estimates. We can obtain the s ), 1, together with

covariances between discrete and continuous variables from the model estimates (Chapter
7) and the rlevant higher leve variances and covariances are added for models with further
levels. Care is needed with such linear predictions for discrete data and further research is
required.

11.14 An example with missing data

We use the Junior School Project data set and model A of Table 10.1 to illustrate the
missing data procedure. We have omitted, at random, 15% of the values of the 8year
maths score. Three andyses have been carried out. The first smply omits dl the level 1 units
with a missing vaue. The second carries out only the first stage of the andysis to provide a
completed data set and then proceeds in the usua way. The third analysis carries out the full
missing data procedure.

The fird stage conssts of esimating the level 2 and level 3 covariance matrices for the
response  and three explanatory variables (excluding the intercept) and esimating the
resduals.

We see that in the analysis which retains only the complete cases the standard errors are
rased. The andyss which uses the completed data set without adjusting for the uncertainty
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of the predicted vaues tends to underestimate the level 1 variance and aso changes the
fixed paraneter esimates markedly. The corrected andysis usng the full missng data
procedure tends to give standard errors which are somewhat smdler than the andysis which
smply omitsleve 1 units with missing data.

Table 11.3 JSP Mathematics data. Model A isfull data analysis, model B omits cases with missing data,
model C uses completed data, model D usesfull missing data procedure.

Parameter Estimate(se) Estimate(se) Estimate(se) Estimate(se)
A B C D

Fixed:
Constant 014 012 0.097 012
8-year score 0.095(0.0037)  0.100(0.0040) 0.105(0.0037)  0.097 (0.0039)
Gender (boys- girls) -0.044 (0.050) -0.087 (0.054) -0.067 (0.047) -0.066 (0.051)
Socia class (Non Man-Man)  0.154(0.057) 0.113(0.060) 0.107 (0.054) 0.135(0.058)
Random:
Leve 2
s 30 0.081 (0.023) 0.083 (0.025) 0.077 (0.022) 0.077 (0.023)
Level 1
S 50 0423 (0.023) 0415 (0.024) 0.378 (0.021) 0412 (0.023)

11.8 Multilevel structural equation models

The theory and application of sngle leve structurd equation models, including the specid
cases of observed variable path mode s and factor analysis models, is well known (Joreskog
and Sorbom, 1979, McDondd, 1985). In this chapter we look at multilevel generdisations
of these modds. We dhdl not give details of estimation procedures which are set out in
Goldstein and McDondd (1987), McDondd and Goldstein (1988) with elaborations by
Muthen (1989) and Longford and Muthen (1992). McDonad (1994) presents an informal
overview.

Congder first a basic 2leve factor modd where we have a set of measurements on each
sudent within a sample of schools together with a set of measurements at the school leve
which may be aggregated student level messurements. The response measurements of
interest whose structure we wish to explore are assumed to be random variables, Normaly
digtributed. A further set of covariates, for example gender or socid class, are explanatory
variables which we may wish to condition on. For the p level 1 responses we first write a
multivariate modd with p responses, where in general some may be randomly missing.

Yhij = (Xb)hij +é.henijzhij +éhuh'zhij

Thisis a 3-level modd as described in Chapter 4 with dummy variables for each response
with random coefficients at level 2 and level 3. Note thet & level 3 (between schools) some
of the responses may not vary. Note also that in genera some of the coefficients of the
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covariates may vary a level 3 and these would be incorporated as further level 3 random
variables dong with those above. Reverting to the origind 2-level mode we now have a set
of level 1 random variables e,; and aset of level 2 random variables u; . A generd factor

gructure for the level 1 variables may involve factors defined a both level 1 and leve 2,
where we can write

- 3 (€N
€i —a gl 1oh Tgj + Wy

- 2 2
uhj - a g | 2gh fg(J ) +Whj
for the factor structures at each level, using standard notation. We may wish to identify some
of these factors as the ‘same factors at each level, for example by condraining certain
loadings to be zero. In genera of course, we may have different random variables & level 1
and leved 2, since, for example some of the variables which vary between students may not
vary across schools and vice versa. Thus we may have an titude score with no between
school variaion and any aggregate leve variables by definition will not vary between pupils.
The latter, nevertheless, may enter the model with the level 1 random variables as responses,
by being part of the level 2 factor structure and contributing to the prediction of the u,; in

the above eguation. Thus, we can in principle consder any levd 2 random variables
including random coefficients of covariates when modelling the factor Structure at thisleve.

A graightforward and consastent procedure for estimating the parameters of this factor
model isto do it in two stages. The first stage involves the estimation of the separate level 1
and levd 2 resdua covariance matrices as described above using the procedures given in
chapter 4. The second stage involves the factor anadlysis of these separate matrices using any
sandard procedure, as described for example in Joreskog and Sorbom (1979) or
McDonad (1985). This dso automaticaly dedls with any missing responses a ether leve.
McDondd (1993) gives details for maximum likelihood estimatorsin this case.

The two stage procedure should be reasonably efficient except where the data are
unbaanced, with highly variable numbers of levd 1 units within level 2 units. It has the
advantage that it can be used for quite generd structures. Thus it extends straightforwardly
to any number of hierarchica levels. Furthermore, we can aso fit models where there are
random cross classfications using the procedures described in chapter 8. Thus, if students
are classfied by the primary and the secondary school they attended we can estimate the
covariance matrices for level 1 and for both classfications a level 2 and then carry out three
Separate factor analyses of these matrices.

This procedure adso adlows usto fit general unconditiona path modes, with or without latent
variables, snce the covariance matrices a each levd are sufficient for these modds. A
smple example of such amode without latent variablesis as follows

1 — (@) (@) )
ij =a, +blxij +Uj +Qj

2) — 1 2 2
Y@ =a, +b,yl +u® +e
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where the y is regarded as a random variable in both equations. The traditiona path

i

model treets y;” in the second of these equations conditionally, so that it can be tregted

graightforwardly as a bivariate 2level modd. A choice between these two modeds will
depend on substantive congderations, especiadly where there is a tempord ordering of
variables when the conditiona model would seem to be more appropriate in generd.
McDonad (1985) gives an account of estimation for unconditiona path models.

11.9 A factor analysis example using Science test scores

We use the science data analysed in Chapter 4 to fit a 2-leve factor modd. to theresultsin
Table 4.4. The factor modd is fitted to the estimated resdud covariance matrices of this
table, omitting the variable Earth Science core. We use fird the level 1 and leve 2
covariance matrices and fit 2 modds. The first assumes one factor a each leve with the
loadings congtrained to be the same and the second allows the loadings to be different. A
mode with two factors with loadings congtrained to be equa at each level was d<o fitted
but yielded a very high correlation (0.95) between the factors at level 1 and an estimated
correlaion a level 2 of 1.80! The model where the loading congtraints were removed failed
to converge. The program BIRAM was used with the solution scaled so that the factor
variance equals one (McDonald, 1994). The goodness of fit chi squared values are
approximate, based upon the assumption of equa numbers of level 1 units per leve 2 unit.

The uncongtrained solution shows a greetly improved fit over the congtrained solution.. At
level 1 both the loadings for the Physics tests are somewhat higher than for the Biology tests
with R3 having a much lower corrdation with the factor. At school leve there is no such
clear separation between the loadings.

11.10 Future developments

A wide range of topics has been covered in this volume. Normal response models, are well
understood and have found many successful applications. Binary response models likewise
are finding numerous gpplications. In the former case, there are now efficient dgorithms for
fitting multilevd and cross classfied modds

Table11.2 Factor analysisof residual covariances of Science achievement data.

Variable Unconstrained loadings (s.e.) Constrained loadings(s.e.)
Leve 2 level 1
Biology core 1.02 (0.01) 0.58 (0.02) 0.61 (0.02)
Biology R3 0.97 (0.08) 0.23(0.02) 0.26 (0.02)
Biology R4 0.73 (0.05) 0.50 (0.02) 0.52(0.02
Physics core 0.96 (0.01) 0.64 (0.02) 0.66 (0.02)
Physics R2 0.87 (0.03) 0.64 (0.02) 0.65 (0.02)
c? (d.f.) 91.9 (10 2365 (15)
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with many levels and ways of classification. Likewise, the nonlinear modeling of variance
functions including time series andyss promises to open up interesing new aress of
goplication.

With anticipated increases in the power of computer hardware the andlyss of very large
datasets, including for example population censuses, should become feasible. In the case of
binary data, as well as count and multicategory response data and nonlinear models more
generdly, there is more research required on the properties of different estimators. More
smulation studies would be useful here. Bayesian methods such as Gibbs Sampling show
condderable promise.

The ability to handle measurement errors and missing data efficiently is important and a
generaly neglected area in applied research which tends to ignore measurement errors and
treet missng data by omitting complete units. The procedures discussed here will benefit
from further development and exploration and this will be an important area for further
research, affecting as it does both consstency and efficiency. Likewise, the issue of design
efficiency has hardly been explored at dl dthough it isapracticaly important topic.

We have presented a successon of modes in previous chapters, deding separatdy with
each one. We have sad little about combinations of these to produce more complex
models. For example, we can combine a mixed binary and continuous response mode with
higher level cross dassfications and measurement errors. With modes of such complexity
both the modd specification and interpretation will need to be dedt with carefully. This will
be helped by the use of powerful graphical procedures for diagnosis and presentation of
modd structures, and thisis an important areafor further development.

Findly, to help researchers and others keep aoreast of the rapid developments in multilevel
modelling, a Web site has been sat up to provide updated information about software
developments, theory and applications. It can be accessed from the following addresses:

London: http://www.ioe.ac.uk/multilevel/
Montreal: http: //www.medent.umontreal .ca/multilevel/
Melbourne: http: //www.edfac.unimelb.edu.au/multilevel/

Thereisadso an active email discusson group which can be joined by sending a message to:
mailbase@mailbase.ac.uk
The message should contain asingle line, with a commeand of the form

join multilevel <firsthame(s)> <lastname>

for example: join multilevel Jane Smith
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Appendix 11.1

Addresses for multilevel softwar e packages

BIRAM is availdble from:
Professor R.P. McDonad
Department of Psychology,
Universty of lllinois

603 E. Danid .,

Champaign, IL. 61820, U.SA.

BMDP s avalable from:

BMDP Statigticd Software Inc.,
1440 Sepulveda Blvd. Suite 316,
LosAngdes

CA 90025, U.SA.

BUGS isavaldble from:

MRC Biodatigtics Unit
Indtitute of Public Hedth
Robinson Way

Cambridge, CB2 2SR, England.

EGRET isavalldble from:

Statistics and Epidemiology Research Corporation
909 Northeast 43 Strest, Suite 202

Sesttle, Washington, 98105, U.SA.

MLWiN available from:

Hilary Williams

Institute of Education

20 Bedford Way,

London, WC1H OAL, England

ML3, HLM and VARCL are dso available from
ProGamma, .

P.O.B. Groningen,

The Netherlands.

SABRE isavallable from:
Centre for Applied Statistics
Universty of Lancaster
Lancagter, LA1 4YF, England

SASisavalable from:
SAS Indtitute Inc.,
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SAS Campus Drive
Cary, NC 27513, U.SA.
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GENSTAT isavailable from:

NAG Ltd.,
Wilkinson House
Jordan Hill Road
Oxford, OX2 8DR

England

HLM isavailable from:
Scientific Software Inc.
1525 East 53rd .,
Suite 906,

Chicago, IIl. 60615
U.SA.
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| dentification of updatesto 1995 edition of Multilevel Statistical
Modelsincorporated into the April 1999 Web version

Note that some reprints of the 1995 edition will incor porate some of these

amendments

Section Position of amended text

Xii Description of Kronecker product

Appendix 2.3 Various

34 Expression following equation 3.7

3.5 Table3.5

4.2 Table 4.1 and Equation 4.1

6.3 Equation 6.5, Table 6.1. Second paragraph following equation 6.5

6.4 Paragraph 3

7.2 Find paragraph — extrareference

7.7 Equations 7.14, 7.15

7.8 From immediately following equation 7.17 to end of section.

Appendix 7.1 Expression for second differentiad of logit-multinomia modd.

8.1 Second paragraph, Figure 8.2

8.2 Sentence following equation 8.2.

8.6 Various.

9.5 Final paragraph

9.6 Various

9.10 Equations 9.6, 9.7. Sentence following equation 9.7. Fina paragraph,
expresson for firg differentid.

Appendix 10.1 Section 10.1.3 paragraph starting ‘ For estimating the fixed part..’

111 Firg two paragraphs

11.10 An additiond find paragraph

References Some corrections and the following additions:

Rasbash et al., 1995

Goldstein and Rasbash, 1996
Pfeffermann et al., 1997
Woodhouse, 1998

Goldstein and Blatchford, 1998
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