
Statistical Modelling 2009; 9(3): 173–197

Multilevel models with multivariate mixed
response types

Harvey Goldstein1, James Carpenter2, Michael G Kenward2 and Kate A Levin3

1University of Bristol
2London School of Hygiene and Tropical Medicine
3University of Edinburgh

Abstract: We build upon the existing literature to formulate a class of models for multivariate mix-
tures of Gaussian, ordered or unordered categorical responses and continuous distributions that are
not Gaussian, each of which can be defined at any level of a multilevel data hierarchy. We describe
a Markov chain Monte Carlo algorithm for fitting such models. We show how this unifies a num-
ber of disparate problems, including partially observed data and missing data in generalized linear
modelling. The two-level model is considered in detail with worked examples of applications to a
prediction problem and to multiple imputation for missing data. We conclude with a discussion outlin-
ing possible extensions and connections in the literature. Software for estimating the models is freely
available.
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1 Introduction

Multilevel models are routinely used for the analysis of data that have a hierarchical
structure, such as students nested within schools or repeated measures data with
measurement occasions nested within individuals. Goldstein (2003) discusses a wide
range of such models with examples. These models have been developed for different
univariate response types including Gaussian, unordered and ordered responses.

There exists a wide range of extensions of such models that allow multivariate
mixtures of Gaussian, ordered or unordered categorical responses, see for example,

Address for correspondence: Harvey Goldstein, Graduate School of Education, University of Bristol,
Bristol, BS8 1JA, UK E-mail: h.goldstein@bristol.ac.uk

c© 2009 SAGE Publications 10.1177/1471082X0800900301

 at University Library on October 23, 2009 http://smj.sagepub.comDownloaded from 

http://smj.sagepub.com


174 H Goldstein et al.

Rabe-Hesketh et al. (2005), Dunson (2000), Goldstein (2003), Browne (2004), Imai
and van Dyk (2005), Asparouhov and Muthen (2007). A number of approaches
are based upon maximum likelihood (ML) estimation. Thus, Rabe-Hesketh et al.
(2005) use numerical integration based upon quadrature to develop a very general
framework, to obtain ML estimates, that incorporates many of the features that
are discussed in the present paper. Similarly, Asparouhov and Muthen (2007) use
the expectation–maximization (EM) algorithm to provide an overlapping framework
of models. MCMC procedures are used by Dunson (2000) and Imai and van Dyk
(2007) for particular cases of such models.

The aim of this paper is to provide a unifying framework that incorporates all
these existing models and to show how this extends to new models and procedures,
especially for handling coarsened data (e.g., measurement error, probabilistic linkage
and missing data). Our model allows multivariate response variables to exist at all
levels of a data hierarchy; these are linked across levels via their associated random
effects. We also show how Box–Cox type normalizing transformations for continuous
non-Gaussian responses can be incorporated.

Drawing on the existing literature we develop a general MCMC algorithm for fit-
ting our models which has two principal attractions. First, it conveniently allows the
inclusion of informative prior information, which is particularly important in certain
problems involving missing data, e.g., in probabilistic data linkage. Second, MCMC
estimation is computationally efficient for complex models since, unlike numeri-
cal integration (and also the EM algorithm where numerical integration is required
for the expectation step), computational load increases linearly with the number of
parameters. A procedure such as ours also provides a model fitting algorithm that
readily allows extensions via the insertion of samplers for additional components or
distributions. The properties of our procedures derive from the general properties
of MCMC algorithms. Thus, in principle, they will provide full posterior distribu-
tions that accommodate all sources of random variation, but they are also subject
to problems of ‘convergence’ and stability to which we return in the discussion
section.

A number of special cases of our models can be fitted within some existing soft-
ware packages such as WINBUGS (Spiegelhalter et al., 1999), MPLUS (Muthen and
Muthen 2004) and GLLAMM (Rabe-Hesketh et al., 2001). Nevertheless, it appears
that none of these can accommodate the full generality that we propose. Where the
set of responses is entirely at the lowest level of the data hierarchy, our model is
similar to that of Dunson (2000), although his model is formulated from a more
factor analytic viewpoint. We have developed our own software that will handle the
core models discussed in this paper. This is freely available for download as a set
of compiled Matlab programs (Mathworks, 2004), together with training materials,
from http://www.cmm.bristol.ac.uk/.

There are many examples of multivariate data where responses are at more than
one level of a data hierarchy. Thus, in longitudinal studies, we may have repeated
measures on individuals constituting the lowest level of the hierarchy together with
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measures that are constant for each individual at level 2 of the hierarchy (Goldstein,
2003, Chapter 5). An example, which we discuss in a later section, is growth data
where there are repeated measures of a variable during a growth period (level 1) and
a single measure at adulthood (level 2) when growth has stopped. Fitting all these
as responses allows us to estimate the correlations between the adult measure and
the parameters that describe growth, such as the mean height and the rate of change
of height with age. This in turn provides a flexible procedure for making growth
predictions.

Another important case that we discuss in detail is where we have missing data
in a multilevel model. Full multiple imputation procedures consider all the variables
with missing data as a set of multivariate responses, and if some of these are at
different levels of the data hierarchy, this requires the procedures we are considering.
We also extend the multiple imputation model to consider data where the values are
unknown but we have a probability distribution available for these values so that
they become ‘partially known’. In that case we treat the probability distribution as a
prior within the Bayesian framework.

In all these cases, we may wish to consider non-Gaussian responses that are either
discrete or continuous and our procedures include such cases. This relates to work
by Yucel (2008). Thus, in the repeated measures case, we may have responses that
are on ordered scales such as examination grades or responses to graded attitude
scales, and in the missing data case we will often have discrete or other non-Gaussian
variables with missing values.

We formulate our model as follows. We first consider creating an underlying set
of latent multivariate Gaussian responses; one Gaussian response for each binary,
ordered or non-Gaussian continuous variable and a set of Gaussian responses for
each multicategory response variable. This reduces the analysis to a multivariate
Gaussian model that allows us to apply standard MCMC samplers.

The paper is structured as follows. We start in Section 2 with responses occurring
at level 1 and introduce our notation and describe the multivariate Gaussian model.
Section 3 describes the procedures for sampling the latent Gaussian variables for
non-Gaussian responses, the extension to two levels and missing data. Section 4
gives examples of applications and Section 5 contains the discussion.

2 Model and notation

2.1 Multivariate Gaussian data

Let j = 1, . . . , J index level 2 units and i = 1, . . . , I j index level 1 units, nested
within the level 2 units. For example, the level 1 units might be students and the level
2 units schools. The underlying multivariate Gaussian model structure we consider,
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for a two-level model, is as follows:

y(1)
i j = X1i jβ

(1) + Z1i j u
(1)
j + e(1)

i j

y(2)
j = X2 jβ

(2) + Z2 j u
(2)
j

e(1)
i j ∼ MVN(0, �1), u j = (u(1)

j , u(2)
j )T , u j ∼ MVN(0, �2).

(2.1)

The superscripts denote the level at which a variable is measured or defined. Thus,
y(1)

i j (p1 × 1) contains the (latent or actual) Gaussian responses that are defined at
level 1 and y(2)

j (p2 × 1) contains the responses that are defined at level 2. Without
loss of generality, we assume the same set of predictors for each response at level 1
and likewise at level 2. Let X1i j (1 × f1) contain the level 1 predictor variables and
β(1) ( f1 × p1) be the matrix containing the fixed coefficients for these predictors.
Similarly, Z1i j (1 × q1) is the matrix that contains the predictor variables for the
q1 level 2 random effects denoted by u(1)

j (q1 × p1) for the level 1 responses. The
level 1 residuals e(1)

i j are calculated by subtracting the current estimate of the linear
component of the model from each of the level 1 responses.

Correspondingly, X2 j (1 × f2) is the vector that contains predictor variables for
higher level unit j and β (2) ( f2 × p2) contains the fixed coefficients. The matrix Z2 j
(q2 × p2 ) contains the level 2 random effects for the level 2 responses. Finally,
u(2)

j (q2 × p2) is the matrix of level 2 residuals for the level 2 responses and these are
correlated with the level 2 residuals for the level 1 responses u(1)

j . In the examples of
this paper we shall assume that q2 = 1.

Our estimation strategy is to use Gibbs sampling, drawing from the appropriate
known posterior conditional distribution, and where, for particular parameters, this
does not correspond to a known distribution, we use Metropolis–Hastings (MH)
sampling. We will assume and describe appropriate default priors.

2.2 Fitting a multivariate Gaussian model with level 1 responses

We now consider model (2.1) but without the second line, that is a model with only
level 1 responses:

yi j = X1i jβ + zi j u j + ei j
ei j ∼ MVN(0, �1), u j ∼ MVN(0, �2)

where, for simplicity, we now omit superscripts. The Gibbs sampling steps are stan-
dard (Browne and Draper, 2006) and we summarize them for completeness. To
sample β, we assume a uniform prior and sample from the posterior distribution
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which is multivariate Gaussian with mean[∑
i j

(I(p1×p1)⊗Xi j )
T �−1

1 (I(p1×p1)⊗Xi j )

]−1 ∑
i j

(I(p1×p1)⊗Xi j )
T �−1

1 ỹT
i j , ỹi j = yi j−zi j u j

and covariance matrix
[∑

i j
(I(p1×p1) ⊗ Xi j )

T �−1
1 (I(p1×p1) ⊗ Xi j )

]−1
.

We sample u j from the multivariate Gaussian distribution

MVN

([∑
i

z
T

i j�
−1
1 zi j+�−1

2

]−1[∑
i

z
T

i j�
−1
1 (yi j−Xi jβ)

]
,

[∑
i

z
T

i j�
−1
1 zi j + �−1

2

]−1)
.

We sample a new level 2 covariance matrix from its posterior distribution

�−1
2 ∼ Wishart (vu, Su), vu = m + vp, Su =

( m∑
j=1

u j u
T
j + Sp

)−1

,

where m is the number of level 2 units, uj is the row vector of residuals for the jth level
2 unit and the prior p(�−1

2 ) ∼ Wishart(vp, Sp), where vu are the degrees of freedom—
the sum of the number of level 2 units and degrees of freedom associated with the
prior. One choice, which we will use when we consider non-Gaussian responses,
is vp = −3, Sp = 0, which is equivalent to choosing a uniform prior for �2.

The level 1 covariance matrix is sampled in the same way (for our present model
this has only one random effect for each response). Finally, the level 1 residuals are
obtained by subtraction.

In some cases, we may wish to impose a linear constraint on a subset of the
fixed parameters. For example, if we wish to have a different set of predictors for
each response, we can fit a maximal model constraining appropriate subsets to zero.
Suppose we wish to impose a set of q independent linear constraints on some or all
of the elements of β. These constraints will involve q∗ ≥ q distinct elements of β,
and we re-order β so that q of these q∗ elements appear first.

We can write the set of constraints as

Cβ = k, C is (q × p), k is (q × 1).

Write the QR decomposition of C as C = Q R, R = (T W ), where Q is orthogonal
(q × q) and T is upper triangular [(q × (p − q))] and write βT = (βT

1 βT
2 ), where

β1 contains the first q elements of (the re-ordered) β and β2 contains the last p − q
elements.

We now have QT k = QT Q Rβ = (T W )β and we construct(
T W
0 I

)
β =

(
(T W )β

β2

)
=

(
QT k
β2

)
,
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which gives(
β1
β2

)
= β =

(
T W
0 I

)−1 (
QT k
β2

)
=

(
T −1 −T −1W

0 I

)(
QT k
β2

)

=

(
T −1 QT k − T −1Wβ2

β2

)
,

so that we can sample the p-q elements of β2 freely and compute the q elements of
β1 as the function of β2 given by the expression T −1 QT k − T −1Wβ2.

3 Fitting non-Gaussian responses and missing data

3.1 Multicategory (unordered) responses

We assume a ‘maximum indicant’ model (Aitchison and Bennett 1970). Suppose
that we have just a single multinomial response vector with p categories, where the
response, y, is (0,1) in each category. That is, we expand the actual response for level
1 unit i (a categorical variable with values 1 to p) into p (0,1) variables where only
one of these is 1. Thus, yhi = 1 if response is in category h(h = 1, . . . , p) for individual
i , 0 otherwise. For each yhi we assume that an underlying latent Gaussian variable
vhi exists and that we have the following multivariate model for these, where for now
we omit the level 2 random effects:

vhi = X1hiβ1h + ehi , ei ∼ MVN(0, �),

� is a p × p correlation matrix, ei mutually independent vectors

X1hi is (1 × s), β1h is (s × 1), ei is (p × 1), β1 = {βT
11, . . . ,βT

1p}
T (3.1)

is (ps × 1),

where β1 is the subset of β, corresponding to these latent Gaussian responses. The
maximum indicant model states that we observe category h for individual i iff
vhi > vh∗i ∀ h∗ �= h.

For identifiability purposes, and since we have no substantive interest in the
structure of �, we will model directly only the first p − 1 categories and assume
that � is diagonal with variances equal to 1. The final category is derived as shown
below. This is just the model considered by Aitchison and Bennett (1970).

Now, let Y ∗
1hi be the set of remaining responses other than the multicategory

response being sampled, adjusted for X1 predictors (common to all responses) and
(possible) random effects at higher levels. When sampling the vhi we condition on
this set so that (3.1) becomes

vhi = X1hiβ1h + Y ∗
1hiβ2h + ehi . (3.2)

Statistical Modelling 2009; 9(3): 173–197

 at University Library on October 23, 2009 http://smj.sagepub.comDownloaded from 

http://smj.sagepub.com


Multilevel models with multivariate mixed response types 179

Thus, if �1is the current residual covariance matrix for the full set of model responses,

we write �1 =
(

�1
�12 �2

)
, where �1 is the residual covariance matrix for the

Y ∗
1 and �2 = Ip−1.

We therefore have β2 = �12�
−1
1 .

While the same set of model predictors, X1, applies to each category, the coefficients
in general are specific to each category. We therefore have

X1hi = X1i , vi = (X∗
1iβ1) + ei , vi is ((p − 1) × 1),

X∗
1i = Ip−1 ⊗ X1i is ((p − 1) × (p − 1)s).

(3.3)

Since we observe category h for individual i iff vhi > vh∗i ∀ h∗ �= h, the category
probabilities are given by

πhi = pr [X1hiβh + ehi > X1hiβh∗ + eh∗i ] ∀ h∗ �= h. (3.4)

If we now add level 2 random effects (j indexes level 2), (3.1) becomes vhij = X1hijβ1i +
zijuhj + ehij where uhj is (q×1) and we write u j = {uhj}T which is a (q(p−1)×1) vector
with �u = cov(u j ). We also now write z∗i j = Ip−1 ⊗ zi j which is ((p − 1) × q(p − 1))
and zi j is (1 × q).

To sample the latent Gaussian responses vi j = {vhij}, we select a sample of p − 1
values from N (X∗

1iβ1 + Y ∗
1iβ2 + z∗i j u j , �2 − �21�

−1
1 �T

12) and accept this draw to
replace the current set of p − 1 values if and only if the maximum of these p − 1
values actually occurs in the category where a response variable value of 1 is observed
and if this maximum is greater than 0 ‘or’ is less than or equal to 0 and a value of 1
is observed in the final category. If not, we select another sample.

3.2 Ordered responses

Suppose we have an ordered p-category response, ordered categories numbered
1, . . . , p. We adopt the probit link cumulative probability model

γh =
αh−(X1β1+Y∗

1 β2 + ZU )∫
−∞

ϕ(t)dt,

γh =
h∑

g=1
πg categories, h = 1, . . .p − 1,

where πg is the probability that the observation occurs in category g[g = 1, . . . , p].
The Y ∗

1 , β2 are as before, and the underlying latent Gaussian variable is given by

Y ∗ = e∗ + (X1β1 + Y ∗
1 β2 + ZU ), e∗ ∼ N (0, 1 − �21�

−1
1 �12).

We assume that the intercept term is incorporated in the fixed part predictor so that
α1 = 0. The MCMC steps required to sample the Gaussian variable and the threshold
parameters are described in Goldstein et al. (2007).
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3.3 Missing responses

Where level 1 responses are missing we sample new responses, omitting detailed
subscripts, by drawing from MVN(X∗

2β
∗
2 + e∗1β

∗
1 + z∗2u∗

2, �2 − �21�
−1
1 �12), where

�2 is the current covariance matrix of residuals for the missing responses, �1 is
the covariance matrix of residuals for the observed responses and �12 is the matrix
of covariances between the observed and missing residuals. The X∗

2β
∗
2 and z∗2u∗

2 are
the fixed predictor and level 2 residual contribution for the missing responses, β∗

1 =
�−1

1 �12 and e∗1 are the level 1 residuals for the observed responses.
Following all these steps for categorical responses, we obtain a set of Gaussian

responses which are combined with any observed Gaussian responses to give a com-
plete set of responses which have a multivariate Gaussian distribution (Geweke,
1991) which can then be modelled as in Section 2.

3.4 Transforming non-Gaussian continuous distributions

For a wide class of distributions, we can apply a normalizing transformation that is
a function of one or more parameters, and then incorporate this in a similar way
to that described for discrete responses. For example, the Box–Cox transformation
(Box and Cox, 1964) for y ≥ 0 is

y(λ) =

{
(yλ − 1)λ−1, λ �= 0,

log(y), λ = 0,

and requires a step for sampling the parameter λ and using this to transform the
responses. This step can be carried out using MH with a suitable proposal, where
the relevant component of the log likelihood for the untransformed y is

−
∑

i

(y(λ)
i − μi )2

2σ 2
+ (λ − 1)

∑
i

log(yi ),

where μi comprises the fixed predictor, including level 2 random effects for level 1
responses plus conditioning on the remaining random effects at the same level and
σ 2 is the conditional variance on the transformed scale. The second term in this
expression is derived from the Jacobian of the transformation. Starting values for the
parameter and a Gaussian proposal distribution variance can be obtained from an
initial ML estimation for the relevant variable.

3.5 General continuous distributions and survival data

When we have continuous response distributions where no suitable normalizing
transformation can be found, we can proceed as follows. We categorize the distri-
bution scale and treat the categories as an ordered classification. We can view this
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as a semiparametric procedure for any distribution that can be described by a set
of ordered categories to a given approximation. One important example is survival
or event history data. If the survival time interval is divided by cut-off points into
a set of sub intervals, the resulting set of categories can be treated as an ordered
categorization to which the procedures of this paper can be applied. An advantage of
this formulation is that multivariate survival models as well as models where survival
times are at different levels of a data hierarchy can be incorporated. Any kind of
censoring is readily handled using the missing data procedures. Where a large num-
ber of thresholds are involved, the threshold parameters themselves can be modelled
as a smooth function of time or interval number, e.g., using a spline or fractional
polynomial, so reducing the number of parameters (Goldstein, 2003, Chapter 11).
Work on these models is currently being pursued (Goldstein and Kounali, 2009,
Goldstein, 2009).

3.6 Sampling the level 1 (multivariate) covariance matrix

For all the categorical responses, the level 1 variances are fixed to be equal to 1.0, with
zero correlations among the categories of each unordered categorical variable, but
non-zero correlations between these categories and other categorical and continuous
variables. Thus, for this set of correlations and for the unconstrained variances, we
use an MH sampling procedure as follows. We assume uniform priors.

Let �1,lm denote the (l,m)th element of the covariance matrix. We update these
covariance parameters using a Metropolis step and a Gaussian random walk proposal
as follows.

At iteration t generat �∗
1,lm ∼ N

(
�

(t−1)
1,lm , σ 2

plm

)
, where σ 2

plm is a proposal distribu-
tion variance that has to be set for each covariance and variance. Then form a pro-
posed new matrix �∗

1 by replacing the (l,m)th element of �
(t−1)
1 by this proposed value

unless �∗
1 is not positive definite in which case set �

(t)
1,lm = �

(t−1)
1,lm . That is set �

(t)
1,lm =

�∗
1,lm with probability min

[
1, p(�∗

1|ei j )/p(�(t−1)
1 |ei j )

]
and �

(t)
1,lm = �

(t−1)
1,lm otherwise.

The components of the likelihood ratio are

p(�∗
1|ei j ) =

∏
i j
|�∗

1|−1/2 exp(−(ei j )
T (�∗

1)−1ei j/2) and

p(�(t−1)
1 |ei j ) =

∏
i j
|�(t−1)

1 |−1/2 exp(−(ei j )
T (�(t−1)

1 )−1ei j/2).

We can use an adaptive procedure (Browne, 2004) to select the proposal distribution
parameters.

3.7 Responses at both level 1 and level 2

We now return to model (2.1) containing multivariate Gaussian responses at both
levels where these are sampled from either Gaussian responses or, following the
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appropriate steps, non-Gaussian discrete or continuous responses. For non-Gaussian
level 1 responses we sample as described above. We note that in sampling the level 2
random effects for the level 1 responses, we sample as in the model with responses
only at level 1 since the likelihood for these random effects has no component deriving
from the level 2 responses. For the level 2 responses, we have the following summary
steps.

Step 1: For non-Gaussian level 2 responses, we sample as for level 1 conditioning
on all the remaining level 2 random effects.

Step 2: For the full level 2 covariance matrix, we use Gibbs sampling with an inverse
Wishart as described earlier if all the level 2 responses are Gaussian, since
the components of this matrix derived from the level 1 responses are assumed
to be Gaussian by the model. If any of the level 2 responses are categorical
then, because of constraints on variances and covariances, as in sampling the
level 1 covariance matrix, we need to use MH sampling element by element.
The procedure is similar to that for the level 1 covariance matrix but now the
components of the likelihood ratio for a particular level 2 covariance matrix
�2 are as follows:

p(�∗
2|u

(2)
j ) =

∏
i j
|�∗

2|−1/2 exp(−(u(2)
j )T (�∗

2)−1u(2)
j /2),

p(�(t−1)
2 |u(2)

j ) =
∏
i j
|�(t−1)

2 |−1/2 exp(−(u(2)
j )T (�(t−1)

2 )−1u(2)
j /2).

(3.5)

Step 3: The level 2 response fixed effects are estimated using the multivariate (regres-
sion) model specified by the second line of (2.1).

Step 4: The level 2 random effects for the level 2 responses are obtained by
subtraction. We note that where level 2 responses are missing we draw a
sample from MVN(0, �2), where �2 now incorporates level 2 random effects
from responses at both levels, and we need to condition on the non-missing
level 2 random effects (see Section 3.8).

3.8 Missing responses

At any cycle of the MCMC algorithm, we can sample a set of Gaussian responses
for any missing response values. To impute the corresponding category responses
given these values we proceed as follows. For an ordered variable, we use the current
threshold parameter values to assign the Gaussian sample value to the correspond-
ing category. For an unordered variable, we sample into the category indicated by
the maximum from a draw from the associated multivariate Gaussian distribution.
For transformed non-Gaussian continuous variables, we apply the appropriate back
transformation using the parameter values at the current iteration of the algorithm.
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3.9 Multiple imputation for multilevel missing data

The model and fitting procedures we describe have important and direct application
to multilevel missing data problems where some or all of the response or predic-
tor variables (covariates) with missing data are non-Gaussian. Suppose we have a
multilevel dataset, comprising a mix of continuous and discrete data, with a non-
monotone pattern of missing observations. We have some model of interest (MOI)
we wish to fit to these data. We assume that the missingness mechanism is missing at
random (MAR), i.e., for each unit, given the observed data, the missingness mecha-
nism does not depend on the values of the unseen data. However, this is not usually
sufficient to enable us to obtain valid inference for our MOI by simply fitting it to
the observed data. This is because some of the covariates in our MOI will typically
be missing, and we do not obtain valid inference under MAR by fitting the model to
the observed data unless (i) the only missing values are among the responses and (ii)
we have included the fully observed variables required for MAR to hold as covariates
in our model.

Instead, we can use multiple imputation (Rubin, 1987, Kenward and Carpenter,
2007), with model (2.1) as our imputation model, to obtain valid inference for our
MOI under the MAR assumption. From all the variables in our dataset, we form two
groups. Group 1 is the variables we need to fit our MOI. If there were no missing data
among these variables, we would use them to estimate the parameters in the MOI
directly. However, they are only partially observed, so we cannot do this. Group 2 is
the variables that are needed so that, for each unit, the assumption that missing data
are MAR holds. Groups 1 and 2 need not exhaust the dataset. We then proceed as
follows (see Schafer, 1997):

1. Using the variables in Groups 1 and 2, apply our MCMC algorithm to estimate
model (2.1) from the observed data. This gives valid estimates of the parameters
because all the data are responses in this model, and integrating the likelihood
over the missing responses leaves the likelihood for the observed data.

2. Once the sampler has converged continue running it to create K imputations
of the missing data—in other words K ‘completed’ datasets.

3. Fit the MOI to each of the K ‘completed’ datasets and then combine the
parameter estimates using the usual rules for multiple imputation (Rubin 1987)
in order to obtain final estimates and standard errors.

Assuming MAR, this gives us valid inference for our MOI. Of course, we can
never be sure that MAR holds; data may not be missing at random (MNAR). For
example, see Rubin (1987).

In essence, our approach generalizes the models for imputing data under MAR
proposed by Schafer (1997). However, our approach is significantly more general.
First, we can allow a mix of Gaussian, continuous non-Gaussian, binary, ordinal
and unordered categorical variables. Thus, we can handle most of the common types
of data. Second, our model is multilevel. We have shown elsewhere (Carpenter and
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Goldstein, 2004) that ignoring multilevel structure can lead to bias if the dataset is
unbalanced; it will also typically mean that the variance of the imputation distribution
is underestimated (so the resulting inferences will be too precise). Third, our models
can incorporate survival data, hitherto relatively awkward to handle via multiple
imputation.

Carrying out multiple imputation for missing data can never be fully automatic,
as care must be taken (i) to include the variables necessary for MAR and (ii) that the
imputation model has a structure consistent (congenial) with the MOI. Nevertheless,
we believe our model provides a flexible tool for reaching these goals.

An alternative approach to multiple imputation using a joint model is the multi-
ple imputation chained equation approach, in which a set of conditional univariate
models are used for imputation without specifying a joint model (Van Buuren, 2007).
By contrast to the joint model approach, neither does it have a well-established the-
oretical grounding nor does it naturally extend to multilevel structures, for example
longitudinal data measured in continuous time.

3.10 Response variables with partially known values

In certain cases, we may have a response where some values from a continuous
distribution are known accurately but others are only known to lie within a given
range. One example is retrospective data where the time since an event is measured
and where some individuals can only provide an interval estimate. An illustration is
in the measurement of pregnancy gestation length where only some individuals can
supply accurate values of the timing of their last menstrual period. Since we typically
do not know which are the accurate values an additional step is required to provide a
probability distribution which will assign a probability for the observed value close to
1 where this value is in fact accurate, and a more variable distribution of values where
it is not. Mixture modelling (see for example Qin et al., 2007) provides one approach
to this. Another extreme example is that of truncation where all measurements below
a given value are known but for the remainder we only have the information that
they lie above the given value. An extension of this is where we have several possible
intervals and associated information about which interval an observation lies in. In
other cases, we may have probabilistic information associated with different possible
ranges of values for a variable. For categorical responses we may be able to specify
a set of probabilities across a set of categories.

All these are examples of data coarsening (Heitjan and Rubin, 1991), where what
is observed is intermediate between fully missing and fully known. We would propose
to treat the above probabilities as constituting a prior distribution for the unknown
(missing) value and we refer to this as ‘prior-informed imputation’. In the Gaussian
case, we may use rejection sampling as follows. First, select a sample from the
conditional distribution as for fully missing values. If the sampled value is admissible,
e.g. lies in a valid interval, then accept it according to the probability associated with
the interval it lies in. If the value is not admissible or not accepted, then select another
sample. In the categorical case, we sample a value on the underlying Gaussian scale
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as for Gaussian responses. It is admissible if it corresponds to a category with a
non-zero prior probability. It is then accepted using the corresponding category prior
probability. If not valid or accepted then select another sample. We note that if more
than one response for a unit has a partially known value, all responses have to be
selected at one (multivariate) draw. As an example, for ordered categories, when
computing the log-likelihood contribution in MH sampling, we form a weighted log-
likelihood over the valid categories with the weights being the ‘prior’ probabilities.

An example for categorical variables is where individuals are asked to choose a
response category but some cannot make as fine a distinction as other individuals,
so that for these we can assign a prior over several categories. Another case is where
data are to be coded, e.g., into social groupings, but where for some individuals
we only have an assignment to a group of several categories. We assume that the
occurrence of such assignments is independent of the model parameter values.

In probabilistic data linkage procedures (see for example Scheuren and Winkler,
1993), estimated linkage probabilities for individuals can be used in a model to
correct standard estimators and to produce unbiased estimates. Such procedures,
however, operate at the individual record level, whereas it is often the case that we
have different probabilities for different variables. In such a situation we can use
these variable-specific probabilities as priors in order to provide efficient estimates.

In some cases, where the number of admissible categories is small, a good approx-
imation may sometimes be obtained by sampling only with respect to the prior
distributions and further research on this would be useful.

In all these cases, we impute a value or category, so that prior-informed imputation
can be regarded as an extension to the missing data procedure described above, to
provide a complete dataset.

4 Applications

4.1 A simulation study in multiple imputation

Here, we report a simulation study to assess the use of model (2.1) for multilevel
multiple imputation with a mix of data types. Our dataset is the ‘tutorial’ dataset,
distributed as an example with the MLwiN software package (Rasbash et al., 2004).
Briefly, this consists of a normalized measure of educational achievement at 16 years
(the response) and a number of covariates at both level 1 (student) and level 2
(school), as detailed in Table 1.

To evaluate using model (2.1) for multiple imputation, we started by fitting the
following substantive model (our MOI) to the full dataset:

yi j = Xi jβ + u j + ei j ,

ei j ∼ N
(
0, σ 2

e

)
, u j ∼ N

(
0, σ 2

u

)
.

This gave the parameter estimates in the second column of Table 1. We then did the
following.
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Table 1 Simulation study model. Parameter estimates and standard errors in brackets. One
hundred simulated datasets. MCMC estimation used a burn-in of 2000 with five imputed
datasets at iterations 1, 500, 1000, 1500, 2000. Estimates are computed using restricted ML

Relative Imputation
Parameter Complete dataset Imputation bias (%) standard error∗

Intercept 0.260 (0.056) 0.263 1.2 0.0021
Reading test score 0.391 (0.017) 0.391 0.0 0.0007
Verbal reasoning band 2∗∗ −0.417 (0.032) −0.414 −0.7 0.0014
Verbal reasoning band 3∗∗ −0.765 (0.054) −0.768 0.4 0.0024
School gender category 2∗∗∗ 0.099 (0.108) 0.091 −8.1 0.0040
School gender category 3∗∗∗ 0.241 (0.084) 0.230 −4.6 0.0038
Level 2 variance 0.079 (0.016) 0.080 1.3 0.0005
Level 1 variance 0.536 (0.012) 0.536 0.0 0.0004

Notes: ∗The imputation standard error is the standard error for each parameter over the 100
simulations.
∗∗Verbal reasoning band has three categories: category 1 (the reference category) is the top
25% of original verbal reasoning scores, category 2 is the middle 50% of verbal reasoning
scores and category 3 is the bottom 25% of verbal reasoning scores.
∗∗∗School gender has three categories: mixed schools (the reference category), category 2 is
boys’ school and category 3 is girls’ school.

Of the 65 schools, 10 were randomly sampled for each simulated dataset where
each school had the same probability of inclusion. For these, the school gender
was set to be missing. We note that other sampling schemes, for example selecting
schools with probability proportional to size, will not satisfy the MCAR condition. In
addition, 10% of the response values were randomly set to be missing and 5% of the
verbal reasoning band categories were set to be missing. This yielded between 25%
and 30% of records with any missing data. One hundred datasets were simulated.
The sampling procedure was checked by fitting the MOI to the simulated datasets
using listwise deletion; this gave essentially unbiased estimates.

With the exception of the school gender category 3, all the full data values lie
within a 95% Gaussian confidence interval. The results show negligible biases for all
the level 1 parameters and the variance estimates. For the level 2 categorical variable,
school gender, there appears to be a small downward bias. We suggest two possible
reasons for this. First, it may be due to the rather small number of schools in the study
combined with the assumption of a uniform prior for the level 2 covariance matrix
in the imputation model. Second, and more subtly, the MOI (a conditional model of
normalized exam score given covariates) is not exactly compatible (congenial) with
the joint distribution implied by the imputation model, although we believe it is likely
to be close because the imputation model relies on an underlying joint multivariate
Gaussian distribution with unstructured covariance matrices at levels 1 and 2. We
return to this point in the discussion. This would be sufficient to account for the
small biases we observe.
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Table 2 Two level growth model

Coefficient Estimate Standard error

Level 1 model intercept 153.05 0.69
Age (about age 13.0) 7.07 0.16
Age-squared 0.294 0.054
Age-cubed −0.208 0.029
Level 2 model intercept 174.70 0.80
Level 2 covariance matrix⎛
⎝55.77 1.29 50.01

1.30 0.53 1.24
50.01 1.24 69.42

⎞
⎠

Level 1 variance 3.21

4.2 A growth data example

Our first example uses the growth data analysed by Goldstein (1989). This dataset
consists of 108 children with height measured on up to six occasions around the age
of 13 together with their adult heights, altogether 436 growth measurements and 108
adult height measurements. We shall fit a cubic growth curve to the level 1 (within
child) measures and a single intercept for the adult height measurement. We will also
allow the age slope to vary at level 2 so that each child is allowed to grow at different
rates. In general, we may wish to allow the higher order polynomial coefficients to
vary across individuals and to introduce further covariates such as gender, but for
purposes of illustration we shall fit a simple explanatory model.

This model can be written as follows:

y(2)
j = γ0 + u(2)

0 j ,

y(1)
i j = β0 + β1ti j + β2t2

i j + β3t3
i j + u(1)

0 j + u(1)
1 j ti j + ei j , (4.1)⎛

⎜⎝
u(1)

0 j

u(1)
1 j

u(2)
0 j

⎞
⎟⎠ ∼ MVN(0, �2), �2 =

⎛
⎜⎝

σ
(1)2

u0

σ
(1,1)
u01 σ

(1)2

u1

σ
(1,2)
u00 σ

(1,2)
u10 σ

(2)2

u0

⎞
⎟⎠ , ei j ∼ N (0, σ 2

e ),

where y(1)
i j is the ith measurement around the age of 13 for the jth child, y(2)

j is the
adult height of the jth child and ti j is age. We are assuming a multivariate Gaussian
distribution for all the responses, one of which (adult height) is at level 2.

The results from fitting this model with a burn-in of 500 and 5000 iterations are
shown in Table 2.

The chains are well behaved and that for the slope variance (at level 2) is as shown
in Figure 1.
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Figure 1 Chain for 5000 iterations for slope variance parameter

The 95% interval for the slope variance is from 0.30 to 0.86. The average height at
age 13.0 years is 153.1 (standard error 0.69) and the average adult height is 174.7
(standard error 0.80).

One of the main uses of this analysis is to provide a procedure for predicting the
adult height of a child for whom we have growth measurements. Thus, we require a
prediction formula that we can derive from the parameters of our model. Thus, for
example, if we have two growth measurements we will have a linear prediction of
the form

ŷ j = γ0 + α1 ỹ1 j + α2 ỹ2 j , (4.2)

where, from (4.1)

ỹi j = y(1)
i j − (β0 + β1ti j + β2t2

i j ), i = 1, 2,

is the ‘raw’ residual for each measurement. The parameters of the prediction equation
(4.2) can be derived from the covariance matrix in Table 1, namely
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⎜⎝

ỹ1 j

ỹ2 j

ỹ(2)
j

⎞
⎟⎠ = MVN(0, �),

� =

⎛
⎜⎜⎝

σ
(1)2

u0 + σ
(1)2

u1 t2
1 j + 2σ

(0,1)
u01 t1 j + σ 2

e

σ
(1)2

u0 + σ
(1,1)
u01 (t1 j + t2 j ) + σ

(1)2

u1 t1 j t2 j σ
(1)2

u0 + σ
(1)2

u1 t2
2 j + 2σ

(0,1)
u01 t2 j + σ 2

e

σ
(1,2)
u00 + σ

(1,2)
u10 t1 j σ

(1,2)
u00 + σ

(1,2)
u10 t2 j σ

(2)2

u0

⎞
⎟⎟⎠

ỹ(2)
j = y(2)

j − γ0.

So that we have(
α̂1

α̂2

)
=

⎛
⎝ σ

(1)2

u0 + σ
(1)2

u1 t2
1 j + 2σ

(0,1)
u01 t1 j+σ 2

e

σ
(1)2

u0 + σ
(1,1)
u01 (t1 j + t2 j ) + σ

(1)2

u1 t1 j t2 j σ
(1)2

u0 + σ
(1)2

u1 t2
2 j + 2σ

(0,1)
u01 t2 j+σ 2

e

⎞
⎠

−1

(
σ

(1,2)
u00 × σ

(1,2)
u10 t1 j

σ
(1,2)
u00 × σ

(1,2)
u10 t2 j

)
,

so that a prediction, and confidence interval, can be computed for any set of growth
measurements and this will provide the basis for a flexible height prediction system
that can be incorporated readily into software.

4.3 A multilevel mixed response multiple imputation example

The data for this example are taken from the Scottish component of the 2005/06
Health Behaviour in School-aged Children (HBSC): A WHO Collaborative Cross-
national study (Currie et al., 2008) where 1644 pupils in 75 primary schools were
surveyed and asked questions relating to their health behaviour, including their fruit
and vegetable eating habits. All schools taking part in the HBSC survey in Scotland
received a school survey for a senior member of staff to complete. All 75 primary
schools surveyed completed and returned the questionnaires. The response variable
chosen for our present analysis is the frequency of fruit intake of the pupil in six
categories as described in Figure 2. It is treated as an ordered categorical variable. A
histogram of this variable is given in Figure 2.

The predictor variables at the pupil level are pupil gender and father’s social class
coded in five categories from high (0) to low (4) then economically active (5) and
economically inactive (6). At the school level, the predictor variables are the 2001
Carstairs index of social deprivation (a continuous variable) with a mean of 0.35 and
standard deviation of 3.4 (Carstairs and Morris, 1991) assigned to each school by
its postcode sector, whether the school was actively involved in the National Health
Promoting School initiative (Scottish Health Promoting Schools Unit, 2004), whether
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Figure 2 Frequency of fruit intake. Never (0), less than once a week (1), once a week (2), 2–4 days a week (3),
5–6 days a week (4), once a day (5) and more than once a day (6)

it was involved in a national ‘Hungry for Success’ initiative (Scottish Executive, 2003),
and whether pupils can buy fruit at the school (every day, some days, never). For
these six variables the first is binary, the second is treated as an unordered categorical
variable, the third is treated as Gaussian, the fourth is binary, the fifth is binary and
the sixth is ordered.

The MOI that we propose to fit to the data is a two-level cumulative proportions
model described above where there are seven categories.

At level 2, we fit a single variance term with the default prior distribution described
in section 2.

There are missing data in all variables, except the Carstairs index, ranging from
1.2% in the response to 13.6% for the health promotion initiative question.

The first step is to carry out the multiple imputation for all the missing data using
the described algorithms. We have chosen to sample 5000 MCMC iterations, with a
burn-in of 1000 and with imputed values computed every 1000 iterations. This yields
five completed datasets to each of which the MOI is fitted, using MCMC again with
1000 burn-in and 5000 iterations. This process is then repeated with 10000 MCMC
iterations yielding 10 imputed datasets and finally with 20000 iterations to yield
20 imputed datasets. The results are set out in Table 3. This table also shows the
results of fitting a model where records with any missing data are deleted; this yields
1138 pupils in 58 schools.

For the listwise deletion model, as expected, we see that there are slightly increased
standard errors associated with the estimates, compared to the estimates from the
imputation models. There is evidence for a gender difference, with girls more likely
to eat fruit and those pupils from highest social group are also more likely to do so.
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Table 3 Fitted model for fruit intake for different numbers of imputed datasets, and for analysis
based on listwise deletion of all missing data (standard errors in brackets)

Fixed coefficient 5 datasets 10 datasets 20 datasets Listwise delete

Intercept 2.88 (0.54) 2.86 (0.53) 2.87 (0.54) 2.92 (0.56)
Threshold 1 0.38 (0.05) 0.39 (0.05) 0.39 (0.05) 0.42 (0.07)
Threshold 2 0.81 (0.06) 0.82 (0.06) 0.82 (0.06) 0.85 (0.08)
Threshold 3 1.46 (0.06) 1.47 (0.07) 1.47 (0.06) 1.54 (0.08)
Threshold 4 1.91 (0.07) 1.91 (0.07) 1.91 (0.07) 1.97 (0.08)
Threshold 5 2.38 (0.07) 2.39 (0.07) 2.39 (0.07) 2.48 (0.08)
Gender (girl–boy) 0.24 (0.05) 0.24 (0.05) 0.24 (0.05) 0.21 (0.06)
Father SES cat 2 −0.27 (0.16) −0.25 (0.18) −0.25 (0.17) −0.31 (0.19)
Father SES cat 3 −0.55 (0.17) −0.51 (0.19) −0.51 (0.18) −0.56 (0.20)
Father SES cat 4 −0.47 (0.15) −0.45 (0.16) −0.44 (0.16) −0.50 (0.18)
Father SES cat 5 −0.32 (0.15) −0.30 (0.17) −0.31 (0.17) −0.40 (0.19)
Father SES cat 6 −0.41 (0.15) −0.39 (0.16) −0.38 (0.17) −0.43 (0.18)
Father SES cat 7 −0.58 (0.19) −0.57 (0.21) −0.57 (0.20) −0.65 (0.23)
Carstairs index −0.01 (0.01) −0.01 (0.01) −0.01 (0.01) −0.01 (0.01)
Health promoting (yes–no) −0.56 (0.51) −0.55 (0.50) −0.56 (0.50) −0.59 (0.52)
Hungry for success (yes–no) 0.20 (0.18) 0.19 (0.18) 0.20 (0.18) 0.14 (0.21)
Can pupils buy fruit at school
(some days–every day)

−0.05 (0.11) −0.06 (0.11) −0.06 (0.12) −0.08 (0.13)

Can pupils buy fruit at school
(never–every day)

0.10 (0.10) 0.09 (0.11) 0.08 (0.11) 0.14 (0.13)

Level 1 variance 1.0 1.0 1.0 1.0
Level 2 variance 0.034 (0.017) 0.035 (0.016) 0.035 (0.016) 0.044 (0.020)

Notes: The categories are referred to here as 1, . . . , p. Father’s SES categories contrasted with
category 1 (highest).

The MCMC chains for the fixed coefficients and the level 2 variance show good
mixing, but those for the threshold parameters do not, although the chain appears
stationary. Figure 3 shows the chain for the first threshold parameter and Figure 4
for the level 2 variance.

For the completed datasets we obtain similar pictures for the chains.
From Table 3 we see some small changes in parameter values moving from

5 to 10 completed datasets and a smaller change is seen moving from 10 to 20 sets,
which suggests that 10 completed datasets are adequate. We also note that, as we
would expect, the standard errors for all the parameters are smaller than those for
the listwise deleted model, in some cases substantially so.

5 Discussion

5.1 Model fit

We propose the use of the deviance information criterion (DIC, Spiegelhalter et al.,
2002) to assess model fit. This requires the calculation of the likelihood at each cycle
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Figure 3 MCMC chain of 5000 samples for threshold parameter 1

of the MCMC algorithm. To do this we can write the full set of responses as

Y =

{
Y1
Y2
Y3

}
,

where Y1, Y2, Y3 refer, respectively, to the Gaussian, ordered and unordered categor-
ical sets of variables. Consider just the set of level 1 responses first.
We write the likelihood as

P(Y ) = P(Y1|Y2, Y3)P(Y2|Y3)P(Y3).

The first term on the right-hand side is the multivariate Gaussian likelihood
adjusted for the remaining responses. Where we have a non-Gaussian continuous
response we can include this using the expression given in Section 3.4. The compu-
tations for the second term can be carried out by writing P(Y2|Y3) as a product of
individual conditional variables so that we only require the evaluation of univariate
density intervals. Evaluation of the third term involves evaluating the joint distribu-
tion of relevant-order statistics, and this again can be expressed as a set of conditional
distributions, one for each categorical variable.
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Figure 4 MCMC chain of 5000 samples for level 2 variance

A practical procedure for carrying out these computations is by simulating from
the model defined by the current parameter estimates at each iteration to approximate
the likelihood.

Given the likelihood at each cycle, and similarly for the final parameter estimates,
the DIC statistic is calculated as

DIC = D̄ + pD, pD = D̄ − D(θ ),

Where D is the deviance at each cycle (i.e., −2 log-likelihood), D̄ is the average value
over the chain, θ is the set of final parameter estimates and PD is the effective number
of parameters (Spiegelhalter et al., 2002).
We have not yet implemented this procedure and it is the subject of further research.

5.2 General discrete distributions

Further extensions can be made for general discrete distributions, where the probabil-
ity density function for the discrete values provides the equivalent of the probability
of category membership and is a function of one or more distribution parameters.
Thus, e.g., for a Poisson distribution, there is just a single such parameter that
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requires updating. At any given cycle of the MCMC algorithm, given current param-
eter values, we can then sample a latent Gaussian value as for the general ordered
case described above. Further work on such models is in progress (Goldstein and
Kounali, 2009).

5.3 Copula models

Our procedures have similarities with the Gaussian copula model (see e.g., Pitt et al.,
2006). In this model, a set of p latent variables following a (p × p) multivariate
Gaussian distribution have a one-to-one mapping on to p marginal discrete or con-
tinuous distributions which are modelled as functions of covariates. Our procedures
for deriving the latent Gaussian variables can be viewed as a multilevel generalization
of this copula model, and they also extend the standard copula model to allow the
incorporation of multinomial marginal distributions.

5.4 Conclusions

In this paper, we have sought to provide a general structure that unifies a wide range
of applications. Many further developments are possible. For example, it is relatively
straightforward to add further modelling steps to accommodate, e.g., measurement
errors (Goldstein, 2003, Chapter 13) or latent variables (Goldstein and Browne,
2005).

The practicality of using the procedures described in this paper needs to be inves-
tigated for various data configurations. Thus, e.g., ordered data with a large number
of categories may lead to convergence problems due to the large number of thresh-
old parameters. In our ordered response example, we have seen how the chains for
the threshold parameters can have a high level of autocorrelation. Similar problems
may be experienced with unordered categorical variables having a large number of
categories. Furthermore, our algorithm provides estimates that may be sensitive to
assumptions about prior distributions, especially for covariance matrices, and we
recognize that there is further work to be carried out in that area. We are also aware
that there will often be more efficient samplers available that can speed up computa-
tion, especially for the threshold parameters (see e.g., VAN Dyk and Meng, 2001).
Using multiple chains is also important in practice to make suitable judgements about
convergence. Exploration of these issues is currently being carried out in conjunction
with extensions to the procedures in the present paper.

For data where there is missing information, the ability to deal with non-Gaussian
data greatly extends the usefulness of existing multiple imputation procedures, espe-
cially within a multilevel framework. The further ability to handle partially known
data is also important for a number of applications, such as linkage studies and
retrospective surveys, where such partial information is common. Nevertheless, with
a flexible model such as the one developed here, multiple imputation is not a totally
automatic process. First, we need to think about whether the imputation model is
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compatible with the MOI. This is relatively easy to do if the data are Gaussian, but
harder if we have a mix of response types. Nevertheless, we believe our model is flexi-
ble enough to ensure parameter estimates from multiple imputation have small bias in
a range of models. Second, the class of imputation models we propose assumes joint
multivariate normality and if this is only approximately true, as may occur, e.g., if we
are using a Box–Cox transformation, some bias may result. We note, however, that
our sampling procedures for generating Gaussian variables, do so by conditioning on
linear functions of the remaining variables, which if these are Gaussian will ensure a
multivariate Gaussian distribution, or yield a good approximation for certain cases
involving ordered responses.

A further potential application is to mixture models where individuals are assumed
to belong to each of a number of groups with a set of probabilities associated with
group membership and where each group will have its own parameter values for
a given model. If a subset of individuals can be assigned prior group membership
probabilities, some of which may equal one, then this can be formulated as a missing
data problem where, for a set of indicators denoting group membership, the values are
(probabilistically) known for the sample subset. The remaining values are imputed, as
are the values for the subset conditioned additionally on the assigned priors. Research
into these models is also currently under way.
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