Using the Variance Function Window with Multinomial Models
with Categorical Explanatory Variables

1 Ordered multinomial models

While ordered multinomial models have more difficult features for the learner to grasp, and are therefore
usually presented after unordered multinomial models, when it comes to variance functions ordered multino-
mial models are actually simpler, since the variance function is the same for all response categories (unlike
unordered multinomial models). Using the Variance function window for an ordered multinomial model is
thus very like using it for a continuous response model; and so here we present ordered multinomial models
first.

We will work with the alevchem worksheet that is included with MLwiN (you can access this by selecting
Open sample worksheet from the File menu). We will create a categorical explanatory variable using
the gcseavnormal variable which is generated on p164 of the User’s Guide. Note that we do this so that
we have a categorical explanatory variable for the purposes of the example; of course in real research it
would not usually be sensible to convert a continuous variable to a categorical one in this way. We begin by
creating this variable:
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w¥ Recode variables
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¥ Equations

resp,; ~ Ordered Multinomial(consj.k, "’U‘Fc)
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logit(}:%) = -1.482(0.131)c0ns.(<=C)Uk + hﬁc
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=¥ Equations =10 x|
resp,, ~ Ordered Multinomial(consjk, ;;Uk)
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logit( J’lﬁc) = '4-139(0-148)00“5-(‘::1:"),;;; + kﬁc

logit(yg;) = -3.245(0.142)cons. (<=E);, + Ay

logit(y3j.k) = '3-471(0-138)°°11S-(<=D);;k + }gj.k

logit(y%) = _1'559(0'133)C011S'(<:C)z}k + }gﬁc

logit(yg;) =-0.145(0.123 )cons.(<=B),; + Ay

hﬁt = fylow.12345, + J@ngid.123453.k + v cons 12345

Pz =4A496(0.180) + v,

P =2.5372(0.133) + vy,

Vi 0.415(0.097)
v | “NO-Q) =1 0.120(0.206)
Ve 0 0 0.092(0.091)

cov(ysj.k, yq’k) :;,@J.k(l e i) cons; 8 ==r
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The model converges after 76 iterations. The random slopes appear not to be significant judging by their
standard errors (though to be sure we would have to use a Wald test or fit the model using MCMC and
use the DIC), but since we are including them in order to demonstrate the use of the Variance function
window with categorical explanatory variables and not for substantive reasons, we will leave them in. Note
also that we have used IGLS and not MCMC to fit this model (indeed, we have used the least good IGLS
estimation method, 1st order MQL); MCMC estimation is recommended for discrete response models (see this
FAQ on the CMM website http://www.cmm.bristol.ac.uk/MLwiN/tech-support/support-faqs/index.
shtml#differentresults), but IGLS can be used for model exploration, and we use it here for convenience
because we are just demonstrating the use of the Variance function window (which is exactly the same
whether using IGLS or MCMC) and not performing real research.



http://www.cmm.bristol.ac.uk/MLwiN/tech-support/support-faqs/index.shtml#differentresults
http://www.cmm.bristol.ac.uk/MLwiN/tech-support/support-faqs/index.shtml#differentresults
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The formula in the top pane of the window gives the establishment level variance. It is a function of cons
and gcseavnormal. Currently, cons and gcseavnormal are represented by z5 and xg; to see the formula
with variable names instead of xs, click the the Name button at the bottom of the window

=¥ ¥ariance function O] x|
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There are two facilities offered by the Variance function window. One is to calculate the variance for every
case in the dataset, using the values of cons and of gcseavnormal for that case. To do this,
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output to: drop-down box; this column will then be filled with the multiplier times the standard
error for each case, and can be used to plot error lines in a graph of the variance

e Click calc

If we now return to the Names window, we can see our new columns containing the variances and their
standard errors. (It may be necessary to press the the refresh button, which is next to the the Help button
at the top of the window, and has two arrows on it pointing round in a circle).

=10l x]
Column Data ategories Window
Name| Description | Togale Categorical || View | Copy | Paste | Delete || view | copy | Paste | Regenerate | | I Used columns Help
Name cn n missing min max categorical description | e
lea 1 2166 0 203 938 False Education Authority {not...
estab 2 2166 L] 4001 8603 False ication,
pupil 3 2166 0 1650 194909 False on.
a-point 4 2166 0 1 6 True it score (see below...
gcse-tot 5 2166 L] 22 92 False Total point score for GCSE ex...
gcseno 6 2166 0 5 12 False Number of GCSE exams taken.
cons 7 2166 0 1 1 False Constant (= 1)
gender 8 2166 L] 0 1 True 1if female, 0 if male.
geseavnormal 9 2166 0 -3.502057 3.113836 False
gcser2 10 2166 L] 5.357973E-04 1226441 False
gcserd " 2166 L] -42.95065 30.19167 False
ycse_cat 12 2166 0 0 2 True
resp 13 10830 L] 0 1 False
resp_indicator 14 10830 0 1 5 True
beons.1 15 10830 0 1 1 False
pupil_long 16 10830 L] 1650 194909 False
17 10830 L] 4001 8603 False
18 10830 0 1 1 False
19 10830 L] 0 1 False
20 10830 0 0 1 False
21 10830 L] 0 1 False
(<=C) 22 10830 L] 0 1 False
cons.(<=B} 23 10830 0 0 1 False
cons. 12345 24 10830 L] 1 1 False
Low.12345 25 10830 L] 0 1 False
Mid. 12345 26 10830 0 0 1 False
c27 27 10830 L] 0.4146065 0.5341755 False
28 28 10830 (1] 0.1894983 0428362 False
c29 29 ] 0 0 0 False
c30 30 0 0 0 0 False
c31 3 ] 0 0 0 False
c32 32 o o 0 0 False
£33 a1 0 0 0 0 False =l

We can rename these columns to variance and variance_se. We can see that each column has a length
of 10830. This is the length of the expanded dataset that MLwiN created to fit the multinomial model,
and not the length of our original dataset (which was 2166). This is because the Variance function window
when used in this way always produces one entry per lowest level unit of the model, and in this case the
lowest level is not the conceptual lowest level, pupil, but rather resp_indicator. Our variance column thus
has one entry per response category' per pupil. Since there are actually only three different values of the
variance (one for gcse_cat = Low, one for Mid, and one for High), and we have 10830 entries, this is
clearly rather inefficient in terms of storage. This is one reason why we might want to use the other facility
offered by the Variance functionn window, which we will come to shortly.

We will plot the variances we have just calculated. Since the variances differ according to values of gcse_cat,
we would like to plot them against this. However, we cannot plot them against gcse_cat itself, since gcse_cat
has one entry per pupil and variance has one entry per response category per pupil. We therefore need to
create a longer version of gese_cat which also has one entry per response category per pupil. (Note that if
our explanatory variable had been continuous instead of categorical, we would not need to do this, because
there would already be a version of the variable with one entry per response category per pupil, created by
MLwiN when we added the variable to the model, so we could simply use this to plot against. But because
our explanatory variable is categorical, longer versions of the dummy variables and not of the variable itself
were created by MLwiN to add to the model).

Inot including the reference category



Centre for Multilevel Modelling 7

Our original variable gcse_cat was categorical, but the newly created gese_cat_long is currently continuous.
We can simultaneously declare it as categorical and give it the appropriate categories by pasting the categories
from gcse_cat:

We can now plot our graph
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The other facility allows the user to specify combinations of values of the explanatory variables for which the
variance is desired. This is done using the grid in the left of the window, under the pane giving the formula.
This grid shows a column for each explanatory variable involved in the variance function at the level shown
in the level drop-down box. In this case, all the explanatory variables included in the model are involved
in the variance function?. If there were further explanatory variables that were included as fixed effects but
did not have establishment level random slopes, they would not appear as columns in the grid.

Suppose that we want to calculate the variance for Low, for Mid, and for High students. We will use 3 rows
of the grid to do this. We can type a 1 in each row of the grid in the column cons.12345, because cons is
1 for all cases:

2That is, if we look at this as the two-level model that it is conceptually, with explanatory variables cons and gcse_cat.
If we consider the model that the software is actually fitting, a three-level model with resp_indicator at the lowest level,
then instead of explanatory variables cons and gcse_cat we have explanatory variables cons.(<=F), cons.(<=E), ...,
cons.(<=B), cons.12345, Low.12345 and Mid.12345, which are all interactions between the explanatory variables cons or
gese_cat and dummies indicating membership of one or more response categories. In this case, cons.(<=F), ... cons.(<=B)
are included as fixed effects but do not figure in the establishment level variance function.
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24 Yariance function (o] x|
var(v 5 cons. 12345 + v low. 123453-35 + v gid. 12345;‘:;) = ijcons.123452

+ GaLow.12345, %+ 57 Mid. 12345, °

=elect conz 1 2345 Lowe 12345( Mid 12345 |resuft
1.000
1.000
1.000

Siestab_long |—

camE e

Let’s put the Low variance on the first line, the Mid on the second, and the High on the third. For Low
students, the Low.12345 dummy is 1 and the Mid.12345 dummy is 0. For Mid students, the Low.12345
dummy is 0 and the Mid.12345 dummy is 1. For High students, both dummies are 0.

=¥ ¥ariance function

. _ 2.2, 2 2, 1 2
var(v 57 5 TV 7 +"srcx8ﬁc)_0u5x5 TG T 0, g

zelect cong. 12345 Lo 12345 Mid 12345 | resuft
1.000 1.000 u]
1.000 1] 1.000
1.000 1] 0

Finally, click on each row in turn in the select column. The variance for that category will appear in the
result column.
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= Yariance function

. _ 2.2, 2 2, 1 2
var(v 5.7 5 TV 218 75 +"8kx8ﬂc)_5u5x5 TG T 0 g

=elect cong 12345 Love 12345 Mid 12345 | resuft

1.000 1.000 u] 0.534
1.000 a 1.000 0.506
1.000 1] u]

e

These results (and the associated values of the explanatory variables) can be copied using the the Copy
button at the bottom of the Variance function window, and pasted into Excel for example. They can
be copied from Excel and pasted back into MLwiN’s Names window to become columns in the worksheet.
(In the current version of MLwiN, it is not possible to copy from the Variance function window and paste
directly into the Names window).

=% Names

1 False
1 False
1 False
415 0.534 False
] False &3

(Here the explanatory variable columns have been renamed, because their original names already belong to
other columns in the worksheet).

We can see that these columns have just 3 entries, one per value of the explanatory variable, corresponding
to the 3 rows we set up in the Variance function window; they thus store the values of the variance much
more efficiently than the 10830 entries we got using the other method.

We might again want to plot a graph using these values. Once again, we have values of the dummy variables
here and not of the original variable so we will need to create a version of gese_cat with just 3 rows. (Again,
this would not be necessary with a continuous explanatory variable since we would have specified the values
of that variable for which we wanted the variance in the Variance function window and these would thus
be in one of the columns we have copied and pasted, whereas here we specified the values of the dummy
variables associated with our categorical explanatory variable). Probably the easiest way to do this, since
there are just 3 rows, is to type in the correct values:
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We will type the values into ¢34. The first row has a 1 under Low.var, so this row must have the variance for
the Low category (and indeed when we were filling in the grid in the Variance function window we decided
the first row would be for the Low category), so we will type a 0 in the first row of ¢34 since that is the
number associated with the Low category. Similarly, the second row has the variance for the Mid category
(if we cannot remember that that was what we decided, we can see this because the Mid.var variable has
a 1 for this row) so we type a 1 under ¢34; and the third row has the variance for the High category (by
elimination, by memory, or by noting that both the Low.var and Mid.var dummy variables are 0 for this
row so that it must refer to the reference category, High) so we type a 2 in ¢34.

If we had more rows of variances (for example, if there was another variable in the variance function so
there were three rows per value of this variable, to give all possible combinations of values of the explanatory
variables), then it might be easier to use a command which will put a 0 in ¢34 wherever the row refers to the
Low category (Low.var = 1 and Mid.var = 0), a 1 in ¢34 wherever the row refers to the Mid category
(Low.var = 0 and Mid.var = 1), and a 2 in ¢34 wherever the row refers to the High category (Low.var
= 0 and Mid.var = 0):

We’ll rename ¢34 gese_cat.var. Once again we’ll also need to copy the categories from gese_cat and paste
them into this variable.

We can now plot the graph:
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A disadvantage of this method compared to the first method is that we do not have standard errors. Apart
from this (and the fact that the scale used by MLwiN is different due to not having to fit in standard errors)
the graph is the same as the one we plotted earlier.

2 Unordered multinomial models

As mentioned above, using the Variance function window is a bit more complicated for unordered multinomial
models than for ordered multinomial models, since (usually) there will be a different variance function for
each response category.

We will work with a specially simulated dataset (since in the example dataset for unordered multinomial
models supplied with MLwiN, bang.ws, the sample size is too small to identify the large number of pa-
rameters that results from fitting a model with four response categories each having a random coefficient on
several dummy variables). This dataset is called MCV.wsz.
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=M Names

LD 1 100000 0 1 100000 False Level 1identifier

LZID 2 100000 ] 1 1000 False Level 2 identifier

cons 3 100000 0 1 1 False Constant

expvar 4 100000 0 1 3 True Categorical explanatory variable

response 5 100000 [] 1 3 True Categorical response variable

c6 6 0 0 0 L] False

7 A : fae 5

The dataset includes a categorical response and one, categorical, explanatory variable. Again, this categorical
explanatory variable is ordinal, with categories Low, Mid, and High.

We start by setting up and running this model:

w¥ Equations =10l x|
resp, ~ Multi110111ia.l(consjk, 7;%)

lcng(,n—1ji£ / ;;3J,k) = forcons.response_1,, + ﬁszid.response_lvk + ;‘33hHig11.1‘esponse_1qk

fae = 0.057(0.026) + v,

B =0.132(0.034) +v,,

[ =0.252(0.040) +v5,

lcng(;;—zﬁz ! ﬂzjk) = Bycons.response 2., + ﬁ%Mid.responseiZw + /5‘5,‘/J~Iigh.1‘(-:sp01ls(-:72u.lz

B, =0.070(0.026) +v

Ly =-0.081(0.028) +v 4,

By =-0.161(0.034) +v 5,

. 0.585(0.029)

Vi -0.300(0.023) 0.380(0.029)

va| <N, @) ¢ = |02600.028) -0.142(0.028) 0.797(0.051)

Vo 0.251(0.033) -0.115(0.033) -0.041(0.043) 1.012(0.070)

- -0.254(0.023) 0.261(0.023) -0.305(0.033) 0.109(0.035) 0.404(0.033)

Vo -0.287(0.029) 0.241(0.028) 0.126(0.037) -0.405(0.047) -0.046(0.030) 0.531(0.049)

cov(ysﬂc,qu) =- ;zsﬂ(nx]k/(301lsjit R ﬂgk(l -;-ngk)f'cuusd,;c R

I

[ &

(The reference category for the response is response_3; the reference category for the explanatory variable
is Low; there is a random effect at the highest level on cons and both dummy variables, for both response
categories).

Although both response categories have cons and the two dummy variables in the equation for the variance,
their equations for the variance are not the same. This is because the random effects associated with cons
and with the dummy variables are different for each response category, and accordingly different variance
and covariance estimates are involved in the variance function for each response category. For example, the
(estimated) variance of the random effects associated with the Mid category is 0.797 for response category
1, and 0.404 for response category 2.

Let us now calculate these variance functions. Once again we have two options: to calculate the variance for
every case, or for specified values of the explanatory variables. We will start by calculating the variance for
every case.
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e From the level drop-down box select 3:L2ID _long

iix
. _ 2 2 2 2
var(y g oge TV 0 e TV o TV o g TV e a TV Y 5:1;() Gorboge T 20, 0% o 1 T Oot¥ 1 T 200027 o 2w

2 2 2 2
26,157 1t 2 T Gro¥ o T 26w 057 e 3 T 260 15 1 T2 G2 7 2 3 T GoT 2 T2 Gy o7 0gi age T 2G50 1 #F 13967 age

2 2
F 20,08 g a T 201 s ae T O g T 2000 F o s T 2001 F g s T 2002 5% 1% s T 2002 5% 3 s
2 2
26, 45 s s T Ous e

select Conz respo| cons respo| Mid respon: High respon] High respor| resuit ﬂ

{17 o
el 3150 10 =] cale Help | Zoom [100 <] copy
wariance output 10:f (none] - 1.00 | SEof variance output 10 | [none] -

What will be calculated for each case is the horrific formula shown in the top pane. We can make it slightly
more intelligible by using variable names instead of s, by pressing the the Name button.

¥ variance function

=lo|x|

o G 1eq oy 4 e 9 2 1 e 1 1 e oy 1 aq 3 ) 1 aq 3 2 =
var(v greons.response_ L., +v ; cons.response_ 2, +v Zkuu(l.lesponse_l!fk + vhlugll.lesponse_l!ﬂt +v Akun(l.lespouse__vk +v 5g11g11.1e51)11115e__,Jk)

2 Y 2 9 * we 2 2 e 22 3 * Mid.reg $

Gygconsresponse 1"+ 2g,,, consresponse L, * consresponse 2, + g, consresponse 2,°+ 25, consresponse Ly, Ml(l.lespouseilw

+chmcmls.les]mnse_-!].k I\h(l.lespnnse_l,.jfr Gﬂl\ll(l.lespouse_luk +ZGvDgcnus.lespnuse_luk ngh.lespouse_lvk

e 1 2k Hi e s ) N e 9 * i e 1 2 i e 1 2
+2G,  jconsr esponse 2, High.r esponseilwc +26,, zl\hd.lespnusej’]k ngl\.lespouseJUk + o, Highr esponseilw

S re 1 * My e e 2 e 3 2.k 1 e e 2 1 eq 3 * 1 eq 3 2
+26,pconsresponse_Lg Mid.r esponse_2 + 2o, ,consresponse 2y Mid.r esponse_2u + 26,5 Mid.r esponse_L; Mid.r esponse_2,;
+26,; Highresponse 1, * Midresponse 2, + GfAMi‘:l.reslmuseilwt2 + 2, sconsresponse L,

o e e 2 Hi e e 2 1 rec . * Hi e e 2 1 e . *H e e 2
+ 26, sconsr esponse_2,, High.r esponse_2,, + 26,9 SMl(l.wspouse_l,Jk ngh.lespouse_-vk + 26,5 Highr espouse_lvk High.r esponse_2 .,

* High-resp onse 2,

Tid.response 2., * Hichresponse 2 2 Hichresponge 2..°
+ 2, 4:Mid.response_2,, * Highresponse_2,, + o, Highresponse_2,;

select [sons respo] cons respo] Mic.respors [High.respor|Mid respors| Hish respor|resut i’

28l 3120 ong | cale [fame | kel | Zoom [100 =] capy
varenca ouputto [fpore) <] [100 | SEotvarence oupitto: [oney 5]

Remember that the Variance function window calculates the variance for each lowest level unit of the
model fitted in the Equations window, and that in this case the lowest level is resp_indicator. Each
row refers either to response category 1 or response category 2. For rows referring to response category 1,
all the terms ending in .response_2 are 0 (and vice-versa), because response_2 is a dummy variable for
whether each row refers to response category 2. Some terms will always be 0, for example the second term,
20,01cons.response_l;;;, X cons.response_2;;;, because either response_1 = 0 or response_2 = 0. In
addition, at least one out of High and Mid will be 0 for every case, which means a few more terms in
the function will be 0. Finally, remember that all the variables in this equation are either dummy variables
or always 1, so the coefficients in the variance function are multiplying either 0 or 1. The coefficients are
either the variances estimated in the Equations window, or the covariances multiplied by 2. Thus although
it looks frightful, for each case the function simplifies to a sum of at most 3 of the parameters estimated in
the Equations window (with some being multiplied by 2). This is shown below, where terms that are always
0 (because they involve both response_1 and response_2, or both Mid and High) are scribbled out in
red, terms which are only involved in the function for response category 1 are underlined in blue, terms
which are only involved in the function for response category 2 are underlined in purple, terms which are
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only involved for expvar = Mid are underlined in green, and terms which are only involved for expvar =

High are underlined in vellow:

=10I %]

¥ Yariance function
var(v j,cons.response_ Ly +v cons response 2., +v nid.response l!ﬂc +v highresponse l!ﬂc +v 4midresponse 2ptY shigh response Z,Jk) =

ot ucons.response_lw WWM cons. resp(mse_?.wr + 25 cons.response_Ly * Midresponse_Ly,

+ 4 W - ﬂMld | response_ luk +'2mcuns response 1, *ngh response_ 1,
+ D ACAABNPONS L s Thorda sy + AN NS T T Ao Sy, + _Hﬂlgh respcnsegw
T AN AOWATRHPUER IS i hesunonty, +Zg*ccns response_2,; * Mid.response_2,; + Aofiuiiletdpormerty, i stupsmoriy,
+MMW&M g Mid.response_. ZUk + Y pnwtguesefetiignle il ormang I,

+2g, jeonsresponse_2,, * Highresponse 2,, QWWMk WWWM

—

+ BN SR 2y S Mueponte Y, + o nghresponse sz

Seiect Jcons respo| cons.sepo|MidresponHigh respor| e respon g respor st | ]
B

3:.2D_long ’7’7

‘We will now calculate the variance.

We can plot the variances as they are; again we will need to create a long version of expvar, with one entry

per response category per level 1 unit:

Once again we need to paste categorical information from expvar:
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We can now plot the graph.

This is likely to either crash MLwiN, or result in wrongly plotted error bars (which stretch out of the visible
portion of the graph). This is because we are plotting so many points: if we look in the Names window
we can see that our variance column has 200,000 entries (one per response category per level 1 unit in our
original dataset). MLwiN’s graphing functionality does not cope very well with extremely large numbers of
points. We need to reduce the number of points we plot. We can do this without losing any information:
recall that our one-entry-per-response-category-per-level-1-unit, 200,000 entry column is storing the values
of the variance very inefficiently. The variance depends only on the response category and expvar, and so
there is one value of the variance for each combination of values of these: in other words, 6 values of the
variance. We can thus cut our number of points right down by just keeping one row per combination of
values of the response category and expvar. First we will create a new variable which looks at the values of
resp_indicator (which says which response category each row refers to) and expvar_long, and takes on a
different value for each combination of values of these variables. We do this using a command:

We will rename c21, containing this new variable, combination.

We can see how this variable indicates the combination of resp_indicator and expvar_long if we look at
these variables in the Data window:
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response_1 response_1Low
response_1 response_1Low
response_1 i response_1Mid
response_1 i response_1Mid
response_1 response_1High
response_1 response_1High

response_1 response_1High
response_1 response_1High
response_1 response_1Mid
response_1 i response_1Mid
response_1 response_1Low
response_1 response_1Low
response_1 i response_1Mid
response_1 i response_1Mid

nn=a 1

Next, we will sort these variables by our new variable combinations so that all rows with the same values
of expvar_long and resp_indicator are adjacent, and then take just the first row from each of these groups
of rows with the same combination. (We don’t need to keep these variables in their current order, which is
sorted by level 1 unit within level 2 unit, since the variance does not depend on which level 1 unit or level 2
unit a row refers to: the variance is the same for all level 1 units and for all level 2 units).

We will rename the new columns resp_indicator_short, variance_short, variance_se_short, expvar_short,
and combination_short. We’ll also need to paste category information into expvar_short (and optionally
resp_indicator_short). Looking in the Names window, we can see that each has only 6 entries, as we
wanted. We can now have a second go at plotting the graph.
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We could alternatively use the other functionality of the Variance function window, and directly calculate
the variance for the six possible combinations (although we will not then get the standard errors).

If we return to the Variance function window, and examine the grid under the pane with the formula, to
the left, we can see that there are six columns for us to fill in. However, it is a little difficult to tell what each
column refers to, because the ends of the column names are cut off, and the columns cannot be made wider.
You can work it out by looking at the order in which the random effects appear in the variance-covariance
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matrix in the Equations window (the ordering is the same); but perhaps a simpler option is to press the the
Copy button at the bottom of the Variance function window, and paste into Excel (for example), where the
columns can be widened or the individual cells clicked on to reveal the full names.

We’ll make the first three rows refer to response category 1, and the next three refer to response category
2. Within each category, the first row will be for expvar = Low, the second for expvar = Mid, and
the third for expvar = High. We’ll begin by filling in the two cons columns. These contain respectively
cons X response_l and cons X response_2, where response_1 and response_2 are dummy variables
for response category 1 and response category 2. cons is always 1, so these simplify to response_1 and

response_2. response_l gets 1s in the first 3 rows and 0Os for the next 3, while response_2 gets Os for the
first 3 rows and 1s for the next 3.
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The remaining columns contain dummies for values of expvar multiplied by the dummies for the response
categories: in other words, by the first two columns. So where either of the first two columns has a 0 in

a given row, other columns containing dummies multiplied by that column will also have a 0 in that row.
We'll fill these in:
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For the remaining spaces, the response category dummy is 1 so what should go in here is just the value of
the dummy for expvar. The upper left spaces are in columns both referring to response category 1; the first
row is for the Low category of expvar so we put 0 for both columns, the second is for Mid so we put a 1
in the first column and a 0 in the second, and the third is for High so we put a 0 in the first column and a
1 in the second. Similarly, the lower right spaces are in columns both referring to response category 2; we

fill the rows in in the same way.

3 variance function
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We can now calculate the variances by clicking in the select column of each row
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and copy the grid into Excel (or wherever), then back to MLwiN. The names of the columns will not carry
across (apart from result) since there are already columns with those names; we’ll call them respectively
response_1, response_2, Mid_r1, High_r1, Mid_r2, and High_r2. Now we will add two columns, one
giving the response category and one giving the value of expvar, each in a single variable instead of as
dummies. We can do this just by typing in the Data window:

Alternatively, we can use a command (which might be simpler if we had many more rows, perhaps because
we had other variables also involved in the variance function):

We can name these new variables resp_indicator_short2 and expvar_short2

Now we can plot our graph
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Again, we have the same graph that we produced using the other option, but without the standard errors.
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