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Introduction

Large quantities of routine ‘performance’ data now collected
on many healthcare providers at regular intervals.

Often strict government targets for performance
improvements.

Population level performance & ‘unusual’ providers both of
interest.

Standard to first adjust for risk factors beyond the influence of
providers (‘case mix’).

We will compare models for risk-adjusted performance
measures based on their predictive ability.
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e.g.1: MRSA bacteraemia rates in NHS Trusts

Cases of Methicillin resistant Staphylococcus Aureus
bacteraemia infections in hospital are high profile example.

Mandatory surveillance in all NHS Trusts since 2001.

i = 1, ..., 171 NHS Trusts

t = 1, ..., 11 six-month time periods

Oit = observed no. of infections

Eit = ‘expected’ infections, based on Trust ‘size’ & average
rate for Trust type

Assume Oit |rit ∼ Poisson(ritEit)
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e.g.1: MRSA bacteraemia rates in NHS Trusts
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Data on 8 of 171 NHS Trusts
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e.g.2: Teenage conceptions in English Local Authorities

Britain’s teenage pregnancy rate is the highest in Western
Europe.

Government targets for rate reductions.

i = 1, ..., 352 Local Authorities

t = 1, ..., 9 years

Oit = observed no. of under-18 conceptions

Eit = ‘expected’ infections, based on regression model (adjust
for population size, deprivation, education, rurality)

Assume Oit |rit ∼ Poisson(ritEit)
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e.g.2: Teenage conceptions in English Local Authorities
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Data on 8 of 352 Local Authorities.
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Modelling cross-sectional data

Funnel plots: Plot each risk-adjusted rate against a measure of its
precision.
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Classical: p = 0.05
Bonferroni: p = 0.05/m

Test if each provider’s rate is equal to the average.
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Modelling cross-sectional data

For teenage conceptions data (& MRSA), considerable
heterogeneity in rates in any one year.

Expected conceptions
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p = 0.05

Motivates considering a hierarchical model in this context.
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Motivation for a hierarchical model

Some dispersion of true rates around the mean is to be
expected, due to imperfect risk adjustment.
→ Allow some leeway in the null, to prevent too many
providers being identified as ‘unusual’.

Resulting shrinkage estimates of underlying rates have
attractive properties:
Improve estimation performance by drawing on info from
other units.

Deal with small counts effectively, increasing precision.
Improve predictions / Handle ‘regression-to-the-mean’.
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Hierarchical model

e.g. Poisson-gamma model:
ri |µ, τ ∼ IID Gamma[µ, τ2].

Assuming µ and τ are known, we obtain

Shrinkage estimate:

r̂i = wi
Oi
Ei

+ (1− wi )µ

where

wi =
τ2

τ2 + µ/Ei

Empirical Bayes: use plug-in estimates of µ and τ .

Implied predictive distribution for next period is negative
binomial.
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Modelling longitudinal performance data

Well-known advantages of hierarchical models / shrinkage
estimators (i.e. smoothing between providers).

With longitudinal data we also have the option to smooth
within providers over time.

We could smooth independently within each unit (e.g.
Poisson regressions / EWMA), or combine both types of
smoothing in a hiearchical longitudinal model
= ‘Bidirectional smoothing’.
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Bidirectional smoothing

Hierarchical AR(1) model (Lin et al., 2009)

Oit |rit ∼ Poisson(ritEit)

Simple hierarchical model assumed to hold marginally in each time
period:

log(rit) ∼ Normal(µt , τ
2
t ) .

Time series structure on each standardised process:

log(rit)−µt

τt
= φ

(
log(ri,t−1)−µt−1

τt−1

)
+ ηit , t = 2, ...,T

Fit in WinBUGS.



Intro Hierarchical models Longitudinal models Evaluation criteria Results/Conclusions References

Bidirectional smoothing

Hierarchical AR(1) model (Lin et al., 2009)

Oit |rit ∼ Poisson(ritEit)

Simple hierarchical model assumed to hold marginally in each time
period:

log(rit) ∼ Normal(µt , τ
2
t ) .

Time series structure on each standardised process:

log(rit)−µt

τt
= φ

(
log(ri,t−1)−µt−1

τt−1

)
+ ηit , t = 2, ...,T

Fit in WinBUGS.



Intro Hierarchical models Longitudinal models Evaluation criteria Results/Conclusions References

Extension to Lin et al model

To automatically make predictions, we extended the model to
incorporate a random walk for the population mean:

Random walk on µt :

µt = µt−1 + δt
δt ∼ Normal(0, σ2µ)

Similarly for the log of the population standard deviation:

Random walk on log(τt):

log(τt) = log(τt−1) + εt
εt ∼ Normal(0, σ2τ )
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Bidirectional smoothing

Such models for performance data, resulting in ‘bidirectional’
smoothing, are increasingly being suggested in the literature (e.g.
West & Aguilar, 1998; Van Houwelingen et al).

But:

Involve considerable extra complexity.

No systematic evaluation has been made, comparing these
models with simpler ‘one-way’ smoothing alternatives.
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Evaluation criteria

We use 3 approaches, drawing heavily on recommendations of
Gneiting et al. (2005) in the field of weather forecasting:

1 Accuracy of point predictions:
MSE = 1

m

∑m
i=1(OiT − ÔiT )2

MAE = 1
m

∑m
i=1 |OiT − ÔiT |

But also evaluate the full forecasting distributions:

2 Uniformity of predictive p-values.

3 Proper scoring rules: log-score and CRPS.
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Example of 2 predictive densities

Number of MRSA infections in a particular NHS Trust.

Number of infections (x)
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Independent Poisson
Poisson−gamma EB

N Point prediction under independent Poisson model.

� Point prediction under Poisson-gamma EB model.
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Uniformity of predictive p-values

A correctly calibrated forecasting distribution
≡ Events declared to have probability p occur a proportion p
of the time on average.

If this is the case, then the set of predictive p-values should
have an approximately Uniform(0,1) distribution.

Can assess this:
1 Visually, using histograms and plots of ordered p-values.
2 Using test statistics e.g. Kolmogorov-Smirnov D or

Cramér-von-Mises W 2.
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Proper scoring rules

Uniformity of the predictive p-values is necessary but not
sufficient condition for forecasting system to be ‘ideal’
(Gneiting et al., 2007).

Therefore also consider 2 ‘proper scoring rules’.

Logarithmic Score

LSi = −log(f (Oi ))

Continuous Ranked Probability Score

CRPS(Fi ,Oi ) = E |Opred
i − Oi | − 1

2E |O
pred
i − Opred ′

i |

Examine mean of these over providers: lower preferred.
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Results

Model comparison for the teenage pregnancies data:

MSE MAE D W 2 CRPS LS
0 Pois indep 249 11.2 0.04 0.08 8.00 3.98

1 PG EB 197 10.0 0.07 0.41 7.17 3.87
1 P-LN Bayes 197 10.0 0.06 0.28 7.16 3.87

2 HR AR(1) 189 9.7 0.05 0.33 6.88 3.83

0) No smoothing, 1) Smooth between, 2) Bidirectional smoothing.
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Results

Model comparison for the MRSA data:

MSE MAE D W 2 CRPS LS
0 Pois indep 52 5.5 0.09 0.24 3.81 3.19

1 PG EB 36 4.5 0.06 0.07 3.15 3.01
1 P-LN Bayes 37 4.6 0.06 0.09 3.17 3.01

2 HR AR(1) 33 4.3 0.06 0.14 2.96 2.96

0) No smoothing, 1) Smooth between, 2) Bidirectional smoothing.
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Conclusions

Smoothing observed performance measures has clear benefits
in terms of predictive accuracy.

This is now well recognised & hierarchical models are
increasingly used for modelling cross-sectional data.

Smoothing within in addition to between providers using the
‘bidirectional’ smoothing model of Lin et al. was found to
have additional benefits for 2 example datasets.

This model is highly interpretable, automatically adapts to
characteristics of dataset & is straightforward to program in
WinBUGS.
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Conclusions

Seems reasonable to suggest this model should be used as a
default.

However, it requires use of specialist software (WinBUGs) &
takes a very long time to fit!

Future research should focus on faster / simpler
methods for fitting bidirectional models.
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