
(Entry for Encyclopaedia of Biostatistics, Armitage, P., & Colton,T. (Eds.), 1998,
Wiley.)

Random coefficient repeated measures models

by

Harvey Goldstein

Institute of Education

London, WC1H 0AL

h.goldstein@ioe.ac.uk

Introduction

This section is concerned with modelling data where measurements of one or more

attributes are repeated on the same set of individuals over time. Typical applications

are to the modelling of anthropometric growth of children or animals. The model

specification will be developed for the case where a single continuous measurement is

made on several occasions for a sample. This will then be extended to consider the

case of multiple measurements at each time point and mention will be made of

extensions to latent variable models and to discrete response data.



To begin with we look at the simple, restricted, data structure where there are a fixed

number of measurement occasions and each individual has a measurement at each

occasion.

Multivariate models

Consider the data matrix of responses

Individual Occasion 1 Occasion 2 Occasion 3 Occasion 4

1 y11 y21 y31 y41

2 y12 y22 y32 y42

3 y13 y23 y33 y43

The first subscript refers to occasion and the second to individual. We assume

multivariate normality and so for the response vector we have initially

Y N~ ( , )µ Σ (1)

This constitutes a null model and in general we will wish to include further variables,

notably age or time. Suppose we wish to express the response, say a weight

measurement, as a linear function of time (t) measured at each occasion. We may then

write

y tij j j ij ij= + +β β ε0 1 (2)



where we allow the intercept  and average growth rate  to vary across individuals.

Suppose further that
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We have replaced the general mean and covariance structure given by (1) by the

specific structure given by (3). Thus, for example, the goodness of fit of (3) can be

judged and the model elaborated with suitable explanatory variables. Grizzle and Allen

[9] provide details of estimation and test procedures.

This multivariate model cannot deal satisfactorily with the typical situation where the

spacing and number of measurement occasions is variable and has generally been

superceded, except in one or two special cases such as that of latent growth models

mentioned below. We now develop an alternative approach to fitting models such as

(2), based upon a multilevel model.

The 2-level repeated measures model

Model (2) and the associated covariance structure (3) as they are written make no

particular assumptions about the number or spacing of measurement occasions and in

fact constitute a special case of a 2-level model (see entry on multilevel models). Level

1 units are the measurement occasions and level 2 units are individuals. All the usual

procedures for estimation and inference in such models are therefore available,

including cases of multivariate responses, nonlinear models etc. We can additionally



consider individuals as nested within further hierarchies, say animal litters or schools

for students and cross classifications may also occur.

A consequence of (2) is that measurements made on the same individual are correlated,

through the sharing of  common intercept and slope parameters, and it is this

dependency that leads to the inadequacy of simple estimation procedures, for example

based upon ordinary least squares. Furthermore, interest will usually lie just as much in

the covariance matrix estimates as in the average growth parameters and we may also

wish to form posterior mean estimates of  the individual growth parameters ( β β0 1j j, )

and we shall illustrate below how these can be used for efficient prediction. As in the

general multilevel model case, we may have a Bayesian formulation for the model with

prior distributions upon the parameters (see for example Best et al [1]).

In the following sections we shall consider in more detail nonlinear models,

multivariate response models with more than one response at each occasion and

complex structures for the level 1 residuals. For a detailed exposition of further aspects

of these topics and some alternative approaches as well as a discussion of issues related

to informatively missing data and transition type models the reader should consult

Diggle et al [3]. In particular these authors consider the so-called ‘population average’

model where interest centres on the estimation of the fixed or average component of

(2). This often allows simplified estimation procedures to be used with no requirement

for the separate estimation of the random components. This may be appropriate in

certain circumstances, but since it ignores the specific nature of repeated measurements

data is not considered further here.



Nonlinear and generalised linear models

Most attempts to fit nonlinear models to repeated measurements have fitted separate

curves to each individual’s set of measurements and then combined these to describe

the between-individual variation. A major problem with this approach is that it requires

many measurements on each. Also, while nonlinear curves have been used successfully

to describe change, for example in pharmacokinetic studies, in other areas, such as

growth they can also impose inflexible relationships among growth events which are

not empirically supported (Goldstein [5]).

Bock [2] describes a maximum likelihood analysis of a human growth model using the

superimposition of three logistic functions. Lindstrom and Bates [13] describe an

approximate estimation procedure for nonlinear models and Goldstein [7] gives an

example using the so called Jenss-Bayley [10] curve for children aged 5 to 10 years.

Davidian and Giltinan [4] give a detailed discussion of different approaches to the

fitting of nonlinear models to repeated measures data.

Where the response is discrete, for example binary or ordered as in the case of

recording developmental stages over time, then a generalised linear model will be

appropriate. Consider the following example where each individual (j) is measured at

several times (t) and their nutritional state (y) at occasion (i) is classified as adequate

(1) or inadequate (0). A standard model would be written as

log { }

( )

~ ( , )

it a b t

pr y

y Bin

ij j j ij

ij ij

ij ij

π
π

π

= +
= = 1

1

(4)



This expresses the logit of the probability of  having an adequate nutritional state as a

linear function of time. Such a model might be appropriate, for example, in evaluating

a nutritional intervention programme and further covariates for group membership,

age, etc. can readily be introduced. We can also try alternative link functions and study

the possibility of further random coefficients. For responses such as counts we would

typically use a log link with a Poisson or related distributional assumption.

For many longitudinal data we are effectively measuring the cumulative probability of a

response over time. Thus, when studying the onset of menarche the probability of

occurrence is an increasing function of time and successive observations will consist of

a string of zeros (non-occurrences) followed by a string of ones (occurrences). More

generally, we will have an ordered sequence of stages through which all individuals

pass and (4) will be modified to reflect this. One such proportional hazards model can

be written as

γ β β βij
s
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where s indexes the stages and the cumulative probability is

γ πij
s

ij
h

h

s
( ) ( )=

=
∑

1

We can add further covariates and random coefficients as before.

An extension of both (4) and (5) is to the multivariate case where multiple responses

are measured on each individual at each time point, with possibly missing responses at

some occasions and where some responses are discrete and some continuous. A



discussion of such models and their estimation is given by Goldstein [7, Chapter 7] and

the multivariate model with continuous only responses is discussed in the next section.

In these models so far we have made the basic assumption that the level 1 errors are

independent. We shall deal with violations of this assumption for continuous responses

below, but there are also many cases for discrete responses where this assumption is

untenable and this gives rise to particular difficulties. As an example consider a

repeated survey of attitudes to abortion where we wish to study the characteristics of

individual and group changes over time. For a large proportion, perhaps the majority,

of the population there will be no change in their attitudes; thus the probability that

they will agree with a ‘pro-abortion’ statement will be very close to one or zero. A

model such as (4) would generally require such individuals  to have extremely large

positive or negative random effects since it is unlikely that we would have covariates

which could discriminate precisely among such individuals. This then poses severe

distributional problems for parametric models.

An obvious way to avoid this difficulty is to consider the vector of, say binary,

responses for each individual as a multivariate vector where the distribution at each

occasion is binomial and the between-occasion covariances are estimated from the

data. Lipsitz et al [14] study such models with examples. While this approach is

satisfactory for a  number of fixed occasions, even with missing data, and while it can

also be extended to other than binary responses, it is unable directly to handle the

general case of  arbitrary occasions. To do this requires an extension of the serial

correlation models discussed below, but that is beyond the scope of this article.



Multivariate continuous responses

Where several responses are recorded on individuals at each occasion we will generally

wish to model the average time relationship for each response and the covariance

matrix among the responses as a function of time. This is readily done by considering

the multivariate response structure as a further, lowest, level in the data hierarchy with

measurements nested within occasions within individuals (see entry on multilevel

models).

There are several advantages to considering the joint modelling of several responses.

The ability to estimate their covariance matrix as a function of time allows one to study

the distribution of any function of the responses with respect to time. For example,

when studying issues of prior determination it may be useful to see whether the

correlation between two variables a given time apart  is greater when one is the prior

variable rather than the other. Likewise, it provides a general prediction procedure for

one measurement, conditional on any set of observed prior measurements. We

illustrate this with an example concerned with the prediction of  adult height given a

series of height measurements taken during a period of childhood growth. In this case,

one of our response measurements, adult height, is made at the level of the individual

and the others are made at the occasion level.

Consider the following extension to (2)
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where the adult measurement ( y j ) is allowed to depend on further covariates, and we

may also wish to incorporate covariates into the growth period component of the

model. The key feature of this model is that we have a joint covariance matrix for the

adult height component and the growth curve parameters, all of which vary at the level

of the individual. Given the model parameters and any set of growth measurements for

an individual, say Y y y yj j j pj
* * * *( , ,.... )= 1 2  we can estimate E y Yj j( | )*  together with an

estimate of its standard error etc. Details are given in Goldstein [6].

A further development of the multivariate growth model is the so called ‘latent growth

model’. In essence this considers each of the sets of random coefficients β β0 1j j,    etc.

as a latent variable or factor. Each observed response is thus a linear function of factor

scores where the coefficients are for example polynomials in time, or more generally

may be estimated from the data. One restriction of such models is that they require the

same set of discrete occasions for all measurements and thus lose the flexibility of the

continuous time formulation. A full discussion can be found in Muthen [15].

Serial correlation models



For some kinds of repeated measurements the structure implied by (2) or (4) is

inadequate. For example, daily measurements of animal weights over a long period will

not usually fluctuate completely randomly about a long term smooth trend for each

animal, the departure from such a trend on any one day  being more like the departures

on neighbouring days than on days further distant. In a study of human growth,

Goldstein et al [8] found that residuals from measurements of height made on

adolescent boys had a noticeable serial correlation when made less than three months

apart. To incorporate such possibilities we can extend (2) by adding the following

covariance condition for two level 1 residuals s time units apart, where time is

continuous

 cov( , ) exp( ( , ))ε ε σ εt t s g s z− = −2 (7)

Here g is a positive function and may depend on covariates, z, which may be measured

at the individual or occasion level, thus, for example, allowing the exponential decay

rate implied by (7) to vary with time.

One possible simple choice, which is the continuous time analogue of a first order

autoregressive series is g s= α  and other possibilities are discussed by Goldstein et al

[8] and Diggle et al [3, Chapter 5]. An alternative approach is via State-Space

modelling which leads to similar although not generally identical models (Jones [11]).

We give an example of a model with a simple correlation structure, together with the

estimation of a seasonal effect for a set of 3-monthly height measurements made on a

sample of 26 boys aged between 11 and 14 years. Full details are given by Goldstein et

al [8]. A fourth degree polynomial is fitted for the average growth curve with a cosine



term representing seasonal growth. The first three coefficients are random at level 2

and the serial covariance structure is given by g s= α  fitted at level 1.



Table 1. Height in cm as a fourth degree polynomial on age, measured about 13.0 years.

Standard errors in brackets; correlations in brackets for covariance terms. Serial correlation

structure fitted for level 1 residuals.

Parameter Estimate (s.e.)

Fixed

Intercept 148.9

age 6.19 (0.35)

age2 2.16 (0.45)

age 3 0.39 (0.17)

age4 -1.55 (0.43)

cos (time) -0.24 (0.07)

Random

level 2

Intercept age age2

Intercept 61.5 (17.1)

age 7.9 (0.61) 2.7 (0.7)

age2 1.5 (0.25) 0.9 (0.68) 0.6 (0.2)

level 1

σ ε
2 0.23 (0.04)

α 6.90 (2.07)



The serial correlation parameter value  of 6.9 implies that the residual correlation three

months apart is 0.19 and that six months apart is 0.04. The existence of a seasonal

effect implies an average difference between Summer and Winter of about 0.5cm with

no evidence of any variation between individuals.

Fitting this model, with an extra parameter to describe autocorrelation among the level

1 residuals, provides a more parsimonious model than attempting to fit, say, the cubic

coefficient as random at level 2. In some cases, however, the data may be equally well

explained either by such a random coefficient model with independent level 1 residuals

or, alternatively, by a simpler between-individual covariance structure and a complex

non-independence structure at level 1. A choice between such models will then need to

be made on grounds of substantive interpretation. In the view of the present author

substantive interpretations generally are best made by adopting a level 1 serial

correlation structure only after fitting  a  suitably complex model using random

coefficients alone. The use of various diagnostic tools for judging fit in multilevel

models is discussed by Lewis and Langford [12].

Software

Some of the particular models described (for example the nonlinear model of Bock [2],

the latent growth model or the Bayesian models) have specialised software, details of

which can be found by consulting the references given. Some of the major software

packages, most notably SAS, can handle many, although not all of the models and the

GEE estimation procedures used by Diggle et al [3] are available in S+. The general

purpose multilevel modelling package, MLn (Rasbash and Woodhouse [16]) uses both



maximum likelihood and quasilikelihood estimation and has facilities to analyse all the

models described, although it can only handle the latent growth model indirectly by

providing summary input for other structural equation software packages.
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