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correlation and variance components — are of major interest. The design then
has to ensure that the standard errors for these main parameters are small
enough.

To make an a priori assessment of standard errors of estimation for various
parameters, one has to determine, or guess, the values of parameters such as
variances and covariances of outcome and explanatory variables for each
relevant level in the design. This was illustrated above by some examples.
Sometimes such guesses can reasonably be made on the basis of existing data;
otherwise, it is important to conduct a sensitivity analysis by varying the
guessed parameter values and studying how this affects the standard errors of
interest.

Given the complexity of design considerations for multilevel studies, it is
often advisable to reduce the problem to its simplest form, ignoring control
variables for which a minor impact is expected, and start with a random
intercept model. If there are more than two levels involved and it is possible
to point out the higher level that is expected to be associated with the largest
random variability, then it may be advisable to ignore temporarily the other
levels and start with a power analysis for a two-level model. If such a simplified
first analysis has provided some rough insight into the effects of various
combinations of sample sizes at the various levels on standard errors and/or
power, and if there is sufficient information to make guesses about the values of
additional parameters, then in a further analysis one could enter a random
slope in the design considerations, and perhaps more than two levels. The
general rule is to start design considerations as simply as possible, because if
one tries to face the complexity right away one runs the risk of being put off
and cancelling the a priori design considerations altogether — and wouldn’t that
be a pity? .
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12.1 INTRODUCTION

This chapter covers further topics in multilevel modelling that will be of
particular interest to those involved in research in the health sciences. The
following sections therefore illustrate how the theory and methods underlying
multilevel models may be extended to include meta-analysis, survival data
modelling, and the ideas of context and composition. This is followed by a
brief discussion of recent developments in multilevel modelling.

12.2 META-ANALYSIS

The purpose of meta-analysis is to provide an overall summary of results when
information from several studies of the same topic are available. These ‘studies’
may be centres in a single clinical trial, distinct experimental studies, distinct (or
possibly overlapping) observational surveys, or mixtures of these. Meta-
analysis can therefore be regarded as a special case of the general hierarchical
data model, where individual observations are nested within studies or centres.
Viewing meta-analysis within this framework leads to some important and
natural extensions.

In applied work, it is often assumed that the effect of interest is constant
across the component studies (Thompson and Pocock, 1991), yielding the so-
called ‘fixed effect’ model. The assumption of homogeneity can, however, be
relaxed to allow for random variation between studies of the effects, yielding
the so-called ‘random effects’ model (DerSimonian and Laird, 1986). Statistical
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176 FURTHER TOPICS IN MULTILEVEL MODELLING

models for this case can be fitted using a variance components multilevel model
formulation. A general multilevel formulation (Goldstein, 1995), however,
allows more general random coefficient models to be studied, and we describe
this in more detail below. A straightforward extension is to include covariates
in such a model and to observe the extent to which they account for between-
study variation. An additional problem is when some studies provide indi-
vidual-level data, while for others only summary results (such as means) are
available and methods of meta-analysis that can combine such results effi-
ciently are now available (Goldstein er al., 2000).

For aggregate-level data, consider the following underlying model for indi-
vidual-level data, for example a measure of attitude towards health education
in schools where we have pupils grouped within studies with a treatment group
that has been exposed to health education and a control group that has not.
Suppose that we have a basic model, with the response Y;; being the attitude
score (suitably transformed to normality) for the ith pupil in the jth study, as

Ynyij = Bo + Bixij + Batn,i + un,j + en,ij

var(uy,j) = a;, 120

. var(epi) = qwa.

with the usual assumptions of normality and independence. The term x;; is a
covariate, in this case a baseline pretreatment measure of attitude. The sub-
script & indexes the treatment/control and the term 1, ; is 1 if treatment and 0 if
control. The random effect uy is a study effect and the e ; are individual-level
residuals. Clearly this model can be elaborated in a number of ways, by
including further covariates at study or individual level, by allowing 3, (or ;)
to vary at level 2 so that the effect of treatment varies .across studies, and by
allowing the level-1 variance to .depend on other factors such as gender or
ethnic origin. These generalisations are discussed in Goldstein er al. (2000).

Suppose now that we do not have individual data available but only means at
the study level. If we average (12.1) to the study level, we obtain

Ynyj = Bo + Bixj + Batn,j + un,j + en, j, (12.2)

where y,_ ; is the mean response for the jth study for treatment/control (k). The
residual variance for this model is given by

2 2
Oh + Ghe/ M

where ny; is the number of pupils in treatment & for the jth study. It is worth
noting at this point that we are ignoring, for simplicity, levels of variation
within studies, which will add further levels to the model. If we have informa-
tion on the relevant quantities in (12.2) then we shall be able to obtain estimates
for the model parameters, so long as the ny; differ. Such estimates, however,
may not be very precise and extra information, especially about the value of the
level-1 variances, will improve them.

Model (12.2) forms the basis for the multilevel modelling of aggregate-level
data. In practice, the results of studies will often be reported in non-standard
form, for example with no estimate of ¢2,, but it may be possible to estimate
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this from reported test statistics. In some cases, however, the reporting may be
such that the study cannot be incorporated in a model such as (12.2). Goldstein
et al. (2000) give a set of minimum reporting standards in order that meta-
analysis can subsequently be carried out.

12.2.1 Combining individual-level data with aggregate-level data

While it is possible to perform a meta-analysis with only aggregate-level data, it
is clearly more efficient to utilise individual-level data where these are available.
In general, therefore, we shall need to consider models that have mixtures of
individual and aggregate data, even perhaps within the same study.

We can do this by specifying a model that is just the combination of (12.1)
and (12.2), namely

Vi = Bo + Byxij + Batn,ij + tn,j + €,y
Yhi = Bo+ Bixj + Batn,j + vn,j + €h,jZh,js (12.3)

_ \ -1 L= ..
N\-.\. - 3\-\. 4 ﬁ\-.\ - Q\-..\.

What we see is that the common level-1 and level-2 random terms link together
the separate models and allow a joint analysis that makes fully efficient use of
the data. Several issues immediately arise from (12.3). One is that the same
covariates should be involved. This is also a requirement for the separate
models. If some covariate values are missing at either level then it is possible
to use an imputation technique to obtain estimates, assuming a suitable ran-
dom missingness mechanism. The paper by Goldstein et al. (2000) discusses
generalisations of (12.3) and applies it to an analysis of class size studies.

12.2.2 Clinical trial meta-analysis

One of the most common applications of meta-analysis in medicine is to clinical
trials with a basic binary response. This involves a series of choices. The
decisions at each stage are similar whether the meta-analyst has only summary
data from published results or full individual patient data, but the options
available may differ. The first choice is between the fixed effect and random
effects models, and in either case the method of estimation must be selected
from a number of alternatives. If one is fitting a random effects model, more
decisions arise: how to allow for uncertainty in estimation of the between trial
variance when constructing a confidence interval for the treatment effect, how
to obtain confidence intervals for the between-trial variance, how to incorpor-
ate trial-level covariates and how to investigate between-trial heterogeneity.
The usual fixed effect model for meta-analysis assumes the true treatment
effects to be homogeneous across trials, and accordingly estimates the common
treatment effect § by a weighted average of the trial-specific estimates, with
weights equal to the reciprocals of their within-trial variances. The random
effects two-level model assumes that the true treatment effects vary randomly
between trials. This model therefore includes a between-trial component of
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variance, say t2. A commonly used measure of treatment effect in binary event
data is the log odds ratio; the normality assumption required is more easily
satisfied for this than for alternative measures such as the risk difference. We

write a model analogous to (12.2) as
Y= 0+ vi+ e,

12.4
v; ~ N(0, ), var(e;) = QM., (124

where y; is the estimated log odds ratio in trial j with variance QM. {which is
assumed known). Under the assumption of normality, a confidence interval
may be calculated for the average treatment effect 6.

For individual-level data, the conventional fixed effects model for p studies
can be written as

p—1
logit(mz) = Bo + Y Bidik + (8 + vi)xy,

k=1 (12.5)
v ~ N(0,7%),

yii ~ Binomial(n, 1),

where y;; is the binary response, m; is the probability of a positive response for
the ith subject in the jth study, the §;; are dummy variables for study member-
ship, and x;; is a dummy variable for treatment/control.

A particularly troublesome issue in all meta-analyses is that of publication
bias, whereby certain kinds of studies tend not to get published. To allow for
this, it is common to assign to each study a weight as a function of the selection
probability for that study. Such models require assumptions on the specific
form taken by the selection probabilities, and may involve rather arbitrary
decisions for which robustness is lacking (Hedges and Vevea, 1996). Copas
(1999) has recommended a sensitivity approach to the problem of publication
bias, as an alternative to explicit estimation of corrected estimates. The pro-
posed method involves examination of the extent to which the estimation of 0
depends on parameters describing the selection probabilities. This procedure
yields a range of plausible estiniates of 0 rather than a single corrected estimate,
and sensitivity analyses using this procedure would seem to be useful.

12.3 SURVIVAL DATA MODELLING

This class of models, also known as event duration models, have as the
response variable the length of time between ‘events’. Such events may be, for
example, birth and death, or the beginning and end of a period of employment,
with corresponding times being length of life or duration of employment. There
is a considerable theoretical and applied literature, especially in the field of
biostatistics, and a useful summary is given by Clayton (1988).

The multilevel structure of such models arises in two general ways. The first
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.—5<n repeated spells of various kinds of employment, of which unemployment
is one, or women may have repeated spells of pregnancy. In this case, we have a
two-level model with individuals at level 2, often referred to as a renewal
process. We can include explanatory dummy variables to distinguish different
kinds or ‘states’ of employment or pregnancy, such as the sequence number.
The second kind of model is where we have a single duration for each indi-
vidual, but the individuals are grouped into level-2 units. In the case of employ-
ment duration, the level-2 units would be firms or employers. If we had
repeated measures on individuals within firms then this would give rise to a
three-level structure

A characteristic of duration data is that for some observations we may not
_Soi the exact duration but only that it occurred within a certain interval. This
is _So.is as interval censored data: if less than a known value, left censored
data; if greater than a known value, right censored data. For example, if we
know at the time of a study that someone began her pregnancy before a certain
date then the information available is only that the duration is longer than a
known value. Such data are known as right censored. In another case, we may
know that someone entered and then left employment between two measure-
ment occasions, in which case we know only that the duration lies in a known
interval.

There are a variety of models for duration times, and we here mention only
.::no of the most common. We shall merely sketch the model without going
into details of estimation. A full description of estimation procedures is given
by Goldstein (1995).

Perhaps the most commonly used is the proportional hazards model, also
known as a semiparametric proportional hazards model. Consider the two-
level proportional hazards model for the jkth level-1 unit:

At Xi) = Atic) exp( X By.), (12.6)

where Xj; is the row vector of explanatory variables for the level-l unit and
some or all of the f§, are random at level 2.

<<n. suppose that the times at which a level-1 unit comes to the end of its
9.5:6: period or ‘fails’ are ordered, and at each of these we consider the total
‘risk set’. At failure time ¢4, the risk set consists of all the level-1 units that have
c.nn: censored or for which a failure has not occurred immediately preceding
time Lik.

Another model in common use is the accelerated life model, where the
distribution function for duration is commonly assumed to be of the form

(X, B) = fo(re*P)e ®,

i—._nnn Jo is a baseline function (Cox and Qakes, 1984). For a two-level model,
this can be written as

\..\. = _ow L = \5\.3 + ey, A_N.d

which is in the standard form for a two-level model. We shall assume normality
far tha randam canfficiante nt leyel 7 (and hiaher leyeale) hint at level 1| we mav
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have other distributional forms for the e;. The level-1 distributional form is
important where there are censored observations.

The third model, often used in demographic studies (Steele et al., 1996), is the
piecewise duration model. We suppose that the total time interval is divided
into short intervals during which the probability of failure, given survival up to
that point, is effectively constant. Denote these intervals by ¢ (1,2..., 7). We
define the hazard at time ¢ as the probability that, given survival up to the end
of time interval ¢ — 1, failure occurs in the next interval. At the start of each
interval, we have a ‘risk set’ n, consisting of the survivors, and, during the
interval, r, fail. If censoring occurs during interval ¢ then this observation is
removed from that interval (and subsequent ones) and does not form part of
the risk set. A simple, single-level, model can be written as

miy =Sloezie, (BX )il (12.8)

where z, = {z;} is a dummy variable for the rth interval and o, is a ‘blocking
factor’ defining the underlying hazard at time 1. The second term is a function
of covariates. A common formulation would be the logit model, and a simple
such model, in which the first blocking factor has been absorbed into the
intercept term could be written as

_Ommnﬁﬁzev =fBo+ o,zi + Bix1i, (z2,23, -+ +» N.ﬁv. :va

Since the covariate varies across individuals, in general the data matrix will
consist of one record for each individual within each interval, with a (0,1)
response indicating survival or failure. The model can be fitted using standard
procedures, assuming a binomial error distribution. -

As it stands (12.9) involves the fitting of T — 1 blocking factors. However,
this can be avoided, (Goldstein, 1995, Chapter 9) by fitting a low-order poly-
nomial to the sequentially numbered time indicator, Z* = 1,2, ..., T, so that
(12.9) becomes .

t
_omzs%us+Ms..¢_4.v,+?__.. E._s
R h=1

where p is typically 3 or 4.

The logit function can be replaced by, for example, the complementary log-
log function, which gives a proportional hazards model, or, say, the probit
function. We note that we can incorporate time-varying covariates such as age.
A ‘competing risks’ model with several different kinds of survival can be
constructed by extending the response to become 2 multinomial vector repre-
senting the various risks.

Consider the two-level extension where we suppose that level | is individual
(pregnancy length) and level 2 is community. A simple generalisation is

P
logit(mjiy) = Bo+ () + Buxig (12.11)
h=\
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i.ro_..o u; is the ‘effect’ for the jth community, and is typically assumed to be
m_m:._vc:& normally with zero mean and variance 2 . We can elaborate this
using random coefficients, resulting in a heterogeneous variance structure
further levels of nesting etc. This is just a two-level binary response Boaom
and can be fitted using, for example, quasi-likelihood or Markov-chain'Monte
Carlo (MCMC) methods (for details about using these in MLwiN, see Rasbash
et al., 1999a, b). The data structure has two levels, so that individuals will be
mno:vma Awo_”"n& within communities, but within each community the record
o_dn.n is again immaterial. For the competing risks model we use the multi-
nomial two-level formulation (Goldstein, 1995). The setting up and fitting of
such a model in MLwiN is described in Yang et al. (1999).

124 CONTEXT AND COMPOSITION

Z::.__n<n_ modelling has been an important advance in health service and
public health research since it has enabled a focus on both microlevel and
macrolevel relationships simultaneously, as well as the relationships between
them (Groenewegen, 1997). The questions facing researchers concern the
degree to which observed differences at the macrolevel — typically hospitals or
areas — z.wnoﬁ genuine contextual differences between those areas or whether
:_.Q do little more than reflect the composition of those areas in terms of the
microlevel (typically the individual). For example, Jones (1997) questions
i:n&n_. the relationship between voting behaviour and place is contextual -
meaning that °...something about the social and economic milieux of [an]
area...produces a distinctive political culture’ — or whether it merely reflects
”vn composition of an area, with particular relevance to social class composi-
ion.

chomm_ et al. (1998), discussing institutional performance (see Chapter 9 for
?.:.:2. discussion of this subject), suggest that the average performance of a
clinic can be seen to comprise three elements:

mmo_..mmn composition contextual composition/
clinic = of the + clinic +  contextual
performance clinic difference interaction.

..;n composition of the clinic in this example refers to the make-up of the clinic
in terms of the net characteristics of the people who attend the clinic; the
o.o.:ﬁxEm_ differences are the additional effect that a clinic has once its oomﬁo-
sition has been taken into account, and the interaction then reflects differential
vm_.m..o:dm:on across patient groups. At a microlevel, the composition of the
clinic could mean no more than taking individual patient characteristics into
account; the interaction with the context then reflects a microlevel variable that
is _.wjaoB across the macrolevel (clinics). However, this section considers com-
.vom.:_.o:m_ variables at both the micro- and macro-levels; that is, it considers the
individual patient in relation to the overall composition of Eo.v_.mo:on.
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Consider a hypothetical example in which the objective is to determine what
effect different hospitals have on a patient outcome — for example, a rating of
health following surgery. For every patient in every hospital data are collected
as to their age, sex and whether or not the patient is receiving private medical
care. Do these data then refer to patients or hospitals? Since they were collected
for every patient, they must refer to the patient; however, in addition, they may
provide hospital-level information. If the health system under study has two
types of hospital - private and public — then this is a hospital-level variable.
Moreover, if all patients receiving private medical care do so at private hospi-
tals, and all other patients are treated at public hospitals, then there is no
information at patient level (since every patient within each hospital will have
the same classification). However, it may be that some privately funded
patients receive their care in public hospitals; in this case, a comparison of
interest may be between the -outcomes of privately funded patients who are
treated in public hospitals as opposed to those who are treated in private
hospitals. Alternatively, the health system may have three types of hospital -
private, public and mixed ~ the composition of the hospital can be seen sep-
arately from the individual-level variable from which it is derived.

In a similar manner, it may be important to draw comparisons between
single-sex hospitals and mixed-sex hospitals (or hospital wards for a particular
diagnosis), so sex may be considered a descriptor of hospital composition as
well of the individual patients. This example can be developed further by
considering the patient’s age. This is not necessarily a question of comparing
categories of hospitals — such as those providing paediatric or geriatric care -
but may involve a more complex relationship between individual and hospital
composition, such as the average age of the patients treated in that hospital. In
this manner, the influence of the age of each patient on the outcome can be
separated from the way in which it is influenced by the operational context of
the hospital. Do older patients fare better in a hospital that predominately
treats older patients, or one that generally treats younger patients? In a similar
manner it is possible to consider the proportion of privately funded patients
within a hospital rather than categorising all hospitals treating both types of
patients as being mixed. The same is true for the patient’s sex; in general, any
microlevel variable — continuous or categorical — can also be considered at the
macrolevel. The mean is a common way of summarising the data, but, depend-
ing on the particular research question, the minimum, maximum or another
measure may be a more appropriate description of the composition of the
higher-level units.

Duncan et al. (1998) give illustrations of a variety of ways in which individual
and compositional variables may interact in cross-level relationships; these have
been adapted in Figure 12.1. The two lines can be thought of as representing,
by way of example, the predicted response for patients of different ages — say 50
years (broken lines) and 80 years (solid lines). With the vertical axis indicating
the level of the response, the horizontal axis reflects the mean age of patients in
the hospital. Figure 12.1(a) therefore illustrates a situation in which the
SN.umne.nld natiente are oenerallv healthier than the 80-vear-olds. and this
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&:.20.:8 is constant no matter what the composition of the hospital.
Any @_m.oqgoow between hospitals are therefore contextual rather than reflect-
ing differences in composition. This is not to say that there is no difference
between hospitals in terms of their composition, merely that their composition
has no additional bearing on the patient outcomes. It may not be that the same
average difference will be seen at all hospitals; it is possible that the age effect
varies randomly across hospitals but there is no relationship between these
B:ao-.: age effects and the hospital composition. Figure 12.1(b) suggests a
scenario in which there is little difference between the health rating of the two
age groups, but the ratings tend to be higher in hospitals in which the average
age is high. So the health of the individual is determined not by the individual
n.m:nﬂ.m age, but by the average age of patients treated in the hospital — this
situation is the converse of Figure 12.1(a) in that it is the macrolevel compos;-
tional variable that is important rather than the microlevel patient character-
istic. Figure 12.1(c) and (d) reflect a combination of these two situations in
which both individual and compositional factors have an important impact on
the response. The health of 50-year-olds is generally better than that of 80-year-
olds in a hospital of the same composition, and this difference is independent of
the hospital composition. Figure 12.1(c) presents a scenario in which the
average health of all patients is improved in a hospital with a high mean age,
i?_.ﬂ._: Figure 12.1(d), the health of patients at hospitals with a young mean
age is improved relative to patients of the same age who are treated in hospitals
&ir a high mean age. The remaining four graphs illustrate some possible
5.880:.03 between individual characteristics and hospital composition. In
Figure 12.1(e), there is little difference between the health of those patients
treated at hospitals with a high mean age, irrespective of the age of the
individual patients. There are, however, substantial differences in hospitals
with a low mean age, with younger patients faring very much better than the
older patients. In Figure 12.1(f), the situation is the same in hospitals with a low
mean age, but in hospitals with a high mean age it is the 80-year-olds whose
rnm_g. is better than the 50-year-olds. There are no age differences in the health
of patients with composition in the middle of the age range. Figures 12.1(g) and
(h) present more complex interactions; in both situations, the health of the 50-
year-old patients is better than that of the 80-year-olds in hospitals with either a
low or a high average age. However, in Figure 12.1(g) these differences dis-
appear when patients are treated at hospitals with composition in the middle of
the age range, with the average health of the older patients being better and that
om. the younger patients being worse; in figure 12.1(h), on the other hand, the
differences between the two age groups are accentuated in these hospitals.

A common situation that gives rise to compositional effects is the differences
Uoﬁi.ooz institutions in the recording of information. Leyland and Boddy (1998)
considered the differences between Scottish hospitals in 30-day mortality rates
following acute myocardial infarction (AMI). One vm:.oa characteristic
mmqonm_w associated with death following AMI is the recording of a secondary
diagnosis of other (non-ischaemic) heart disease (odds ratio = 1.77; 95% con-
fidence interval (CI) 1.56-2.00). However, the large variation between hospitals
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Figure 12,1 Illustration of cross-level interactions between individual and composi-
tional variables. Reprinted from Social Science and Medicine 46. Duncan, C., Jones, _A
and Moon, G. Context, composition and heterogeneity: using multilevel Bo.an_v. in
health research. pp. 97-117. Copyright (1998), with permission from Elsevier Science.
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in the proportion of patients for whom such a secondary diagnosis was
recorded raises doubts as to whether this was really reflecting the patients’
condition or the hospital’s recording practice. Among the 31 hospitals that saw
more than 50 AMI patients in the year of study, the recording of other heart
disease ranged from 8% to 33%. If some hospitals have a lower threshold for a
patient to be classified as having other heart disease (i.e. they are classifying a
high proportion of patients in such a manner) then it is likely that the mortality
rate among such patients will be lower in that hospital than in hospitals that
have a higher threshold (those with a lower proportion of patients with other
heart disease). However, if the classification of patients is still related to the
severity of their condition then it is also likely that the mortality among patients
who do not have a secondary diagnosis of other heart disease will also be lower
among hospitals that have higher rates of recording of the condition. It is
therefore possible to fit a model that indicates at the patient level the odds of
mortality associated with the presence of other heart disease (1.74; 95% CI
1.51-1.98) and also the relationship between mortality and the composition of
the hospital such that a 10% increase in the proportion of patients with other
heart disease is associated with an odds ratio of 0.85 (0.72-1.01) among patients
with other heart disease and 0.76 (0.68-0.86) among patients not classified as
having other heart disease.

Table 12.1 shows the combined effect of other heart disease as both a patient
characteristic and as a compositional variable. Three levels of the percentage of
patients with other heart disease recorded are used: 8.8%, 17.0% and 32.7%,
which correspond to the 5th, 50th and 95th percentiles for patients (that is, 5%
of all patients are in hospitals in which no more than 8.8% have a recorded
secondary diagnosis of other heart disease, etc.). The reference category is
patients without a diagnosis of other heart disease in a hospital that records
17.0% of cases as having this diagnosis. The odds of mortality associated with
other heart disease are 1.75 in such a hospital; this figure decreases to 1.58 in
hospitals with the lower level of recording, and increases to 2.09 in hospitals
recording 32.7% of patients as having other heart disease. This therefore
corresponds to a situation somewhat similar to Figure 12.1(e), but with the
lines diverging rather than converging as the compositional variable increases.
Patients with other heart disease are always at greater risk than patients with-
out this recorded (if the vertical axis is the odds of mortality, the broken line

Tabie 12.1 Odds of mortality (95% confidence intervals in parenthese) associated with
hospital composition (percentage of patients with other heart disease) and the recording
of other heart disease for individual patients,

Percentage of patients Patients without Patients with other
Percentile with other heart disease  other heart disease heart disease
5th 8.8% 1.25 (1.14-1.38) 1.98 (1.64-2.45)
50th 17.0% 1.00 1.75 (1.51-1.98)
95th 32.7% 0.65 (0.54-0.79) 1.36 (1.06-1.76)
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corresponds to patients with this diagnosis). In both groups of patients, the
odds of mortality decrease as the compositional variable increases (so both lines
slope down from left to right), and the increased risk becomes more pro-
nounced as the level of recording of the diagnosis in a hospital increases (so
the distance between the two lines increases).

12.5 RECENT DEVELOPMENTS IN MULTILEVEL MODELLING

The topic of measurement errors is a complex one, and there appears to be little
attempt to make adjustments when models include such errors in either the
response or predictor variables. It is known, however, that, in the presence of
such measurement error, inferences may be biased. We refer the reader to a
detailed discussion, with an éxample taken from education, given by Wood-
house er al. (1996).

One area that has been receiving some attention recently is multilevel covar-
iance structure analysis or structural equation modelling. Hox (1995) describes
this general approach as one that encompasses both path models and factor
models; the former structural model is used to describe predictive relationships
between observed variables and latent factors, whilst the latter factor model
describes the construction of the latent factors from the observed variables. For
introductory texts on this subject the reader is referred to Muthén (1994) and
McDonald (1994). Software capable of fitting multilevel structural equation
models includes Mplus (Muthén and Muthén, 1998) and STREAMS (Gustafs-
son and Stahl, 1997). :

A further common issue in statistics concerns the analysis of data sets where
some of the data are missing, and this concern extends to multilevel data sets.
The fact that a balanced design is not a prerequisite of a multilevel model means
that subjects with some outcomes missing may still be included in an analysis
(see Chapter 5 on multivariate regression analysis). When the explanatory
variables are incomplete, there are typically two options as discussed in Gold-
stein (1995). If the data can be viewed as being missing completely at random
(MCAR) or missing at random (MAR) conditional on other explanatory
variables but independently of the outcome (Rubin, 1976) then a two-stage
approach may be adopted. At the first stage a multivariate model is used to
obtain predictions for all missing data values. The second stage resorts to
multiple imputation (Rubin, 1987); a number of complete data sets are formed
by repeatedly sampling from the predicted distributions of the missing values.
The data sets are then analysed in turn, and the estimates obtained are based on
data with the correct distributional properties. If the data are not missing at
random - that is, the fact that the data are missing is related to the response and
is in itself informative (see, e.g. Best et al., 1996) - it is common practice to
model the missingness mechanism and then proceed as if the data were missing
at random.
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13.1 INTRODUCTION

In this chapter we review some of the more important software programs and
packages that are designed for, or can be used for, multilevel analysis. These
programs differ in many respects. Some are parts of major statistics packages
such as SAS or BMDP. Others are written in the macro language of a major
package. And some are stand-alone special-purpose programs that can do
nothing but multilevel analysis. We have been involved in a number of these
comparisons before. The first (Kreft er al., 1990), comparing HLM, ML3,
VARCL, BMDP5-V and GENMOD, was published in Kreft et al. (1994).
The second comparison (van der Leeden et al., 1991), comparing HLM, ML3
and BMDPS5-V on repeated measures data, was published in van der Leeden er
al. (1996). We give both the reference to the internal report version and to the
published version, because the unpublished version usually has much more
material. Giving both references also shows the unfortunate time interval
between the two, which is especially annoying in the case of software reviews.
The reviews were summarised briefly in our book (Kreft and de Leeuw, 1998,
Section 1.6).

Since our last publication on the subject, there have been many major
changes. The program GENMOD, which was never easy to obtain, has more
or less completely disappeared. VARCL, which was one of the leading con-
tenders in the early 1990s, is no longer actively supported or developed, which
means that it has rapidly lost ground. BMDP, as a company, went out of
business, which had serious consequences for its software products. Programs
such as HLM, written originally for DOS, were upgraded for Windows. ML3
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