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16.1 INTRODUCTION

Multilevel modelling is a form of random coefficient modelling which was first used in
an educational setting (Goldstein, 1995). It is appropriate for data that have a natural
hierarchy, such as educational data, where pupils are nested within classes within
schools. However, it is also appropriate for geographically distributed data, where we
may have individual cases of diseases nested within households, within postcode sec-
tors, and so on. At larger scale, we may have ecological models where data arc collected
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in larger administrative units, such as local authority districts, which are in turn nested
within regions and nations. There are several examples of multilevel modelling being
used in environmental and geographical epidemiology now appearing in the literature
(see Langford et al., 1998). Epidemiologists are increasingly using more complex meth-
ods of statistical analysis to investigate the distribution of diseases (Elliott et al., 1992b,
1995), and the motivation behind this chapter is to introduce a multilevel modelling
framework which also allows for the analysis of complex spatial processes such as:

(i) spatial autocorrelation in a Poisson generalised least squares model, and
(ii) simultaneous modelling of spatial effects that occur at different scales in a geogra-
phical hierarchy.

In the example given in this chapter we concentrate on investigating data that consist of
observed and expected counts of disease occurring in discrete spatial units. Hence, for a
sample of geographical areas we have a number of cases occurring within a distinct
population at risk in each area. Whether we are embarking on an exploratory analysis,
where we are simply interested in producing a map of the relative risks of disease, or an
inferential analysis, where we are interested in investigating potential causal factors, it
is useful to break down the likely effects on the distribution of a disease into three
separate categories:

(i) Within-area effects, such as social characteristics of the population at risk. Since we
are modelling aggregated data, we do not have information on individual cases,
although we may have aggregate information on the mean and variance of social
indicators such as income, employment and so on for each area. However, we can
at least model these unmeasured variables by allowing for extra-Poisson variation
in our model. .

(ii) Hierarchical effects. These are due to the fact that small areas are grouped into lar-
ger areas, for administrative purposes, or for cultural and geographical reasons. For
instance, in the example we present on mortality from prostate cancer in Scotland,
local authority districts are grouped into Health Boards, which have different meth-
ods of treatment or classification of a disease, or different ascertainment rates.
Again, if we have accurate information on these factors. then we could include them
directly in the model, but we can allow for random variation between Health Boards
even if we do not know the direct causes of this variation.

(iif) Neighbourhood effects. Areas that are close to each other in geographical space
may share common environmental or demographic factors which influence the
incidence or outcome of disease, but have a smoother distribution than that of the
disease. For example, climatic factors such as temperature may vary between differ-
ent part of a nation. but not at the smaller scale of a local authority district. In addi-
tion, as areas are usually formed from geopolitical boundaries that have nothing to
do with the disease we are interested in, we may wish to spatially smooth the dis-
tribution or relative risks to remove any artifactual variation brought into the data
by the method of aggregating the data.

The use of empirical Bayes and fully Bayesian techniques has allowed for alternative
models of spatial and environmental processes affecting the distribution of a disease
which rely on different underlying beliefs or assumptions about aetiology (Bernardinelli
et al.. 1995a; Bernardinelli and Montomoli, 1992: Cisaghli et al., 1995; Clayton and
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Kaldor, 1987; Langford et al., 1998; Langford, 1994; 1995; Lawson, 1994; Lawson and
Williams, 1994; Mollié and Richardson, 1991; Schlattmann and Bohning, 1993). Two
main statistical techniques have been used to model geographically distributed health
data in this way. The first is Markov chain Monte Carlo (MCMC) methods, using Gibbs
sampling (Gilks et al., 1993) often fitted using the BUGS software (Spiegelhalter et al.,
1995), which can be used to fit fully Bayesian or emprical Bayesian modcls. The second
set of methods is multilevel modelling techniques based on iterative generalised least
squares procedures (IGLS) and are the focus of this chapter.

In the following section we discuss the basic multilevel Poisson model, and develop a
computational method for modelling spatial processes within the software package
MLn. MLn (for MS-DOS and Windows 3.1) and its successor MLwiN (for Windows 97
and NT) are widely used tools for multilevel modelling. and information about them
can be found from a number of websites worldwide; for information, see http://
www.ioe.ac.uk/multilevel/.We then present an example of how our model can
be used using morbidity data for prostate cancer in Scottish local authority districts,
and comment on how the results may be interpreted. The discussion section then
focuses on methodological and substantive issues in a more general setting, and
discusses work in progress to generalise the procedures we have developed.

16.2 DEVELOPING A POISSON SPATIAL MULTILEVEL MODEL

The basic model of fixed and random effects described by Goldstein (1995) and Breslow
and Clayton (1993) is

Y = X8+ 26, (16.1)

with a vector of observations Y being modelled by explanatory variables X and asso-
ciated fixed parameters 3, and explanatory variables Z with random coefficients 0. The
fixed and random part design matrices X and Z need not be the same.  is assumed to
contain a set of random error terms in addition to other random effects. Goldstein (1995)
describes a two-stage process for estimating the fixed and random parameters (the var-
iances and covariances of the random coefficients) in successive iterations using IGLS. A
summary of this process follows.

First, we estimate the fixed parameters in an initial ordinary least squares regression.
assuming the variance at higher levels on the model to be zero. From the vector of resi-
duals from this model we can construct initial values for the dispersion matrix V. Then,
we iterate the following procedure, first cstimating fixed parameters in a generalised
least squares regression as

g=x"v-Ix)'xTv-ly (16.2)

and again calculating residuals Y=Y -X4 By forming the matrix product of these
residuals, and stacking them into a vector. i.e. Y* = vec (YY), we can estimate the var-
iance of the random coefiicients ¢, v = cov (6). as,

g=(2Tvlzny Ttz Tty (16.3)

where V* is the Kronecker product of V, namely V* = V ® V. noting that V = E(YY™), Z*
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is the appropriate design matrix for the random parameters. Assuming multivariate
Normality, the estimated covariance matrix for the fixed parameters is

cov(f) = (X"v-'x)"!, (16.4)
and for the random parameters, Goldstein and Rasbash (1992) show that
cov (§) = 2(2*Tv*"1z*) L. (16.5)

We can therefore estimate random parameters, and their variances, in the same way as
we estimate fixed parameters and their variances from the model. To compare what we
are doing with ordinary least squares resgression, we are extend the process by model-
ling the random part of the model with respect to the structure of our data, estimating a
set of parameters rather than simply having a residual error term.

However, we now need to develop a model for the relative risks of a disease. If we con-
sider a population of areas with O, observed cases and E, expected cases and relative
risk 8; = O,/E,, where E; may be calculated from the incidence in the population N,
for each area as

>0
Ei=N,.&—
i 1 E N‘ (166)
and may be additionally divided into different age and sex bands, then we can write the
basic Poisson model as

0, ~ Poisson(y,),

log(pi) = log(E) + a+ x5+ u;y + vy, (16.7)

where log(E))is treated as an offset, o is a tonstant and x; is an explanatory variable
with coefficient g (this may be generalised to a number of explanatory variables). We
take account of the distribution of cases within each area by assuming that the cases
have a Poisson distribution. In contrast, the i) represent heterogeneity effects between
areas (Clayton and Kaldor, 1987; Langford, 1994), which may be viewed as constituting
extra-Poisson variation caused by the variation among underlying populations at risk in
the areas considered. The v, are spatially dependent random effects, and may have any
one of a number of structures describing adjacency or nearness in space (Besag et al.,
1991). Hence, we have a hlerarchical model where within-area effects are modelled with
a Poisson distribution (the first line of (16.7))-and relative risks between areas are con-
sidered as having a lognormal distribution (the second line of (16.7)). Other formulations
for spatial effects are possible using normal approximations with covariance priors
(see.for example, Besag et al., 1991; Bailey and Gatrell, 1995; Lawson et al., 1996).

Before discussing the structure of these spatial effects. we must first account for the
fact that we have a non-linear (logarithmic) relationship between the outcome variable
and the predictor part of the model. There are two options:

(i) Ifthe casesin each area are sufficiently large, say O; > 10. then it may be reasonable
to model the logarithm of the relative risks directly (Clayton and Hills, 1993), assum-
ing these follow a Normal distribution. In this case, heterogeneity effects can be
accommodated by weighting the random part of the model by some function of the
population at risk in each area.
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(i) When the Normal approximation Is inappropriate, we can make a linearising
approximation to estimate the random parameters. If we take the case of having het-
erogeneity effects only for the sake of simplicity, we can estimate the residuals i,
from the model using penalised quasi-likelihood (PQL) estimation with a second-
order Taylor series approximation (Breslow and Clayton, 1993; Goldstein, 1995; Gold-
stein and Rasbash, 1992). After each iteration ¢t we make predictions H, from the
model, where H, = X,3, + i1, and hence use thése to calculate new predictions for
iteration ¢t + 1, so that

f(Herr) = f(H) + 2:(Besr — Bo)f'(HY)
. ) (16.8)
+ iy f'(Hy) + " (H)/2,

where the first two terms on the right-hand side of (16.8) provide the updating func-
tion for the fixed part of the model, and f(-) is a link function. The third term com-
prises a linear random component created by multiplying the first differential of the
predictions by the random part of the model, and the fourth term is the next term in
the Taylor expansion about H,. For the Poisson distribution:

S(H) =['(H) =f"(H) = exp(X\B¢ + it)). (16.9)

Hence, at each iteration we estimate about the fixed part of the model plus the residuals.
A full description of this procedure can be found in Goldstein (1995) and Goldstein and
Rasbash (1992). This can lead to problems with convergence, or with the model ‘blowing
up' if some of the residuals are particularly large. In these cases, the second-order term
in (16.8) can be omitted, or, in extreme cases, estimates can be based on the fixed part of
the model only. This latter case is called marginal quasi-likelihood (MQL: Breslow and
Clayton, 1993; Goldstein, 1995), but may lead to biased parameter estimates. However.
bootstrap procedures can potentially be used to correct for these blases (Goldstein,
1996a.b; Kuk. 1995). For (16.7) we substitute it; + ¥, for i, in (16.8) and (16.9)

There are several possibilities for specifying the structure of the random effects in the
model (see, for example, Besag et al., 1991, and Bailey and Gatrell, 1995). These modecls
assume two components, namely a random effects or ‘heterogeneity’ term and a term
representing the spatial contribution of neighbouring areas as in (16.7).

We adopt a somewhat different approach, which allows a more direct interpretation of
the model parameters and can be fitted in a computationally efficient manner within a
multilevel model. For the heterogeneity effects, this is not a problem, because we simply
have a variance—covariance matrix with 1 or other specified values on the diagonal, and
the model is analogous to fitting an iteratively weighted least squares model (McCullagh
and Nelder, 1989). However. the case of the spatial effects is more complex, because we
require off-diagonal terms in the variance-covariance matrix. This can be achieved
through careful consideration of the structure of the spatial part. Qur formulation of
the spatial model is to consider the spatial effects v, to be the weighted sum of a set of
independent random effects v} such that

V|=ZZ"V;. ) (1()10)

i#i

The v} can be considered to be the effect of area upon other areas. moderated by a
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measure of proximity of each pair of areas z;. The v} can be estimated directly from the
model—these are the residuals—due to their independence. Returning to the matrix
notation used in (16.1), we can rewrite (16.7) as

1
Y = {log(E) 1 1} | a +[zuz;][z:], (16.11)
ﬂ v

where Z,, is the identity matrix and Z; = {z;}. With a variance structure such as

0,, _ 021 auvl
var([";]) - [a:.,l 031]’ (16.12)

2
u ag g
var ,' = u Y1,
vy c|low O

the overall variance from (16.1), conditional on the fixed parameters, is given by

which is equivalent to

var (Y[Xg) =2) 77, (16.13)

where Y , is the variance of the random terms in 6. The structure of 3, will often lead
to simplifications; for example, in a random effects model when 8§ = {u,} and var(u,) =
a2, cov(uj,u;) = O then ", = oI and so var (Y|XS3) = ¢2ZZ". Similarly, in the spatial
model defined by the partitions in § and Z given by (16.11) and the variance structure of

(16.12), we can sée that
var(Y|XB) = 02Z.Z] + 0uy(ZuZ}" + Z3Zy) + 0223257 (16.14)
There are many ways in which the z; can be formulated; in general we can write
. zy=wy/wp. (16.15)

The wy; can either 1’5 and O's representing an adjancency matrix, or be functions of the
distance between areas (see Section 16.3). Common choices for the w,;, would be w;, =
(Ca wy) %3, which ensures that the variance contribution is the same for all areas, or
Wi = Z#, wy, in which case the variance of an area decreases as the information
about that area (in terms of, for example, the number of neighbours in an adjacency
model) increases.

Finally, there is the problem of specifying the random effects for heterogeneity and
spatial effects within a generalised linear modelling framework. in this case using IGLS
estimation within the MLn software. We do this by constructing weights matrices asso-
ciated with the random effects and fit these directly into the model. The variance of the
data conditional on the fixed part of the model, as given in (16.14), is expressed in terms
of three matrices: Z,27(Z,Z:T + Z;ZT), and Z:Z:T. Expressing the model is terms of
these design matrices overcomes the need to place multiple equality constraints upon
gxg ;ax;dom parameters. This is generalisable to the non-linear model expressed in

.7)—(16.9).
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16.3 INCIDENCE OF PROSTATE CANCER IN SCOTTISH LOCAL
AUTHORITY DISTRICTS

In this example we wish to investigate the hypothesis that the relative risk of prostate
cancer is higher in rural than urban areas, as previous research has indicated an asso-
ciation between agricultural employment and the incidence of prostate cancer (Key.
1995). The data cover six years, from 1975 to 1980, of the incidence of prostate cancer
in 56 districts in Scotland (Kemp et al., 1985). Table 16.1 shows the observed and
expected cases, plus the relative risks for incidence of prostate cancer.

To examine the effect of rural location, we use a variable measuring the percentage of
the male workforce employed in agriculture, fishing and forestry industries as a surro-
gate measure of the rurality of an area. However, we have to look not only at the inci-
dence of prostate cancer within districts, but account for a potential artifactual effect
caused by differential diagnosis rates between Health Board areas in Scotland. Hence,
we are modelling spatial effects caused by different processes at two different scales,
namely:

(i) a spatial autocorrelation model at district scale, where we are accounting for the
possibility that areas closer in geographical space have similar incidence of prostate
cancer; and |

(ii) avartance components model at Health Board scale, where we investigate the possi-
bility that different Health Boards have different relative risks of prostate cancer,
potentially because diagnostic criteria are variable,

Hence, we can extend (16.1) and (16.11) so that
log(s) = og(E) + X0+ (2.Z3]| ¢ | + 2wt (16.16)

In this case the expected cases, E, have been calculated from national incidence rates for
Scotland for discrete.age bands. We use three explanatory variables in the fixed part of
the model (X0) in addition to the intercept term (CONS), namely the proportion of the
population in higher social classes (SC12); the estimated incidence to ultraviolet light at
the earth’s surface (UVBI); and the percentage of the male employment in agriculture,
fishing and forestry (AGRI). Social class and ultraviolet light exposure have been
included as these have previously been postulated as risk factors for prostate cancer.

The Z? are calculated using distances between district centroids. The choice of dis-
tance decay function is largely user-dependent, and should ideally be based on some
prior hypothesis about the data (Bailey and Gatrell, 1995). Here we have used a simple
exponential decay model where we define the w; as

wy = exp(—Ady), (16.17)

where d; are the Euclidian distances between the centroids of areas i and j, and Ais a
constant to be estimated from the data. The estimation of A is problematical because it is
non-linear in the random part of the model. Goldstein et al. (1994) show that maximum
likelihood estimates can be obtained using a Taylor series expansion for the Normal
model. However, things become more complicated for a Poisson model, and in general
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Table 16.1 Observed and expected cases, and relative risks for the incidence of prostate cancer in
Scottish districts, 1975-1980

District Health Board Observed Expected SMR
Caithness Highland 15 25587 0.58625
Sutherland Highland 18 12.319 146110
Ross-Cromarty Highland 42 42644 - 0.98489
Skye-Lochalsh Highland 10 9477 1.05520
Lochaber Highland 22 18.005 1.22190
Inverness Highland 51 51.173 0.99662
Badenoch Highland 15 8.529 1.75870
Nairn Highland 10 9477 1.05520
Moray Grampian 107 75812 141140
Banfl-Buchan Grampian 95 74.920 1.25310
Gordon Grampian 70 58.754 119140
Aberdeen Grampian 249 189.530 1.31380
Kincardine Grampian 52 38.854 1.33840
Angus Tayside 104 86.236 1.20600
Dundee Tayside 176 168.680 1.04340
Perth-Kinross Tayside 148 108.030 137000
Kirkcaldy Fife 145 135510 107000
NE-Fife Fife 91 56.859 1.60050
Dunfermline Fife 117 115,610 1.01200
West-Lothian Lothian 106 129.830 0.81646
Edinburgh Lothian 538 402.750 1.33580
Midlothian Lothian 87 77.707 1.11960
East-Lothian Lothian 77 74.864 1.02850
Tweeddale Borders 27 13.267 2.03510
Ettrick Borders 38 29377 1.29350
Roxburgh Borders 44 33.168 132660
Berwickshire Borders 23 17.058 1.34840
Clackmapnan Forth Valley 37 44.540 0.83072
Stirling Forth Valley 100 72.969 137040
Falkirk Forth Valley 149 136460 1.09190
Argyll-Bute Argyll & Clyde 56 60.650 092334
Dumbarton Argyll & Clyde 80 72969 1.09640
Renfrew Argyll & Clyde 118 194.270 0.60741
Inverclyde Argyll & Clyde 84 94.765 0.88640
Glasgow Greater Glasgow 627 721.160 0.86943
Clydebank Greater Glasgow 31 49.278 0.62909
Bersden Greater Glasgow 31 36.958 0.83878
Strathkelvin Greater Glasgow 57 82446 0.69137
Eastwood Greater Glasgow 43 50.225 0.85614
Cumbernauld Lanarkshire 24 58.754 0.40848
Monklands Lanarkshire 58 104.240 0.55640
Motherwell Lanarkshire 100 141.200 0.70822
Hamilton Lanarkshire 58 102.350 0.56670
East-Kilbride Lanarkshire 40 78.655 0.50855
Clydesdale Lanarkshire 47 54.0.16 0.87011
Cunninghame Ayrshire & Arran 103 128.880 0.79919
Kilmarnock Ayrshire & Arran 66 77.707 0.84934
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Table 16.1 (continued)

District Health Board Observed Expected SMR

Kyle—Carrick Ayrshire & Arran 108 106.140 1.01750
Cumnock—Doon Ayrshire & Arran 29 42644 0.68004
Wigtown Dumfries & Galloway 28 28.430 0.98489
Stewartry Dumfries & Galloway . 40 20.848 1.91860
Nithsdale Dumlfries & Galloway 56 52121 107440
Annandale Dumfries & Galloway 48 33.168 1.44720
Orkney Orkney 22 17.058 1.28970
Shetland Shetland 17 21.796 077996
Western Isles Western Isles 45 29.377 1.53180

an alternative is to fit a series of models with different values of A, and determine the
residual deviance from each model, D. We can then regress the deviance against the

distance decay parameter so that
Dy =a+bii +cri + e (16.18)

Differentiating, the approximate solution will be where A = —b/2c. Successive approxi-
mations then converge towards the estimated value. However, care must be taken when
estimating ), as the likelihood function may be multimodal (Ripley, 1988).

Zub is a vector of 1 which allows for a variance component for each Health Board to be
estimated, and hence a measure of the variance at this scale, o . Table 16.2 presents the

results for four different models, representing:

model A: a simple, single-level model with no spatial effects.

model B: a model with district scale spatial effects, but no Health Board effects.
model C: a model with only Health Board effects.

model D: a model with both district and Health Board effects as given in (16.16).

The simple model (model A) presented in Table 16.2 seems to indicate a strong and sig-
nificant effect of rurality, as measured by percentage male agricultural employment
(AGRI). However, this is weakened by fitting a spatial autocorrelation parameter in
model B, which suggests that the effect of AGRI may be due to adjacent areas having
similar mortality. The change in deviance between the two models is 14.89 on two
degrees of freedom (p < 0.001: we have fitted a covariance parameter as well as a var-
iance term). The third model (model C), using Health Boards as a level with no spatial
autocorrelation between districts, shows how ignoring autocorrelation between resi-
duals at a lower level of a multilevel model (in this case districts) could lead to mislead-
ing results at higher levels (in this case, Health Boards). as the parameter for the
variance between Health Boards is statistically significant at p < 0.05, but the deviance
statistlc suggests that the model is not as good a fit to the data as model B.

Unexplained random variation at the district level can appear spuriously at the
Health Board level, and the final model. with both Health Board effects and spatial
effects between districts. suggests that this may be the case. The parameter estimate
for AGRI becomes smaller in models B, C and D. although it is still significant at the
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Table 16.2 Parameter estimates and standard errors for the prostate cancer models

(B) Spatial effects (C) Health Board effects (D) Both effects

(A) Simple model

SE Estimate SE Estimate SE Estimate SE

Estimate

Fixed part

-0.0108 0636 -0321 0.670
- 0000184

—0.00339
—000112

0.584 -0513 0.605

—-00257

Intercept

SC12

0.000825
00279
00167

0.00477
0.0705

0.00389
0.0704

000145
0.0565
00163

0.00524
0.0635

—0.000645
-00141

0.0764

UVBI

000663

0.0180 0.00634

0.00636

0.00603

00272
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0.05 level. Hence, misspecification of the random part of a model can noticeably affect
the fixed as well as the random parameters. Further work needs to be done on the
analysis of residuals in these complex models: Langford and Lewis (1998) details some
procedures for the general analysis of outliers in multilevel models.

However, we must be careful in drawing conclusions about the size of the parameter
estimate for AGRI because we are not postulating that there is some genuine spatial
correlation between cases of prostate cancer, for example if the disease had an infec-
tious aetiology and was transmitted between individuals by contact. The spatial effects
are not, therefore, in this case an alternative causal factor, but merely a statistical
manipulation to account for correlation amongst the residuals in our model. One pro-
blem is that the values of the variable AGRI are also spatially correlated, because rural
districts tend to be adjacent to each other, as do urban ones. Hence, we must be cautious
in making inferences from our models without corroborative evidence from elsewhere,
although it is interesting to note that the parameter estimate for AGRI remains signifi-
cant in all four model formulations.

16.4 DISCUSSION

We have attempted to demonstrate a general method for modelling geographical data
which is distributed in hierarchical administrative units, but which also displays spatial
autocorrelation. The models can be implemented within a widely available software
package called MLn/MLwiN. However. there are several issues that still need to be
addressed, both methodologically and substantively:

(i) We are extending the basic method to model multiple causes of disease simuita-
neously. Hence, we could model the joint distribution of prostate cancer and
another cancer simultaneously. This is the equivalent of adding in another level to
the model. so that we have diseases nested within districts within Health Board
areas. A further extension to the model can be where areas, such as districts, are
not discretely nested within higher level units, such as Health Boards. In this case,
a multiple membership model (Goldstein, 1995) may be used. where weights are
attached to allocate portions of districts to different Health Boards.

(ii) Space—time models are also possible, as time is simply an extra dimension that
requires a variance parameter in the random part of the model. and covariance
terms with any spatial parameters

(ili) The main problem in fitting the models is poor convergence properties, usually
caused by a high correlation between the heterogeneity and spatial components of
the model. One of the authors (AHL) is developing an orthogonalisation procedure
to overcome this problem

(iv) The residuals from the model are measured with error, but the IGLS procedure used
will tend to underestimate the variance of the residuals. To overcome this, MLwiN
has the capability of using the IGLS convergence of the model as the starting point

for either a Gibbs sampling or Metropolis—Hastings run of simulations which will
provide for better estimates of, for example, the confidence intervals around the
posterior relative risks of disease for each district or Health Board. These techniques
could also be used to provide better estimates of the standard errors for fixed para-



P T T L Y

228 Multi-level disease modelling

meters in the model, rather than relying on those estimated from the model to judge
statistical significance.

Substantively, multilevel spatial models suffer from similar problems of interpretation
as single-level spatial models. It is often difficult to know whether one has modelled a
genuine spatial pattern or merely accounted for unmeasured explanatory variables, and
fitting a spatial smoothing parameter masks a genuine relationships with an explana-
tory variable which has its own distinct spatial distribution. However, we believe that
the use of a multilevel model can shed light on different processes which may be operat-
ing at different spatial scales, and hence provide a valuable tool for the analysis of
geographically distributed health data.
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