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Abstract 

Meta analysis is formulated as a special case of a multilevel (hierarchical data) 

model in which the highest level is that of the study and the lowest level that of an 

observation on an individual respondent. Studies can be combined within a single 

model where the responses occur at different levels of the data hierarchy and 

efficient estimates are obtained. An example is given from studies of class size 

and achievement in schools, where study data are available at aggregate level in 

terms of overall mean values for classes of different sizes, and also at student 

level.  
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1. Introduction 

The effects of class size on achievement have been studied since the 1920s 

quantitatively and qualitatively, and have certainly been debated for much longer. 

There is a large number of existing studies, including observational surveys, 

matched designs and randomised controlled trials (RCTs). Despite the number of 

studies, the results are often inconclusive. Glass and Smith (1979) first applied a 

meta analysis to 77 studies based on 70 years’ research in more than a dozen 

countries. They concluded that there were positive effects for class sizes of less 

than 20, based on 14 of these studies which were considered to be ‘well-

controlled’. Their quantitative synthesis method has been followed by many more 

meta analyses on the same topic (Carlberg & Kavale, 1980; Hedges & Olkin, 

1985; Slavin, 1986, 1990; McGiverin et al, 1989). 

Slavin (1990) argued that Glass’s positive finding was based on only a small 

number of studies and the results were largely affected by one extreme case 

(Verducci, 1969). On reanalysis Slavin reported an effect much smaller than 

Glass. He also conducted an analysis of 9 randomised or matched studies. Among 

these studies some were used by Glass and Smith in 1979 but most of them were 

new studies selected according to strict inclusion criteria. The large-scale 

Tennessee Student/Teacher Achievement Ratio (STAR) RCT study (Word et al., 

1990) was included. Slavin suggested a moderate effect size of 0.17 SD units of 

achievement score comparing smaller classes of 15/16 with larger classes of 25-

30.  
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The use of random effect models in meta-analysis has been suggested by several 

authors (Hedges & Olkin, 1985; Raudenbush & Bryk, 1985; Hardy & Thompson, 

1996; Erez et al., 1996; Cleary & Casella, 1997). The present paper focuses more 

on the methodology of meta analyses than the substantive issue of class size per 

se. For a more detailed discussion of the latter and a consideration of the role of 

RCTs in such studies see Goldstein and Blatchford (1998). 

In this paper we tackle the problem of how to compare data from different studies 

with varying summary measures, using multilevel models (Goldstein, 1995). We 

also develop multilevel models to combine study level data and individual level 

data. This provides a statistically efficient method for the situation in which some 

studies have individual level data but others have only summary statistics 

available (for example means and standard errors from published papers). We first 

describe, in section 2, the studies included and data available for addressing the 

issue of class size effects. Section 3 introduces a multilevel model for meta 

analysis, focussing on aggregate level data, and section 4 describes how the model 

can be extended to combine both aggregate level and individual level data in the 

same analysis. 

2. Data sources 

2.1 Criteria for study inclusion 

We restrict ourselves to those studies meeting the following inclusion criteria:  
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(i) The study is an RCT or has a matched design where there is an attempt to 

match smaller and larger classes initially using school or student level criteria. 

(ii) The study outcomes are achievement scores, for example standardised test 

scores or rating scales.  

(iii)The study is longitudinal with initial and final achievement measures and at 

least one school year period for both larger and smaller classes. 

(iv) The smaller class is not less than 15 and the larger class is not more than 40. 

These inclusion criteria are similar to those that Slavin (1990) set out for his 

analysis and the range of class sizes matches that found in educational systems of 

industrialised countries. 

2.2 Scope and strategy of literature search 

Several databases were searched using the key words class-size, longitudinal 

study, school achievement; the ERIC database from 1961 to 1997, the British 

Education Index (1954 - 1996 covering 300 journals of education), the Canadian 

Education Index (1976 – 1996 coverage) and the Australian Education Index 

(1978 – 1996 coverage). Psychological Abstracts was searched (1985 – 1996) 

using the subject titles class-size, classroom, group size, academic achievement, 

meta-analysis.  

Nine studies met our criteria, among which seven studies were used by Slavin 

(1990). Two studies used by Slavin could not be traced through our database 

search, or by an additional Internet search for the authors’ names. The data on 
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these, as presented by Slavin, are not detailed enough for use in our analysis. Two 

new studies not used by Slavin are added into our collection. Only one study, the 

STAR study, provides individual level data.  

In the next section we list some basic information about the selected studies.  

2.3 Studies selected  

A summary of the statistical information is given in Table 1. 

Study 1: Balow (1969), California. This was an experimental (but non-

randomised) study on reading achievement for students from grades 1-2, then 

grades 3-4. Class-sizes were defined as 15 for small and 30 for large classes. The 

means of the reading score at grade 1 for the two classes were reported equal so 

that scores at grade 2 were compared. Means at grade 4 were compared adjusting 

for the intake reading or pupils’ IQ measured at grade 3. No standard error for any 

measure was reported, except for F-test values in the paper. 

Study 2: Shapson et al (1980), Toronto city. This was an RCT for four class size 

groups 16, 23, 30 and 37. The trial period was from grade 4 to 5. Efforts were 

made to keep the same group of pupils in the same class during the trial year. It 

was reported that the pupil changes in a class were limited to within ± 3 by the 

end of the study. Measures included test scores for composition, vocabulary, 

reading, math-concepts and math-problem solving. Means and standard deviations  

(SDs) adjusted for year of the study and teachers' experience were reported. 
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Study 3: Doss & Holley, (1982), Austin, Texas. This was a five year matched 

design study from grade 2 to 6 for school achievement in reading, language and 

mathematics. The class size was 15 for small and 30 for large classes. Initial 

means and SDs of test scores at the beginning of the year and those at the end of 

the year were reported for the five years. Correlation coefficients between the pre-

scores and post-scores were also reported by grade and class.  

Study 4: Wilsberg & Castiglione (1968), New York City. A total of 1127 grade 1 

students from 13 schools and 516 grade 2 students from 7 schools were used. 

Grade 1 students were in small classes of 15 and grade 2 students were in large 

classes of 25 and over. Both received the same materials, and help for a year. The 

study reported means and SDs of a reading test at study entry, and means and SDs 

of vocabulary and comprehension tests taken at the end of the study. 

Study 5: Wagner (1981), Toledo, Ohio. Grade 2 students in one school assigned to 

small classes of less than 15 were compared with a matched school with large 

classes of 25. This was published as a doctoral thesis. 

Study 6: Mazareas (1981), Boston. A random sample of 1014 grade 1 pupils (368 

from small classes of less than 20, 646 from large classes of more than 30) were 

used. Outcomes were adjusted for covariates and F-test values were reported for 

five school attainment scores including reading. This was published as a doctoral 

thesis. 

Study 7: Butler & Handley, (1989), Mississippi. This was a matched design study 

of grade 1 and 2 students measuring reading, listening and mathematics 
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achievement. Outcomes for students in smaller classes (size 20) of grade 1 and 

grade 2 were compared with the same group of students in larger classes (size 27) 

followed for two years. Students in the smaller and larger classes were from the 

same school. The study matched for factors such as teachers' qualification and an 

entrance test, but did not carry out covariate adjustment. Means and SDs by 

subject by class group were reported.  

Study 8: San Juan Unified School District (1991), California. A total of 2819 

students from 10 high schools (grade 9) originally in large classes of 30 were 

assigned to reduced size classes of 20 for a year and compared with those in larger 

classes. The means of a reading comprehension test in grades 9 and 10 were 

reported. 

Study 9: Word et al. (1990), Tennessee. The STAR project was an RCT 

longitudinal study with children followed from kindergarten to grade 3 for four 

years with measurements at one-year intervals. Smaller classes averaged about 15 

students (13-17) and larger classes about 24 (22-25). There were some four 

thousand students available for analysis and initial assignment into kindergarten 

classes was at random.  

(Table 1 here) 

In this table the class size, number of pupils, means and standard deviations are 

taken from the published papers. The adjusted means and pooled standard 

deviations are computed using equations (1) and (2) respectively below. The 

standardised adjusted means are computed using equation (3) below. 

 



-9- 

As we can see from Table 1 a number of problems arise. The tests used to 

measure achievement are obviously different from study to study. Re-scaling the 

measurements to a common scale is essential for meta analysis. Common practice 

is to standardise the mean for each class group within each study using a pooled 

standard deviation. For example, the conventional effect size measure (Glass and 

Smith 1979, Hedges and Olkin 1985) is 
S L Pooledy y SD) /−( , where the terms 

y yS , L  indicate the mean score of smaller and larger class groups respectively. For 

our purposes we require, as a minimum, estimates of the means and pooled SDs. 

Some studies did not present standard deviations for their achievement measures. 

In this case an F-test or t-test value reported by such a study had to be used to 

derive the pooled SD for the two groups under comparison.  

Differences in the effect of class size between studies may arise from a number of 

causes. Where common data are available, for example on socio-economic 

background, we can see whether such factors explain part of the study differences 

Thompson, 1994). In the present case we have the additional problem that 

different achievement tests were used in each study and this will generally 

introduce further, unknown, variation. A further issue is that, apart from the 

STAR study where student level data were available, the between-school variation 

within a study is not separately reported, but should be included in our models. 

2.4 Adjusting for pre-treatment score  

Our inclusion criteria for non-RCT studies to be matched on student or class 

factors imply that for each study we can adjust for initial achievement. This is 

 



-10- 

important for non-randomised studies in order to allow for any association 

between initial achievement and allocation to classes of different sizes. In 

randomised studies it will generally increase precision as well as potentially 

helping to correct for any problems with the randomisation procedure.  

Given the means and SDs for both pre-treatment and post-treatment as well as the 

within-group correlation coefficient  between the pre and post test 

scores, we adjust the post-treatment mean of the small and large classes by 

equation (1) to obtain estimates of the adjusted means  . This is 

equivalent to applying an analysis of covariance to the two class groups with the 

pre-treatment score as the covariate. 

r pre post( , )

,, ,µ µS post
C

L post
C 

 
h post

c

h post
post

pre
h pre prex xr pre post

, , ,( , ) (µ σ
σ

= + × × − x )     (1) 

where h indexes the class size and xpre  is the overall pretest mean. The symbols 

σ  and x refer to the pooled between-subject standard deviation and treatment 

means respectively. If the correlation coefficient between the pre- and post-

treatment scores is not provided, an estimate may be available from other studies 

(for example see the footnote to Table 1). 

2.5 Adjusting and pooling SDs 

Given the residual sum of squares of the post-treatment score adjusted for the pre-

treatment score for each class size group separately, say SS  and , a pooled 

SD is calculated as 

s LSS
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 pooled
s

s L
SD SS SS

D D
=

+
+

L

SD

    (2) 

where D refers to the degrees of freedom used for each class size group. 

The final summary statistics are the adjusted means and pooled SDs in Table 1. 

The standardised adjusted means are computed by calculating, for each grade in 

each study, the mean over all class sizes weighted by numbers of students, 

subtracting this from each standardised mean and dividing by the pooled SD, 

namely 

y n n

h h

h jk h jk
C

h jk
h

h jk
C

h jk
h

jk. . . . .( / ) /= −

= =

∑ ∑µ µ

1 2 for large class;      for small class
    (3a) 

The standardised adjusted means are the responses used for the aggregate level 

data.  

Based on these the conventional effect size can be estimated as in the last column 

using equation (3b), namely 

y y SDS jk L jk S jk
C

L jk
C

jk. . . .( ) /− = −µ µ      (3b) 

 The homogeneity test (Hedges & Olkin, 1985) for the weighted and bias 

corrected effect size estimates for the eight studies with aggregate level data 

indicates significant heterogeneity among them ( =255.5, p<<0.001). 

Heterogeneity may have arisen in a number of ways including inappropriate 

assumptions about ways of combining effect sizes and omitted levels (between 

classes and between schools) in the analyses. 

15

2χ
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As an alternative to working with adjusted effects, we could consider treating the 

pretest score as a covariate in the multilevel model described in the next section. 

A difficulty with this approach, however, is that the coefficient for the pretest will 

vary from study to study, and we shall not pursue this further. 

3. A multilevel meta analysis model 

In this section we formulate a general class of meta analysis models by 

considering a simple 2-level structure. We shall assume that we have a collection 

of studies, each concerned with the comparison of several ‘treatments’. These 

treatments may be distinct categories (represented by dummy variables) or may be 

effects represented by regression coefficients or a mixture of the two kinds. The 

basic models we shall develop are ‘variance component’ models but we will also 

illustrate a random coefficient model, and the variance heterogeneity case can also 

be incorporated (Goldstein, 1995, Chapter 3) 

For the i-th subject in the j-th study who received the h-th treatment, we can write 

a basic underlying model for outcome  as yhij

y X t u e
h H j J i

u N e N

hij ij h hij hj hij

hj

hj hu hij he

=

n
+ + +

= = =

( )
,..., ; ,..., ; ,...,

~ ( , ); ~ ( , )

β α

σ σ

1 1 1

0 02 2

      

   
    (4) 

where ( )X ijβ  is a linear function of covariates for the i-th subject in the j-th study, 

is the random effect of the h-th treatment for the j-th study and  is the 

random residual of the h-th treatment for subject i in study j. The term  is a 

uhj ehij

thij
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dummy treatment variable (contrasted against a suitable base category) and α h is 

the treatment contrast of primary interest. If the treatment dummy variables are 

replaced by a continuous variable  then (4) becomes tij

e

n
ij

( ,σ σ

h j. .

y X t u

j J i

u N e N

ij ij ij j

j

j u ij

=

e

+ + +

= =

( )

,..., ; ,...,

~ ( , ); ~

β α

    

   

1 1

0 02 2
 

)

It is also possible to allow the variances within and between studies to be different 

for each treatment or to vary with the value of a continuous treatment variable, 

leading to complex variance structures (Goldstein, 1995, Chapter 3). We can also 

introduce covariates where data are available and appropriate, and interactions 

between treatments and covariates. For example, a particular treatment contrast 

may differ according to covariate values. We may also relax the Normality 

assumption of the level 1 residuals, for example if fitting a generalised linear 

multilevel model (Goldstein, 1995, Turner et al., 1999). 

3.1 Aggregate level data 

Consider now the case where (4) is the underlying model but we only have data 

by treatment group at the  study level. Aggregating to this level we write the mean 

response as 

y X t u eh j j h hj h j. ( )= + .+ +β α    (5) 

    

 



-14- 

where the '.' notation denotes the mean for study j. This implies particular 

constraints; for example var( . ) var( ) /e eh j hij hjn= . A difficulty may arise with 

the first term in (5) since this implies that the mean of the covariate function 

( )X ijβ  for each study is available.  

The corresponding model for the case of a continuous treatment variable is 

y X t uj j j j. ( ). .= + e j.+ +β α  

3.2 The two treatment case 

Consider the special case  of two treatments, h=1,2. We collapse (5) and, using an 

obvious notation, rewrite  to give 

′ = − = + ′ + ′

= −

y y y u ej j j j. . .1 2

1 2

j.α

α α α     (6) 

This implies the constraint var( ) var( ) var( ) cov( , )′ = + −u u u u uj j j j1 2 12 j2 . We can 

combine (5) and (6) into a single model for the case where some aggregated 

responses are in terms of separate treatment groups and some are in terms of 

contrasts  of groups. 

3.3 Defining origin and scale 

When combining data from aggregate level studies it is necessary to ensure that 

the response variable scales are the same and that there is a common origin. In 

traditional two-treatment meta analyses the treatment difference is divided by a 
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suitable (pooled) within-treatment standard deviation as described earlier. In our 

general model, likewise, the response variable in each study can be scaled by 

dividing it by an estimate of the level 1 standard deviation. Where individual data 

are available we may use an estimate of the level 1 standard deviation from a 

preliminary analysis and for aggregate data we may derive this from reported 

summary information, if this is available.  

In situations where the same response variable is used in each study, and scaling 

has been carried out, we can apply (4) and (5) directly. In many cases, however, 

different response variables are used. For example, in class size studies different 

reading tests are used. In this case we would not generally expect the means for 

corresponding treatments to be identical. One procedure for dealing with this is to 

choose one treatment as a reference treatment (or control) and in each study 

subtract its mean from the values of the other treatments and work with these 

differences. This is the standard approach in two-treatment studies. Thus we chose 

one treatment described by an intercept term with dummy variables for the 

remainder. The coefficients of the intercept and of these dummy variables would 

generally be modelled as random at the study level. In the two treatment case this 

leads to (6).  

Where we have a study with individual data we likewise subtracted the mean of 

the reference treatment group from the response variable. In the fixed part of the 

model, for the level 1 units with that treatment, the intercept term (and other 

treatment dummy variables) will be zero. 
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3.4 Variance information 

We may have additional information about variances from studies, for example 

information from other meta analysis studies about between or within study 

variation. Suppose, for example, in model (4) we have an external estimate, say 

,  of , where  we might have . If we write an additional 

component to the model as an extra level 2 unit 

rhue
2 σ hu hea2 2+ σ 2 na hj

2 1= /

r u aehue hj hij= +        (7) 

where the fixed part is identically zero and we have additional constraints 

imposed as above, this information is then incorporated into the estimation. We 

note, however, that this extra level 2 unit is given the same weight as every other 

level 2 unit in the model, and we may wish to assign a different weight depending 

on the accuracy of the information obtained. Weighting is discussed in the next 

section. 

3.5 Weighting units 

We shall consider only weighting of the level 2 units, although extensions to 

differential weighting of level 1 units are possible. Suppose that the j-th level 2 

unit is assigned a weight . These weights may reflect information about study 

quality or possibly non-response. Such an analysis might be undertaken as a 

sensitivity analysis to complement an unweighted analysis. Note that sample size 

weighting is already incorporated into the estimation via (5). Assuming that the 

weights are uncorrelated with the random effects, we rewrite (4) to include the 

wj
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vector of the inverses of the square roots of the weights as the explanatory 

variable for the level 2 random effects. This gives 

y X t u w ehij ij h hij hj j hij= + + +−( ) .β α 0 5      (8) 

and we can carry out the standard estimation for this model. This procedures for 

carrying out  a weighted multilevel analysis is discussed in Pfeffermann et al. 

(1997) and is equivalent to their 'step A only' method. The authors also discuss the 

case where the weights are correlated with the random effects. 

3.6 Modelling class size 

In our analysis class size is treated as a continuous variable centred at a value of 

15. In all of the studies, as is clear from Table 1, only the average class sizes  for 

'small' or 'large' classes are reported. These values are therefore the ones used in 

the analysis. 

One of our aggregate level studies (Doss & Holley, 1982) sampled separate 

grades within schools. In principle this provides a further level between the class 

and the school. A preliminary analysis, however, detected variation at this level 

only for the simplest model, so we do not include it in further models, although 

grade level itself is incorporated as a fixed factor.  

3.7 Aggregate level models for class size data 

For the aggregate level studies we can write a basic model as 
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. .

,

~ ( , ), . ~ ( , / )

~ ( , ), cov( , )

,jk jk k jk l
l

l jk jk

jk jk k k k

jk u jk e jk

k v k k v

y eC G

u v v

u N e N n

v N v v

= + + +

= + + = +

=

∑0 1

0 0 0 0 1 1 1

0 0
2 2

1 1
2

0 1 0

0 0

0

α α β

α α α α

σ σ

σ σ

   

   

v ~ N(0, ),       0k v0
2

1σ

 (9) 

where j,k now index the grade and study respectively. The parameter 0α  

estimates the mean score for a class size of 15. The term  is the random 

departure (residual) of the j-th  grade mean from the k-th study, 

u jk0

β l  the fixed effect 

for grade l, with the G  being grade dummy variables, these being covariates in 

the model as described in (4). The term v  is the residual for the k-th study. The 

variable is class size and the parameter 

l jk,

k0

Cjk α 1

k1

 estimates the overall class size 

effect per additional student. The term estimates the additional random 

departure for the k-th study of the overall class size effect. Further covariates 

could of course be added, if available. Not all the studies sampled more than one 

grade level and in some studies several grades are sampled within each school, 

whereas in others different grades are sampled in different schools. In the latter 

case  grade differences are confounded with school differences so that 

interpretation of between-grade variation is difficult. For this reason we do not fit 

grade as a level in the following analysis, although we do study fixed grade 

effects. 

v
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 Since all our data have been standardised, the underlying level 1 variance is equal 

to 1. We therefore define the explanatory variable z jk jk
= 1/ n

z

 and we can write 

the first line of  (9) for the aggregated model as 

y C G w

w N

jk jk k jk l l jk
l

jk jk

jk

. , ,

~ ( , )

= + + +∑α α β0 1

0 1

   
              (10) 

In practice, for classes of a given size in a study, typically we only have available 

the mean over all classes, so that while the contribution to the variance from these 

classes for the k-th study is ∑ ,  the data available provide only the value of  

. When these class sizes are constant, however, the first expression can 

be obtained from the second where the number of classes is known.  

( )njk
j

−1

( )njk
j

−∑ 1

3.8 Results 

We first present results for the aggregate level studies only and follow this with 

results from both the individual level study and the combined individual and 

aggregate level studies. 

Table 2 presents the results of fitting (9) and (10) for the aggregate data studies 

(numbers 1 - 8 in Table 1), using maximum likelihood estimation for three models 

as shown, together with a 95% confidence interval for the estimates based upon a 

parametric bootstrap with 1000 replications (Goldstein, 1995). 

(Table 2 here) 
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Model A allows the class size effect to vary across studies, model B allows no 

such variation, and model C includes a quadratic effect of class size. As can be 

seen from the log likelihoods, model A fits the data substantially better than 

model B, so there is substantial evidence of heterogeneity in the class size effect 

across studies. Model A estimates the effect on reading scores as a decrease of 

0.02 SD units per additional student. This is slightly greater than the 0.17 units 

estimated by Slavin (1990) comparing classes of 15/16 with larger classes of 25-

30. Model C indicates a quadratic effect of class size whereby from a class size of 

15 to one of  30 there is a continuing decrease in achievement, but an increasing 

one thereafter. This result, however is influenced by study 2 with the large classes 

over 30. 

A test for equality of grade effects is not significant ( =1.8) so these have been 

omitted from these models. The likelihood ratio test statistic suggests that the 

class size effect varies across studies. Note, however, there are only 8 studies in 

the data set so that inferences based upon large sample results should be viewed 

with caution. Also these models ignore between-school  variation within studies 

and between-grade variation as pointed out above. If for model A, however, we 

allow the level 1 variance to be estimated we obtain an estimate of 1.81 with a 

likelihood ratio test statistic, for comparison with Model A, of 3.0 with 1 degree 

of freedom so that there is only rather weak evidence for a value different from 

1.0. If we do the same for model B the level 1 variance estimate is 16.6 and the 

test statistic is 285.5. The analysis utilises all the information available for the 

published aggregate studies. Since we are working with standardised data the only 

5

2χ
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flexibility lies in the modelling of the class size effect and the between-study 

variation. In comparison with the inclusion of individual level data the analysis 

illustrates the limitations of using aggregate level data. 

4. Models for combining individual level data with study level 

data 

Although the STAR individual level data set has covariates available, the 

aggregate level data has not been adjusted for covariates in a consistent fashion, 

other than for class size and initial test scores as discussed above. Some studies, 

however, such as that of Shapson et al. (1980) reported their results adjusted for 

other factors, and some of the studies carried out initial matching. In the following 

analysis we shall ignore this variation, but it needs to be borne in mind when 

results are interpreted.  

The STAR study has three levels, school, class and student. Children were 

recruited when they entered kindergarten where they were randomly assigned to 

three sizes of class; a small class of 13-17, a regular class of 22-25 and a regular 

class of 22-25 with a teaching aide. The last two categories are combined since in 

the STAR study they show no differences. The students were followed for four 

years to the end of grade 3, and for present purposes we use the reading test score 

data at the end of grade 1, adjusted for reading test scores at the end of 

kindergarten, that is a study extending over 1 year. The study attempted to retain 

the original class compositions, but this was not entirely possible. A discussion of 
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the problems of interpreting data from this study is given by Goldstein and 

Blatchford (1998). 

The following model is a combined model for the STAR study and the previously 

analysed aggregate level studies. We omit the effect of grade since this was not 

significant for the aggregate level analysis. 

y C e z
x v C z

w w
v u e

z
w N w N w w
v N v N v v

ijkl l l ijkl jkl

ijkl ijkl kl ijkl

l l l l

ijkl kl jkl ijkl

l w l w l l

kl v kl v kl kl v

= + +

w

−

+ + +

= + = +
= + +

=

=

=

( ) . ( )
( )

, ,

~ ( , ), ~ ( , ), cov( , )
~ ( , ), ~ ( , ), cov( , )

α α

α α

α α α α
α

σ σ

σ σ

0 1 1

0 2 2 1 1

0 0 0 1 1 1

0 0 0

1

0 0
2

1 1
2

0 1 0

0 0
2

1 1
2

0 1 0

1

1
0 0
0 0

          

 if individual data study,  0 otherwise
      
      

u N

e N e N n
jkl u

ijkl e jkl e jkl

0 0
2

2 2

0

0 0

~ ( , )

~ ( , ), ~ ( , / ).

σ

σ σ   

σ

σ
1

1

     (11) 

where  is the end of kindergarten score, with the standard assumption that it 

is independent of the random effects, and C is the class size. The parameter  

represents the between study variance in the class size effect, and  the between 

school variance in the class size effect.  

x ijkl2

σ w1
2

σ v1
2

This model utilises a similar notation as before and is now a 4-level model with 

students (i) grouped within classes (j) within schools (k) within studies (l). The 

STAR data are standardised using the residual variance from a preliminary 3-level 

model with only the STAR data. For analyses B and C in table 3 the random 

parameter estimates at levels 1 - 3 are derived from the STAR data and at the class 
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level (2) the aggregate level variance, which is not shown, is constrained to be 1. 

The between study level (4) intercept and class size coefficient random 

parameters are estimated from the complete data set.  

4.1 Results 

(Table 3 here) 

In Table 3 the level 4 (between-study) variation is somewhat smaller than that 

estimated from the aggregate data studies only.  We see that the class size effect 

for the STAR data and the combined estimate is little different from that in the 

analysis using only aggregate level data (Table 2) and the quadratic effect is now 

negligible. In fact the linear class size effect in the combined model is less precise 

than for the STAR study alone because of the substantial heterogeneity between 

studies in the class size effect. The STAR data shows only a small and not 

significant ( =1.5) variation in the class size effect between schools. In fact 

Goldstein and Blatchford (1998) show that for Mathematics test scores there is a 

marked variation between schools. A study of the (shrunken) estimated residuals 

at the study level does not reveal any outliers. 

χ 2
2

 

5. Discussion 

We have shown how a series of studies, with results reported at different levels of 

aggregation can be combined efficiently within a single multilevel model to 

provide effect size estimates. Since the analysis is based upon maximum 
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likelihood estimation within an explicit model it can be expected to yield more 

efficient estimates than traditional approaches to meta analysis. These traditional 

models also have been unable to combine studies with both individual and 

aggregate level responses. Our approach does not require balanced data, but it 

does require that the reporting of studies for inclusion in the model conforms to 

certain minimum requirements. As we have illustrated, these requirements are 

such that it should be possible to carry out a suitable standardisation for means 

and variances, after adjusting for relevant covariates. One of the problems with 

observational studies, especially those involving institutions such as schools, is 

that (multilevel) modelling incorporating institutional (and other) differences is 

absent and this can result in biased inferences. In the present case (Table 3) the 

intra-class and intra-school level correlations are sizeable which implies that some 

of the inferences from the aggregate level studies may overestimate statistical 

significance. The estimates themselves, however, should be relatively unaffected, 

and this is consistent with our analysis.  

A remaining problem which we have not investigated in detail occurs where 

studies adjust effects using different sets of explanatory variables. In the Normal 

case, if information is available about the covariance matrix of all such covariates 

then for the aggregate level studies common adjustments can be carried out as we 

have done in (1). 

The model can be extended readily to the multivariate case where more than one 

outcome is considered, for example in the bivariate analysis of Mathematics and 

Reading achievement scores. This approach can also be used where not all studies 
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measure all responses so that the joint analysis within a single model will provide 

more efficient estimates than analysing each response separately. 

Since we have adopted a model based approach it is possible in principle to 

incorporate further model components. An important one is the modelling of 

publication bias (Copas, 1999), although such models may not lead to improved 

estimates unless the bias is large (Hedges and Vevea, 1996). In the present case 

we would argue that publication bias may not be a serious issue. The criteria for 

study selection have been quite stringent so that the relevant studies are carefully 

executed long term ones which are unlikely to remain unpublished.  

It should be noted that in combining studies for modelling purposes we are 

making an assumption that the responses used in the various studies are indeed 

measuring the 'same thing'. In social science applications of meta analysis this is 

more problematic than in, say, clinical trials and needs to be borne in mind when 

interpreting results.  

 

Finally, although the thrust of this paper is methodological, it is of some interest 

that the one large randomised controlled trial (RCT) gives a very similar estimate 

for the class size effect as the observational studies. This point is pursued further 

by Goldstein and Blatchford (1998) who also discuss the usefulness of RCTs in 

this kind of research. 
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Table 1 Raw and adjusted data of each study for Reading scores  

Study 

 

Grade 

 

Class 
size 

Number 
of 
pupils 

Mean ±  SD 
reported 

Adjusted  
mean 

Pooled 
SD 

Standardise
d adjusted 
mean 

Effect size 

k j h nh jk.  xh jk hjk. ±σ  
.µ h jk

C  SDjk  yh jk.  y yS jk L jk. .−  

1 1 15 251  50.9± N/A  50.9 12.01  a  0.125  

 1 30 744  48.9± N/A  48.9 12.01 -0.042 +0.17 

 3 15 656 248.9± N/A 248.9 12.37  0.012  

 3 30 602 245.6± N/A 248.6  b 12.37 -0.013 +0.02 

2 4 16.6 256  0.00± 0.30  0.00  0.275 -0.012  

 4 23.7 368 -0.04± 0.30 -0.04  0.275 -0.157 +0.15 

 4 30.3 450  0.02± 0.27  0.02  0.275  0.061 -0.07 

 4 35.7 555  0.02± 0.25  0.02  0.275  0.061 -0.07 

3 2 15  78  2.39± 0.809  2.67 b   0.620  0.282  

 2 30 542  2.52± 0.895  2.47  0.620 -0.041 +0.32 

 3 15 156  3.16± 0.954   3.49 b   0.588  0.212  

 3 30 555  3.42± 1.074  3.33  0.588 -0.061 +0.27 

 4 15  57  4.38± 1.181   4.37 b   0.661  0.188  

 4 30 441  4.23± 1.400  4.23  0.661 -0.024 +0.21 

 5 15  43  5.40± 1.534  5.55 b   0.665  0.395  

 5 30 413  5.22± 1.680  5.21  0.665 -0.041 +0.44 

 6 15  63  5.69± 1.510   6.28 b   0.700  0.320  

 6 30 374  6.19± 1.925  6.10  0.700 -0.037 +0.36 

4 1 15 1127  49.7± 14.45 53.4  d  9.01  0.098  

 2 25 516  50.6± 16.12 50.6  9.01 -0.213 +0.31 

5 2 15  57  52.0± 9.93 52.0  8.379  0.198  
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 2 25  55  48.7± 7.25 48.7  8.379 -0.205 +0.39 

6 1 19 368  43.2± N/A 43.2 10.46  a -0.085  

 1 31 646  44.6± N/A 44.6 10.46  0.049 -0.13 

7 1 20 371 523.8± 88.7 523.8 137.6  0.191  

 1 27 350 469.8± 175.4 469.8 137.6 -0.176 +0.39 

 2 20 309 590.2± 49.6 590.2 50.41  0.115  

 2 27 313 578.7± 51.2 578.7 50.41 -0.114 +0.23 

8 9 20 2819  70.6± 11.2  c 70.6 13.3  0.300  

 9 30 2543  62.6± 15.4  c 62.6 13.3 -0.301 +0.60 

9 1 15 2644 531.0± 57.1 529.1e 37.23  0.070  

 1 24 1414 520.0± 54.4 516.1e 37.23 -0.167 +0.24 

 2 15 3112 591.0± 45.6 591.1 e 28.98  0.020  

 2 24 1482 583.0± 45.4 579.2 e 28.98 -0.042 +0.06 

 3 15 3353 619.0± 38.5 619.5 e 21.77  0.008  

 3 24 1357 615.0± 38.2 619.2 e 21.77 -0.020 +0.03 

a - SD was derived from the F - test value reported;  

b - both mean and SD were adjusted for pre-treatment score based on the reported correlation coefficient 
between the pre- and post-treatment scores; 

c - both mean and SD were calculated based on an average measure from 10 schools available in the paper; 

d - both mean and SD were adjusted for pre-treatment score assuming a correlation coefficient of 0.8; 

e - Both the mean and SD were adjusted for pre-treatment score using a 3-level model with covariates. 
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Table 2. Model estimates for the aggregated study data using model (9). The 
constrained parameter at class level is omitted. 95% bootstrap intervals in 
brackets. 

 Model A Model B Model C 

Fixed  

Intercept 

Class size, linear 

Class size, quadratic 

 

 0.163  ( 0.028, 0.308) 

-0.020  (-0.036, -0.004) 

 

 

 0.207  (0.149, 0.261) 

-0.022  (-0.025, -0.019) 

 

 

0.224 (0.053, 0.393) 

-0.048 (-0.072, -0.025) 

0.002 (0.001, 0.003) 

Random (between-
study) 

v0

2σ  

v01σ  

v1
2σ  

 

 

  

 

0.060  (0.0, 0.101) 

 

-0.006  (-0.010, -0.001) 

  

0.0006  (0.0, 0.0010) 

 

  

 

0.004 (0.0, 0.014) 

 

 

 

 

 

0.067 (0, 0.135) 

 

-0.006 (-0.013, 0.004) 

 

0.0006 (0, 0.0010) 

-2 log-likelihood -46.1 266.3 -54.1 
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Table 3 Parameter estimates for model (11). Standard errors in brackets.  
  STAR data only  Combined data 

(linear) 
 Combined data 
(quadratic) 

Fixed    

α 0  0.078 0.184 0.175 

α 1  (class size, linear) -0.024 (0.006) -0.022 (0.007) -0.017 (0.011) 

α 3  (class size, quadratic)    -0.0003 (0.0006) 

α 2  (pre-test) 0.907 (0.018) 0.907 (0.018) 0.907 (0.018) 

Random     

Level 4 (between study)    

σ w0
2   0.038 (0.020) 0.037 (0.019) 

σ w01   -0.004 (0.002) -0.004 (0.002) 

σ w1
2   0.0004 (0.0002) 0.0004 (0.0002) 

Level 3 (between school)    

σ v0
2  0.305 (0.064) 0.305 (0.064) 0.305 (0.064) 

σ v01  0.00014 (0.004) 0.00012 (0.004) 0.00013 (0.004) 

σ v1
2  0.0006 (0.0006) 0.0006 (0.0006) 0.0006 (0.0006) 

Level 2 (between class)    

σ u0
2  0.139 (0.023) 0.138 (0.023) 0.138 (0.023) 

Level 1 (between student) 

σ e
2  

 

1.000 (0.023) 

 

1.000 (0.023) 

 

1.000 (0.023) 

-2 log likelihood 11996.5 11948.3 11948.1 
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