12 MULTILEVEL DATA AND THEIR ANALYSIS

There is another way in which we can represent the structure given by :.mV
that allows a flexible generalisation. Consider a model whose random part is

given by _
Ugj + UiX 15 + egjj + €1X3ijs

where now we assume that eq;; has variance qwo. eoy and ey :ﬂé oﬁﬂé_:wwow
o.01, and (somewhat bizarrely) ey; has variance equal to zero. Then the le
contribution to the total variance is given by

0% + 2x3001,

which amounts to a variance of ¢% for boys and one of 0% + 2001 for m:_w.
(remember that the covariance may be positive or negative, SO that either oﬂa m

the variances may be the larger of the two). The constraining &. one o ﬁnn
variances to equal zero while permitting a non-zero covariance is 2 device vo
introduce model complexities into the structure of the variability that can be
extended in many directions. In particular, it allows us to model the level-1
variation as a linear function of several explanatory variables (for a more
detailed discussion, see Goldstein, 1995, Ormvﬁ.oa 3). The .Sn.am 0%, and o.01
are best thought of as parameters in such a linear function rather than as

iances and covariances in the usual sense. .

<»M~” this chapter, the basic multilevel models .=m<o vgs va.wo:.aau in wcw-
sequent chapters, there will be further elaborations with applications to sub-
stantive areas.
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CHAPTER 2

Modelling repeated

measurements
Harvey Goldstein and Geoff Woodhouse

Mathematical Sciences, Institute of Education, University of London, UK

2.1 INTRODUCTION

When measurements are repeated on the same subjects, for example students or
animals, a two-level hierarchy is established with measurement repetitions or
occasions as level-1 units and subjects as level-2 units. Such data are often
referred to as ‘longitudinal’ as opposed to ‘cross-sectional’ where each subject is
measured only once. Thus, we may have repeated measures of body weight on
growing animals or children, repeated test scores on students or repeated
interviews with survey respondents. Figure 2.1 is a plot of height measurements
on each of four boys (Goldstein, 1989a; see below) between the ages of
10.5 and 16.5 years. Several things are worth noting. First, for each boy, the
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Figure 2.1 Repeated height measurements for four boys.
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14 MODELLING REPEATED MEASUREMENTS

growth curve is very approximately a straight line. Secondly, if we drew a
simple regression line for each boy, the variation about this line would be
small relative to the variation between the lines. In other words the level-1
?<=Es-.5&<Ecm_&agoan-ogmmmosv variation is smaller than the level-2
(between-individual) variation. In contrast with many other two-level data
sets, where most of the variation is at level 1, we have a strong hierarchical
structure where any failure to model it will result in serious model misspecifica-
tion. Finally, we note that the lines for each boy have varying slopes; they grow
at different rates and we will need to fit models of greater complexity than
simple variance component models. Also, as we shall see below, we can fit more
complex functions than straight lines to these data.

It is important to distinguish two types of model for repeated measurement
data. In one, earlier measurements are treated as covariates rather than
responses. In the other, as in the growth example, all the measurements are
considered as responses and are related to time or age. The first case will often
arise when there are a small number of distinct occasions and where different
measures are used at each one. In this situation, it will often make little sense to
study how the measures are related to age or time: to do so would require us to
standardise each measurement to a common metric, but this would still leave
problems of interpretation. Plewis (1993) discusses a standardisation where the
coefficient of variation at each age is fixed to have a constant value. In general,
however, different standardisations may be expected to lead to different infer-
ences. The choice of standardisation is in effect a choice about the appropriate
scale along which measurements can be ‘equated’, so any interpretation needs
to recognise this.

In the second case, which is usually referred to as a ‘repeated measures’
model, it is more natural to ask questions about how the relationship between
a common measure such as height or weight changes with age, and it is this
class of models that we shall discuss here. A detailed description of the distinc-
tion between the former ‘conditional’ models and the latter ‘unconditional’
models can be found in Goldstein (1979) and Plewis (1985).

We may also have repetition at higher levels of a data hierarchy. For
example, we may have annual data about smoking habits on successive cohorts
of 16-year-old students in a sample of schools. In this case, the school is the
level-3 unit, year is the level-2 unit and student the level-1 unit. We may even
have a combination of repetitions at different levels: in the previous example,
with the students themselves being questioned on successive occasions. We shall
also look at an example where there are responses at both level 1 and level 2,
that is specific to the occasion and to the subject.

The link with multivariate data models (see Chapter 3) is also apparent where
the occasions are fixed. This can be seen in Table 2.1 where we have four
measurements on each individual; the first subscript refers to occasion and the
second to individual.

We can regard this as a multivariate response vector with four responses for
each child, and specify a model, for example relating the measurements to a
polynomial function of age. This multivariate approach has traditionally been

A TWO-LEVEL REPEATED MEASURES MODEL 15

Table 2.1 Measurements at four occasions for three individuals.

Individual Occasion | Occasion 2 Occasion 3 Occasion 4
W yn yu i yai
3 2 Y22 Y32 Y42

yi ya yn Y43

used with H_uomﬁa measures data (Grizzle and Allen, 1969). It cannot, how-
ever, .aom_ with data with an arbitrary spacing of time points or number of
occasions, and we shall not consider it further.

In all the models considered so far, we have assumed that the level-1 residuals
are ::o@?o.&.oa‘ For some kinds of repeated measures data, however, this
mmmcav:OJ will not be reasonable, and we shall also investigate models that
allow a serial correlation structure for these residuals.

Our examples deal only with continuous response variables, but a discussion

of how to apply these procedures where responses i i i
are discret
the end of the chapter. P serete will be given at

2.2 A TWO-LEVEL REPEATED MEASURES MODEL

Consider a data set o.onmwanm of repeated measurements of the heights of a
nwnaoa mmav_a.&. children. Thus, for the data in Figure 2.1, we can write a
simple model with linear growth as

.v:\. “§e\,+§_\..ﬂ.\.+m@,. AN:

.::,..w Boaam assumes that height Y is linearly related to age X, with each subject
having their own intercept and slope, so that

E(By) = Bo,  E(Byj) =By,
var(fy;) = qwc. var(fy;) = qw_, cov(By, By;) = ouor,  var(e;) = qw.

dﬁnn is no restriction on the number or spacing of ages, so that we can fit a
single model to subjects who may have one or several measurements. We can
clearly nx.ﬁsm (2.1) to include further explanatory variables, measured either at
the occasion level, such as time of year or state of health, or at the subject level
such as .G:SEQWE or gender. We can also extend the basic linear function in
(2.1) to include higher-order terms and we can further model the level-1 residual
so that the level-1 variance is a function of age (see Chapter 1).
. Table 2.2 presents the results of an analysis fitting (2.1) and also a model that
includes .?::2 polynomial growth terms. The data consist of 436 measurements
mn. the :n_m:.a of 108 c.oww between the ages of 11 and 16 years (Goldstein, 1989a).
, ,“n“oﬂﬂsazon, ageisnow Bommcan.a about the (approximate) mean age of 13.0
e ﬁ.. . en Mzo mm_oc_ma._uo_w:oa_m_ terms and fit random coefficients this
ntring’ will avoid numerical problems arising from approximate collinearities.
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Table 2.2 Height (cm) for adolescent growth, bone age, and adult height for a sample
of boys. Age measured about 13.0 years. Level-2 variances and correlations are shown.
All random parameters are significant at the 5% level.

Model A Model B

Parameter estimate (SE) estimate (SE)
Fixed
Intercept 153.2 153.1
Age 7.10 (0.14) 7.06 (0.17)
Age® 0.25 (0.06) 0.32 (0.06)
Age’ —~0.21 (0.02) —-0.21 (0.03)
Random
Level 2:

Intercept Age Age?
Intercept 59.3 52.2
Age 0.39 0.79
Age? -0.49 -0.35 0.19
Level 1:
a? 1.32 4.49
—2 log-like. 2182.6 2300.6

The simple ‘variance components” model, which fits only an intercept at level
2, is a poor fit, as shown by the deviance statistic of 118.0 with five degrees of
freedom. A variance components model, sometimes known as a ‘compound
symmetry’ model, is anyway implausible since it assumes that the correlation
between two measurements is 02(02, +¢2)”', the intra-unit correlation, and
hence does not depend on the age difference. In fact, for these data, we can go
on to fit a quartic term in the fixed part and make the coefficient of the cubic
term random at the individual level; we have omitted this extended model for
simplicity.

For each individual, we can estimate the posterior level-2 residuals for the
intercept, linear and quadratic coefTicients (see Chapter 1). Using these, we may
therefore construct the predicted growth curves for each individual. Figure 2.2
shows these for the same four individuals as in Figure 2.1, and we can see the
very different growth patterns.

We could go on to further elaborate this model in a straightforward way by
adding covariates, for example social class, allowing us to investigate how the
growth patterns vary by type of child. It is also possible to elaborate the model
in an interesting way by including further response variables so defining a
multivariate repeated measures model. This has a number of useful properties,
as we shall explain below.

POLYNOMIAL EXAMPLE FOR ADOLESCENT GROWTH IN HEIGHT 1-
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Figure 2.2 Predicted growth patterns for four individuals; fitting the model in Table
2.2,

2.3 A POLYNOMIAL MODEL EXAMPLE FOR ADOLESCENT
GROWTH IN HEIGHT AND BONE AGE TOGETHER WITH
ADULT HEIGHT

Our next example combines the basic two-level repeated measures model with a
multivariate model to show how a general growth prediction model can be
constructed. The data are as before, together with measurements of their height
as adults and estimates of their bone ages at each height measurement based
upon wrist radiographs. We first write down the three basic components of the
model, starting with a simple repeated measures model for height using a third-
degree polynomial with coefficients up to the quadratic random at the indi-
vidual level:

3 2
M — 5 g0 H |
DRI ADITEAL 22)
h=0

h=0

where the level-1 term e; is now allowed to have a complex structure, for
example a decreasing variance with increasing age, and the xj; represent powers
of the child’s age.

The measure of bone age is already standardised, since the average bone age
for boys of a given chronological age is equal to this age for the population.
Thus we model bone age using an overall constant to detect any average
departure for this group together with between-individual and within-individual

variation ?% and &.w respectively):
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§
) _ 4 @) o
vy =05+ iy 6y ey

h=0

(2.3)

For adult height, we have a simple model with an overall mean and level-2

variation given by

(3) _ p(3) (3)
i =h + ty; -

(2.4)

If we had more than one adult measurement on individuals, we would be able
to estimate also the level-1 (within-individual) variation among adult height
measurements; in effect measurement errors. We now combine (2.2)-(2.4) into

a single model using the following indicators.

&.\.: =1 if growth period measurement, 0 otherwise;

&\.c =1 if bone age measurement,

0 otherwise;

0 otherwise;

POLYNOMIAL EXAMPLE FOR ADOLESCENT GROWTH IN HEIGHT

Table 2.3 Height (cm) for adolescent growth, bone age and adult height for a sample of

boys. Age measured about 13.0 years. Level-2 variances and correlations shown.

&E =1 if adult height measurement,

3 2
1 1 1) 1)
S\.H&\.v M R.V+M =M\$+mm\.

h=0 h=0

_
~ ~ ~ ~
+&\.v M_V+MU:M_\.£W.+%

h=0

+ 6B + ul)). (2.5)

This is now a multivariate model, with the multivariate structure specified at
level 1 using the three dummy variables above. Since adult height is defined at
the individual level, its residual can only co-vary with random coefficients at
that level and not at level 1. The variances and a covariance between bone age
and height are specified at level 2, and the between-individual variation invol-
ving height, bone age and adult height at level 3. In fact, for simplicity, we shall
assume that the residuals for bone age and height at level 2 are largely ‘meas-
urement errors’, and hence it is reasonable to assume they will be independent,
although dependences might arise, for example if the model were incorrectly
specified at level 2. Table 2.3 shows the fixed and random parameters for this
model, omitting the estimates for the between-individual variation in the quad-
ratic and cubic coefficients of the polynomial growth curve.

From the positive value of the bone age intercept we infer that this sample is
slightly advanced compared with the general population, but with a large
between-individual variance of 0.70.

We see that there are non-zero correlations between adult height and both the
height intercept and growth coefficients, but a smaller correlation between adult
height and the bone age intercept. This suggests that the growth measurements
can be used to make predictions of adult height, but that little is gained by
including the bone age. To predict adult height, we require the estimated resi-
duals for adult height from the model. For a new individual, with information

Parameter Estimate (SE)

Fixed

Adult height:

Intercept 174.6

Height:

Intercept 153.1

>mn~ 7.08 (0.16)

>mnu 0.30 (0.05)

Age —0.20 (0.03)

Bone age:

Intercept 0.21 (0.09)

Age 0.04 (0.02)

Random

Level 2:
Adult Height Age Age* Bone Age
height intercept Intercept

Adult height 63.4

Height intercept 0.76 58.6

>mn~ 0.22 0.50 0.70

Age 0.19 -0.50 -0.48 0.17

Bone age Intercent. 0.06 0.58 034 -0.86 0.70

Level 1

variances:

Height 1.64

Bone age 0.36

available at one or more ages on height or bone age, we would estimate the
adult height residual using the model parameters. This therefore provides a
quite general method for predicting adult height using any collection of height
and bone age measurements at a set of ages within the range fitted by the
:..oan_. Table 2.4 shows the estimated standard errors associated with predic-
tions made on the basis of varying amounts of information. It is clear that the
main gain in efficiency comes with the use of height with a smaller gain from the
addition of bone age.

Han method can be used for any measurements, either to be predicted or as
En@_ﬁoa. In particular, covariates such as family size or social background can
.ca included to improve the prediction. We can also predict other events of
::..wnnmr such as the estimated age at maximum growth velocity. Pan and Gold-
stein (1998), for example, provide estimates of growth rates and accelerations
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Table 2.4 Standard errors for height predictions for
specified combinations of height and bone age measurements.

Bone age measures Height measures (age)

None {1.0 11.0

12.0

None i 4.3 4.2
11.0 7.9 39 38
11.0 12.0 7.9 3.7 37

for individuals from any set of serial measurements taken during growth. They
model height and weight in a bivariate response model and also provide
‘conditional’ predictions and norms for current weight or height given any set
of previous weights and heights.

2.4 MODELLING AN AUTOCORRELATION STRUCTURE AT
LEVEL-1

So far we have assumed that the level-1 residuals are independent. In many
situations, however, such an assumption would be false. For growth measure-
ments the specification of level-2 variation serves to model a separate curve for
each individual, but the between-individual variation will typically involve only
a few parameters, as in-the previous example. We can think of each curve as a
smooth summary of growth with small random departures at each measurement
occasion. If, however, measurements on an individual are obtained very close
together in time, they will have a similar departure from that individual’s
underlying growth curve. This implies that the level-1 residuals will be positively
correlated; there will be ‘autocorrelation’ between them. Examples occur in
other areas, such as economics, where measurements on each unit, for example
an enterprise or economic system, exhibit an autocorrelation structure and
where the parameters of the separate time series will vary across units at level-2.

A detailed discussion of multilevel time series models is given by Goldstein et
al. (1994). They discuss both the discrete-time case, where the measurements
are made at the same sct of equal intervals for all level-2 units, and the con-
tinuous-time case, where the time intervals can vary. We shall develop the
continuous-time model here, since it is both more general and flexible.

To simplify the presentation, we shall drop the level-1 and -2 subscripts and
write a general model for the level-1 residuals as follows:

cov(ee,—s) = Qw.\.ﬁ.& (2:6)

This states that the covariance between two measurements s units in time apart,
depends on the level-1 variance (o2, which may be a function of age) and
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Table 2.5 Some choices for the covariance function g for level-1 residuals.

g = Bos For equal intervals, this is a first-order
autoregressive series

g="Rs+ Bt +12) + Bl + 8) For time points #; and 1, this implies that

the variance is a quadratic function of time

g= Aui if no replicate

B, i replicate For replicated measurements this gives an

estimate of measurement reliability
exp(—f,)

g =By + B2y + Prz2y)s The covariance is allowed to depend on an
individual level characteristic (e.g. gender)
and a time-varying characteristic (e.g.
season of the year or age)

(s = 0) Allows a flexible functional form, when the
time intervals are not close to zero

a function involving the time difference. The latter function is conveniently
described by a negative exponential reflecting the common assumption that
with increasing time difference the covariance will tend to a fixed value, ao? (in
the following example, we shall assume that this is zero, but in other nmmomwzm
may not be reasonable):

S(s) = « +exp{—g(B,z,5)], (2.7)

where B is a vector of parameters for further explanatory variables z. Some
choices for g are given in Table 2.5,

If we assume multivariate normality for the response variable, maximum-
likelihood estimates are available (details are given by Goldstein et al., 1994).

We now have a model that consists of two distinct covariance structures: the
wo@ons..ws&iacm_ and the within-individual. From the interpretational point
of view it is convenient to have parameters that summarise individual charac-
teristics such as average growth and rate of growth. From this point of view, the
.e<::m=-m=&<acm_ structure exists only to provide a full description of the covar-
iance structure in order to obtain a properly specified model. In some situations,
however, where data may not be very extensive, we may be able to describe the
o.<o..m= structure either by fitting a small number of higher-level random coeffi-
cients together with an elaborated serial correlation structure at level 1, or by an
o_m.&o::o higher level structure and simple, independent, variation at level 1.
Diggle (1988), for example, fitted a variance components model together with a
_o<n_-_. serial correlation structure with g = fs to repeated measutements.
Sometimes it may be possible to make a choice in terms of goodness of fit, for
example using the AIC criterion based upon comparing deviances (Lindsey,
1999), but more generally the aim should be to parameterise the model so that a
useful interpretation can be placed upon the parameters.
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25 A GROWTH MODEL WITH AUTOCORRELATED
RESIDUALS

The data for this example consist of a sample of 26 boys, each measured on nine
occasions between the ages of 11 and 14 years (Harrison and Brush, [990). The
measurements were taken approximately three months apart. Table 2.6 shows
the estimates from a model that assumes independent level-1 residuals with a
constant variance. The model also includes a cosine term to model the seasonal
variation in growth with time measured from the beginning of the year. If the
seasonal component has amplitude « and phase y, we can write

a cos(t +7y) = ay cost —ay sint,

In the present case, the second coefficient is estimated to be very close to zero,
and is set to zero in the following model. This component results in an average
growth difference between summer and winter estimated to be about 0.5 cm.

We now fit in Table 2.7 the model with g = s, which is the continuous-time
version ofthe first-order autoregressive model.

The fixed part and level-2 estimates are little changed. The autocorrelation
parameter implies that the correlation between residuals three months (0.25
years) apart is 0.18: exp(—fs) = exp(—1.725) = 0.18. For measurements six
months apart, this drops to 0.03. This suggests that once measurements are
taken less than three months apart, it will become important to fit a serial
correlation model in order to specify the data structure correctly. Failure to do
this will still provide consistent estimates for the fixed parameters, but will tend

Table 2.6 Height as a fourth-degree polynomial on age, measured about 13.0 years.
Standard errors in pargntheses; correlations in parentheses for covariance terms.

Parameter Estimate (SE)
Fixed
Intercept " 1489
Age 6.19 (0.35)
Age? 2.17 (0.46)
Age’ . 0.39(0.16)
Age’ T —1.55(0.44)
cos (time) T =0.24 (0.07)
Random
Level 2:
Intercept Age Age?
Intercept 61.6 (17.1)
Age 8.0 (0.61) 2.8 (0.7)
Age’ 1.4 (0.22) 0.9 (0.67) 0.7 (0.2)
Level I:
a?2 0.20 (0.02)

MULTIVARIATE REPEATED MEASURES MODELS 23

Table 2.7 Height as a fourth-degree polynomial on age, measured about 13.0 years.
Standard errors in parentheses; correlations in parentheses for covariance terms.
Autocorrelation structure fitted for level-1 residuals.

Parameter Estimate (SE)
Fixed
Intercept 148.9
Age 6.19 (0.35)
Age’ 2.16 (0.45)
Age® 0.39 (0.17)
Age! —1.55(0.43)
cos (time) ~0.24 (0.07)
Random
Level 2:
Intercept Age Age’
Intercept 61.5 (17.1)
Age 7.9 (0.61) 2.7(0.7)
Age’ 1.5 (0.25) 0.9 (0.68) 0.6 (0.2)
Level 1:
o? 0.23 (0.04)
B 6.90 (2.07)

to underestimate standard errors and also not provide consistent estimates for
the random parameters.

2.6 MULTIVARIATE REPEATED MEASURES MODELS

We have already discussed the bivariate repeated measures model where the
level-1 residuals for the two responses are independent. In the general multi-
variate case where correlations at level 1 are allowed, we can fit a full
multivariate model by adding a further lowest level as described in Chapter 5.
For the autocorrelation model, this will involve extending the models to include
cross-correlations. For example, for two response variables with the model of
Table 2.7 we would write the cross-correlation as

8 = 0¢10e2 nvalm_nhv.

The special case of a repeated measures model where some or all occasions are
fixed is of interest. We have already dealt with one example of this where adult
height is treated separately from the other growth measurements. The same
approach could be used with, for example, birthweight or length at birth, In
some studies, all individuals may be measured at the same initial occasion, and
we can choose to treat this as a covariate rather than as a response. This might
be appropriate where individuals were divided into groups for different treat-
ments following initial measurements.
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2.7 CROSSOVER DESIGNS

A common procedure for comparing the effects of two different treatments, A
and B, is to divide the sample of subjects randomly into two groups and then to
assign A to one group followed by B, and B to the other group followed by A.
The potential advantage of such a design is that the between-individual varia-
tion can be removed from the treatment comparison. A basic model for such a
design with two treatments, repeated measurements on individuals and a single
group effect can be written as follows:

Yii = Bo + Frxig + Baxai + sy + 12 X2y + €3> (2.8)

where X, is a dummy variable for time period and X; is a dummy variable for
treatment. In this model we have not modelled the responses as a function of
time within treatment, but this can be added in the standard fashion described
in previous sections. In the random part at level-2 we allow between-individual
variation for the treatment difference, and we can also structure the level-1
variance to include autocorrelation or different variances for each treatment or
time period.

One of the problems with such designs is so called ‘carry-over’ effects
whereby exposure to an initial treatment leaves some individuals more or less
likely to respond positively to the second treatment. In other words, the uy; may
depend on the order in which the treatments were applied. To model this, we
can add an additional term to the random part of the model, say u3;83;;, where
83 is a dummy variable that is | when A precedes B and the second treatment is
being applied, and zero otherwise. This will also have the effect of allowing
level-2 variances to depend on the ordering of treatments. The extension to
more than two treatment periods and more than two treatments is straightfor-
ward. '

2.8 DISCRETE RESPONSE DATA

The methods we have described for continuous data can be used for discrete
responses, with suitable modifications to the model and estimation procedures.
We shall not go into detail here, but will sketch out a simple model for binary
responses. Suppose we have data on whether or not teenage children smoke,
measured at successive occasions approximately six months apart. The
response is yes (1) or no (0), and we have explanatory variables such as age,

gender, and social class. We may write a standard model as follows.
logit(ny) = (XB); + uj» (2.9)
yij ~ Binomial(l, n;),

where y;; is the observed response for the jth child at the ith occasion, T«E._.\.
is the fixed part linear predictor containing explanatory variables, and uj is
the random effect, assumed to have a normal distribution, for the jth child

‘ %’!.
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measuring propensity to smoke in comparison with the population mean. The
use of the logit link function is a standard procedure, and we assume that, given
the fixed predictors and the individual propensity, we have independent
binomial variation with probability n;, whether we observe smoking or not.
Goldstein and Rasbash (1996) discuss the estimation issues for such models.
A major difficulty with (2.9) is that there will typically be many individuals
who always smoke or never smoke, giving probabilities z; of | or 0. This
implies that they have values at +oo for u;. In practice, what happens if we
attempt to fit such a model is that we encounter a great deal of ‘underdisper-
sion’ because the level-1 variation is less than that required by the binomial
assumption. One approach to this problem using a multivariate binary model is
given by Yang et al. (2000) for the case of a small number of discrete occasions,
and this approach is currently being extended to general repeated measures
structures using a formulation similar to the time series model described above.

2.9 MISSING DATA

In repeated measures designs data are regarded as missing where one or more
of the responses in a complete balanced design such as in Table 2.1 are
unavailable. Several broad situations need to be distinguished. In the first, a
response may be missing because of the study design or for reasons that are
unconnected with the true, but unknown, value of the response. Thus we may
deliberately design a study where each individual is measured for only a subset
of occasions. Such ‘rotation’ designs may be practical if time is limited or where
a researcher does not wish to impose too great a burden on any respondent. In
other cases, the probability of being missing may depend on predictor variables
in the model, but otherwise is unrelated to the model parameters, in particular
the level-1 and level-2 random effects. For example, if males are more likely to
have missing data than females and gender is a covariate in the model, infer-
ences will be consistent. Situations such as these are said to involve ‘ignorable’
missingness. .

The second situation is where the probability of a response being missing
depends on the values of other observed responses. In this case, applying
maximum-likelihood to the observed data yields estimates with the usual max-
imum-likelihood properties of consistency etc., so long as the model is properly
specified.

The third situation is where the probability of an observation being missing
depends on the unknown value of the observation itself. This ‘non-ignorable’
case is the most difficult case to deal with, and consistent estimates are possible
only if one is prepared to make particular assumptions about the nature of the
missingness mechanism or the distributions. Such assumptions are generally
not robust, although applying a range of such assumptions as part of a general
sensitivity analysis may be useful (Kenward, 1998).

In practice, care should be taken to eliminate missing data, or at least to
attempt to understand its causes so that variables responsible for it can be



26 MODELLING REPEATED MEASUREMENTS

included as covariates in a model. Little (1995) reviews the various procedures
for handling missing data.

2.10 CONCLUSIONS

We have shown how very general models for repeated measures data can be
constructed, including data with responses at different levels, and models where
there are varying numbers of occasions and time points with the addition,
where necessary, of a time series structure. We have not discussed nonlinear
models such as sometimes occur in growth studies, but see Goldstein (1995) and
Palmer et al. (1991) for a discussion of these. There are now several computer
packages that will fit some or all of the models described (see Chapter 13 for a
discussion). a

CHAPTER 3

Binomial Regression

Nigel Rice
Centre for Health Economics, University of York, UK

3.1 INTRODUCTION

The majority of health data do not lend themselves to simple model specifica-
tion allowing a linear link function to relate a set of explanatory variables to a
response measured on a continuous scale. Instead, it is quite common to
observe outcomes of interest that are qualitative or limited in their range of
measurement. Of these, perhaps the most commonly encountered are discrete
responses where an outcome may take one of a number of discrete values of
either a categorical or non-categorical nature. The simplest of this type of
model is one where the dependent variable is binary assuming one of two
values, which, without loss of generality, may be denoted by | and 0, represent-
ing, for example, the presence or absence of an attribute, the success or failure
of a trial, or the occurrence or not of an event.

In this chapter, we consider multilevel models in which the dependent vari-
able assumes discrete values. For example, we may be interested in investigating
the relationship between lifestyle choices, such as the intake of alcohol, smok-
ing habits and diet, and the incidence of specific diseases such as ischaemic
heart disease (IHD). In such a study, we may wish to code an occurrence of
IHD as 1 and a non-occurrence as 0, and in so doing, by construction, create a
binary response. The coding of such an event in this manner allows the
researcher to relate a qualitative response to a set of potential explanatory
variables in a regression framework and subject the resulting parameter estim-
ates to standard statistical tests of hypotheses.

In other circumstances, instead of observing responses on individuals, we
may observe the outcomes of a group of individuals or repeated experiments on
the same individual. Often such data are expressed in terms of proportions, for
example the proportion of patients who have shown a favourable response to a
particular treatment in a clinical trial. Once again, such responses can be related
to a set of explanatory variables and modelled adequately in a regression
framework in much the same way as when we observe binary variables.
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