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An historical and theoretical review is provided of so called item response
theory (IRT), more accurately described as item response modelling (IRM).
This paper looks at 50 years of IRM and finds a disappointing lack of
advance. It is shown how a linear model framework, involving different
response transformations, unifies separate approaches to the study of test
item responses.

1. Introduction

In reviewing 25 years of test theory, Lewis (1986) asserted that, compared to 1961,
there were now probably closer to 50 test theory models than five. He saw this as a
healthy sign of a growing discipline and one which would ultimately result in a
deeper understanding of that elusive relationship between ‘the ability of the individual
and . . . (her) observed score on the test’; Thissen & Steinberg (1986), faced with what
they saw as the ‘growing (and bewildering) array of models . . . proposed for use in
item response theory’, thought the time had come to catalogue them.

It is possible to doubt whether the proliferation we have undoubtedly seen does
signify health. True diversity would have been good, but we have seen embellishment
and tinkering. There has been little or nothing in the way of invention. It is still the
same scenario first projected in 1942: person with ability x encounters an item, which
has difficulty and discrimination, and the outcome is a binary response (or, perhaps,
graded). Whether that response is correct or incorrect or even partially correct is the
subject of the theory. But what sort of theory is it? As the title of Lord & Novick’s
(1968) book made clear, the theory is statistical, not psychological. It is not about
why an individual should get an item right or wrong, or what conditions should be
present for a particular outcome to happen, but about the supposed probabilistic
nature of item response conditioned on something called ability. When person
responses are modelled by a response function, the model is the theory. With rare
exceptions, such as White’s (1979) efforts to introduce psychologically grounded
person parameters like ‘speed’, ‘accuracy’ and ‘persistence’ into such (latent trait)
models, all the embellishments have been manipulations of the basic model, as in
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person measurement (Trabin & Weiss, 1983), or, generalizations on a theme, as in the
types of graded scoring, or purely statistical, as in the competing estimation
procedures. '

What has been going on since Ferguson’s (1942) paper is not item response
theorizing, but item response modelling. As Thissen & Steinberg remark, the goal in
item analysis (which is what IRT has really been about even if persons have intruded
occasionally) is to describe the observed item response data; such a goal is served by
a model (or, at times, more than one model) that can account for the observed data.
Our purpose, in writing this paper, has been to confront IRT for what it is, item
response modelling (IRM). In applying a standard linear modelling approach, we are
able to bring out the essential unity among apparentiy disparate models and to show
that no one model has a claim to special status.

2. Item response theory (1942- )

Item response theory (IRT) hinges crucially on the assumption that only a single
latent trait underlies performance on an item. The same applies to so called ‘classical’
test theory although it is not so often remarked upon. Fred Lord, looking back on
over 30 years of pioneering work in IRT, thought this still a reasonable assumption;
‘most tests are constructed to measure a single trait, for example, verbal ability’ (Lord
& Stocking, 1985, p. 2745). If that seems a shade underconceptualized, Lord had been
more forthcoming a few years earlier:

It seems plausible that tests of spelling, vocabulary, reading comprehension, arithmetic
reasoning, word analogies, number series, and various types of spatial tests should be
approximately one-dimensional. We can easily imagine tests that are not. An achievement
test in chemistry might in part require mathematical training or arithmetic skill and in
part require knowledge of non-mathematical facts (Lord, 1980, p. 20).

For Bejar (1983, p. 18) this was inadequate. In practice, he said, dimensionality is
situation specific. It is not a property of the items but rather of the responses to items
under a specified set of conditions, much like reliability is not a property of a test but
rather of responses to a test. If the population being tested included a substantial
number of dyslexic children, an otherwise unidimensiona! spelling test may turn out
to be multidimensional. Whether logically distinct constructs show up as such
depends on the nature of inter- and intra-variation, which in turn depends on the
homogeneity or otherwise of nurturant and educational experiences to date.
Differential instruction or training can create multidimensionality where before there
had been unidimensionality (Traub, 1983).

Bejar is right; it is always an empirical question whether a test is unidimensional or
not and indeed whether IRT provides the appropriate model. Lawley, to whom we
owe IRT, was content to write, ‘we shall assume that all items composing a given test
are measuring the same ability’ (Lawley, 1943, p. 273) thus, in effect, attributing
unidimensionality to the items. Lawley’s uncomplicated approach is understandable.
In his time, analysis of even the one-dimensional model appeared formidable, and it
is unsurprising that multidimensional models were not entertained. Furthermore,
Lawley, a statistician, was not concerned with unpacking what ‘ability’ might mean.
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Yet those psychometricians who followed, have, until recently, been content to stay
with single ability models.

The founders of IRT all worked in Edinburgh and were responsible for three
seminal papers: Ferguson (1942), Lawley (1943) and Finney (1944). But there was a
pre-Edinburgh period, as it were, when some eminent American psychologists,
Thurstone, Richardson and Terman, but above all, Thurstone, nosed their way
towards what the Edinburgh people formalized, the characterization of item
performance in terms of a probabilistic item response curve and the parameters of
location and slope.

3. Pre-Edinburgh

Interest in item analysis and the item characteristic curve concept was present at the
beginning of psychological and educational measurement. Binet & Simon (1916)
presented tables in which proportions of correct response were arranged as a function
of age. Thurstone (1925) took this further and described how items might be scaled
on an age metric in terms of the average age corresponding to 50 per cent success
rates; he also drew ogival curves to show how performance improved with age.f
Later, Terman applied Thurstone’s methodology to the scaling of Stanford-Binet
items (Terman & Merrill, 1937) and intuited that the steepness of the empirical item
characteristic curves gives a graphic indication of the validity of the tests. What
Baker (1965, pp. 168-169) attributes to Terman was essentially published by
Thurstone in a series of papers (1925, 1927, 1928); also Thurstone & Ackerson (1929).
Bock (1983, p. 206) observed that Thurstone’s ‘method of absolute scaling’, while no
longer in use, is important as a forerunner of modern IRT procedures.

The first attempt to fit a normal ogive to item response data seems to have been
by Richardson (1936), who used the mean and standard deviation of the fitted curve
to describe the instrument (Baker, 1965, p. 169). Richardson also showed, and in this
he truly preceded Lawley, how many concepts of classical test theory could be
expressed as functions of the item parameters. This work was extended by Tucker
(1946) and tidied up by Lord & Novick (1968) and Bock & Lieberman (1970). In a
memoir, Tucker (1987) mentions that he coined the term ‘item characteristic curve’
(in 1945) and also confirms the seminal nature of Thurstone’s 1925 paper.

4. The Edinburgh period

Ferguson (1942) was the first to speculate that the probability p;; of person j giving a
correct response to item i is given by the normal ogive function

a;i+bif;

p;=(m)~%% [ exp(—0.5y%)dy,

- ®

+Psychometricians still do not have a convenient term for what ‘Insecticide people’ (to quote Thomson)
call the median effective dose (ED50), or what psychophysicists call the limen. Baker (1965) tried to
introduce x50, modelled on ED50, but it did not stick.
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where f indexes the latent, or unobserved, ability of the person and a, b are
parameters for that particular item (facility and discrimination as it turns out).
Working in the psychophysical tradition, Ferguson attempted a least squares solution
using the constant process developed much earlier by Fechner, Muller and Urban.
The result was somewhat unwieldy. Lawley, a colleague of Ferguson’s at Moray
House, took his problem and gave it a mathematical treatment, specifically maximum
likelihood (Lawley, 1943). He also extended Ferguson’s results considerably; it is in
every respect a benchmark paper. The psychophysical tradition persisted so that
when Lawley came to characterize the ability value corresponding to a 50 per cent
chance of getting an item correct, we find him using the term limen.

Meanwhile, Finney (1944), working in the field of bioassay, was developing probit
analysis for estimating animal and plant tolerance to drugs, insecticides, etc. Finney
saw a parallel with psychological testing; the dosage was the ability and the organism
was the item. He did more than that; he also saw the conuections with psychophysics
and the constant process. By applying the probit method to Ferguson’s data, the
1944 paper, to use Finney’s own words (1971, p. 42), brought the two streams
together. Godfrey Thomson tells us that Lawley, like Ferguson, did not know of the
developments in probit analysis. It was only because Finney was a friend and
correspondent of Lawley that connections were made (Thomson, 1947, p. 72). Lawley
acknowledged as much in his 1944 paper. All Finney had to say was that he, Lawley,
‘came near’ to an independent derivation of the maximum likelihood solution
(Finney, 1971). Once the bioassay—psychophysics connections had been made, the
tendency to think of ability as something of which you had more or less, was
reinforced, but then this was entirely in keeping with the prevailing ‘strength’ model
of intelligence.”

Lawley took Ferguson’s formulation and developed it. With the psychophysical
analogue so inviting, it is easy to understand Ferguson’s choice of model. But now
we may ask whether it was such an apt choice. Certainly, anyone looking at the
tangles of item characteristic curves produced by Raven (1986, pp. 69-70) would be
left wondering. In particular, why an ogive when you are not especially interested in
the tails? Why not, as we argue later, use a linear function to start with? The form of
the model seems immaterial since it is robust against mis-specification in the tails
(Reese, 1986, p. 205). In fact, when estimating individual ‘abilities’ we are seldom
interested in the tails.

Lawley’s 1943 paper showed that many concepts of classical test theory could be
expressed as functions of the item parameters. Simultaneously with this work, he was
working on maximum likelihood solutions for factor analysis (Lawley, 1944). Just
how close Lawley got to synthesizing factor analysis and latent trait theory,
accomplished later by McDonald (1967, 1982), is recounted by Wood (1987).

Lawley’s 1943 paper was the foundation on which Lord built, as he was ready to
acknowledge (Lord, 1968). Baker praised Lawley for emphasizing the importance of
working at the item level yet both Lawley himself, in his 1944 paper, and Lord later,
concentrated on the properties of tests, as the titles of Lord’s (1952) monograph and
Lord & Novick indicate. By 1965 Baker was complaining that theory began and
ended with test scores, ignoring the composition of the test. In fact, it was not until
Lord commenced his work on tailored testing (circa 1968), when the whole notion of
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fixed tests had to be sidelined, that the item was recognized as the appropriate unit of
analysis, and the appellation latent trait theory was dropped in favour of item
characteristic curve theory (Tucker’s term) and then item response theory.

Guilford, reviewing Lord’s monograph, pointed out that the assumption of
unidimensionality and the exclusion of multiple-choice tests, place severe limits on
- the usefulness of the theory. ‘Since most tests depart from this highly specialized
situation, the generality of applications from his theory is limited’ (Guilford, 1954, p.
363). It is perhaps little known that the Lord/Lawley/Ferguson model was intended
for free-response items only. Perhaps it would be desirable to revert to the free-
response only condition; certainly the introduction of a guessing parameter into the
IRT models (or the decision not to include one, as with the Rasch model) has been a
constant cause of friction, if only because it has been so obviously a property of items
rather than people; White’s model being an exception.

By 1960 Lord is well advanced in developing the original model, and then comes a
surprise. Out of nowhere (or so it seems) appears Georg Rasch with a collection of
itern response models, one of which turns out to be the simplest IRT model, a one-
parameter (ability) logistic ogive function (Rasch, 1960). This comes to be known as
the Rasch model while other more interesting models (psychologically), like the
Poisson model for misreading, are ignored. Whereas Lord and the others have felt it
necessary to persist with Ferguson’s original item discrimination parameter in the
IRT model, Rasch decides it is not necessary nor is he interested in a guessing
parameter, which Lord and others believe must be included. Data should be collected
in such a way that the need for such parameters is obviated.

Ordinarily, this would be a routine check on whether Occam’s Razor has shaved
too much off. But proponents of Rasch are present in numbers and only now is it
possible to adjudicate on whether it matters in utility terms, whether you use Rasch
or a more elaborate model. There has been strong resistance to Rasch when used in
educational applications. Baker (1977) wondered even whether latent trait models
were appropriate at all. As Wilcox (1980, p. 443) observed, latent trait theory is the
culmination of the work on the measurement of ability begun by Binet that was the
major focus of psychometrics in the 1920s, 1930s and 1940s but the educational
problems of an earlier era are not the problems of the 1980s and 1990s. The major
trend in educational measurement today is that of instructionally related testing.
How, given deliberately targeted remedial instruction, can the assumption that the
relative difficulties of pairs of items, remain the same? How, if education is about
change, which is bound to be differential, can a stationary model like Rasch be
entertained? Thorndike (1982) thought that Rasch would be most suitable for
aptitude tests, where what develops is not so susceptible to instruction and is liable
to change at uniform rates. Hoover (1987) hazarded that Rasch would do best with
musical aptitude tests which would be as unidimensional as anything might be, but
again unidimensionality is an empirical issue.

There is no particular evidence to support the view that Rasch will do better with
aptitude tests. Johnson (1986), writing of recruitment via aptitude tests in the British
Civil Service, concluded that Rasch would not work well in that situation precisely
because the heterogeneity of the candidature and the relative absence of
homogenizing experiences resulted in wide variation in discrimination parameter
estimates. ‘
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IRT, including Rasch, is generally weak on utility grounds. Lord conceded that
applications of item response theory are generally more expensive than similar
applications of classical test theory (Lord & Stocking, 1983). It is commonly
supposed that the use of IRT (the logistic model) is imperative for individualized
testing because classical test theory is inadequate.t As we show later, this is not so.
Any properly formulated item response model will do.

S. The basic model

We replace the term ‘Item Response Theory’ by the more accurate descriptor ‘Item
Response Modelling” (IRM).

Unidimensional IRM’s are latent variable or factor analytic models where the
response variables are the correct (=1) or incorrect (=0) responses to the items in a
test. Because the response is binary, the most common statistical assumption in IRMs
1s that it has a binomial distribution. We note in passing that this assumption will
nearly always be questionable. Thus, for example, samples are often taken from
‘clustered’ populations such as schoolchildren, so that over and above any individual
factors we would expect school specific effects (see Goldstein, 1987, ch. 6). This would
then lead to biases in estimates for standard errors etc.

Let the (0, 1) response be denoted by p;; for the ith item for the jth subject. Denote
the probability of a correct response by

77-'ij=Pr°b (p;j=1 | f;)

=4a; + bx.f;

The term f; represents the underlying assumed latent trait and we can write the
observed response as

pij=a;+b;f;+ey;, )

where ¢;; is a random variable.

This is an example of a congeneric test score model (Joreskog, 1971).

The term b; is known as the discrimination of item i, measuring the average rate of
change of 7;; with f;. Furthermore, the average of z;; over the distribution of f; is the
average probability of a correct response, or the item facility. More generally, if we
suppose that f; is actually measured, we can then plot p;; against f; to give the ‘item
characteristic curve’ (ICC), and (1) assumes that this is a straight line. As we shall
show this is not generally entirely suitable as an item response model, but supposing
for now that we accept it as reasonable, the next task is to find an approprate
procedure to estimate the parameters, including the f; also, since these are unknown
and hence considered as parameters to be estimated along with the a;, b;. (We see
later that we can avoid the estimation of every one of the f; directly by making some
distributional assumptions about them).

Assuming independent residuals, the parameters in (1) can be estimated using an

St

% +The flexilevel procedure (Lord, 1971) did, however, manage without IRT.
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iterative procedure with weights which depend on the predicted values, and subject to
boundary constraints. We note that (1) is a regression model, where for each subject
we have

pi=a;+b.f+e, 2
Let us compute the ordinary estimate of the regression coefficient, namely
J?=zi(pi_ai)bi/zibi2-
This is a linear function of
2:p:b;

which is simply a weighted sum of the item responses, the weights being the item
discriminations. If these discriminations are equal then this coefficient is a simple
function of the raw score, namely,

(x—2:a)/(Z;by),

where x is the raw score. Moreover, even where the discriminations are unequal the
expected value of the raw score is

Tia;+(Zby) f.

So the raw score is an unbiased estimate of a fixed linear function of ability. It is
only efficient, however, when the discriminations are equal, and we use the
appropriate weights. Nevertheless, in many practical applications the discriminations
do not differ markedly, and so the raw score will be a reasonably efficient estimate. A
similar result will hold when we consider ‘transformed’ IRMs. Thus we see that the
procedure in classical ‘item analysis’ for choosing the raw score as an estimate of
ability can be justified in terms of a simple linear model. It does not of course follow
that the choice of raw score to characterize an individual set of item responses
therefore implies a model such as (1), since there may well be other grounds for such
a choice.

A difficulty with (1) is that it places no restrictions on the probabilities, so that
these could lie outside the admissible range (0,1). A simple procedure for avoiding
this is to constrain the solution so that upper and lower boundaries are defined for
the probability of a correct item response. These can be interpreted as ‘guessing’ and
‘carelessness’ parameters respectively, and they will need to be estimated. The model
also constrains individual abilities to lie between the corresponding points on the
ability scale.

This ‘4 parameter’ model would seem to provide a reasonable description of an
ICC for a unidimensional ability with the linear form of IRM given by (2), and was
suggested by McDonald (1967). We could improve the description where necessary
for particular items by introducing higher order terms into (2), for example quadratic
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or cubic terms to allow for curvature. This will introduce further item parameters but
does not introduce serious new difficulties into any estimation procedure. We note
that although there are now more individual terms, the model is still unidimensional.
We shall return to non-linear models shortly where the response probability is
transformed, using a non-linear transformation, and the transformed probability then
related to the item and individual parameters. Before we do this, however, we shall
further explore (2) and see how it leads us to adopt the traditional range of item
analysis procedures.

6. Reliability

We now explain how IRM’s have been used to estimate reliability.
If we start with equation (1) and form a raw score by summing over the n items in
a test we obtain

=Xj+ej.

This 1s in the common form ‘Observed score =True score+ Error’.
Reliability is defined as

__var(x)
" var »

R

y

: (4)

In classical test models it is supposed that the e; vary randomly from occasion to
occasion. The e; in (3), however, may contain a component which does not vary
across occasions. We recall that the assumption made about the residuals e; was
that, given f;, they were independent across items and across individuals. If we
introduce, say, a second independent administration of the test, we could then write

eji=ey+dj,

where t (=1;2) refers to the measurement occasion and d; represents between-
occasion random variation for the jth individual. Thus the item mean response is
given by

nijt=nij+dj\"

We note that d;, will typically include such circumstances as the general environment,
day-to-day variation, etc. Some of these variables may be common to subsets of
individuals and this will create estimation problems which are discussed below. Such
a ‘hierarchical’ partitioning of the residual is analogous to certain kinds of
longitudinal data models (Goldstein, 1987, ch. 4), but the practical estimation of the
separate components does not seem feasible in general and in practice we have to
work with the actual residual e;,. In effect this constitutes a particular definition of
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measurement error which includes ‘within’ and ‘between’ occasion error. We note in
particular that even where e;;=0, we may still have a between-occasion component of
€ITOr variance.

It will be noticed that the definition of reliability is with respect to a particular
population. In a different population the true score and/or residual variance may
change as may any factor structure underlying the true score. In particular, in
moving from a heterogeneous to a homogeneous population we might expect this to
occur. A common example is where a test is given to students covering a wide age
span. This will tend to strengthen the factor structure spuriously due to the
propensity of students to acquire knowledge and understanding at different rates, but
in a similar order (Levy, 1973, p. 6).

More importantly perhaps, the conditions of testing will generally affect each
response probability in a similar direction. If these conditions vary, as is typically the
case, then this will strengthen the common factor structure, and will act as if there
are further factors along which individuals differ. Such conditions may include
presentation of material, time of day, environment, health, etc. As pointed out above,
d;, will incorporate such between-individual structures. Such variation should really
be counted as a component of the error variation and not the common factor
structure. In other words, circumstances to do with test administration which have a
common effect on test items will lead to spuriously high estimates of reliability based
on coefficient alpha.

In fact there are many possible definitions of reliability. Thus, if we think of a test
as one possible selection of items from a universe of items, then we can define a test—
retest reliability which measures variation in a well-defined population of possible
tests based upon a universe of test items. This notion is formalized in so-called
generalizability analysis (Cronbach, Gleser, Nanda & Rajaratnam, 1972). Another
possibility is the ‘alternate forms’ reliability, concerned with variation between tests
specifically designed to have items with characteristics as similar as possible. This can
be modelled similarly to the between-occasion model above. The form of reliability to
be chosen must depend on its use and its context.

7. The general linear item response model (GLIRM)

We can extend (1) in an obvious way to include further explanatory variables
measured on individual items so that a; is replaced by

Zrarzir +di
P;j=2.a,2,+b;f;+e;;+d; (5)

t=1,...,k; Zi0=1.

Thus we might have =1 where z;; is a measure or classification of the presentation
format of the item, say. The estimation of the parameters of () is a straightforward
extension of the procedures already outlined. We can also model b; as a function of
further variables, giving
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We can also generalize (1) to the case where individual subjects are classified by
further observed variables

[i=ZmCnljm +u
giving,
pl-j=ai+b,-z,,,c,,,vj,,,+biuj+ e"j. (6)

Some simple examples of such models are given by Fischer (1983) and Reiser
(1983) for the logistic IRM described below. It is also possible to have models where
both items and individuals are classified by further variables. Finally, some of the
parameters in (6) may themselves be random variables, varying randomly across
schools for example, so giving rise to random coefficient models (Goldstein, 1987).

8. Generalizability models
Consider the special case of the GLIRM

pij=d;+u;+ey, (7

where the item facilities have a random distribution as do the person abilities. Thus,
rather than seek to estimate a parameter for each item and subject, we would like to
estimate the mean and variance of the d;, u; Equation (7) is the basic model of
generalizability ‘theory’ (Cronbach et al., 1972). The model typically is extended by
introducing further classifications and levels of nesting for items and individuals.
Thus, for example, students might be grouped by tester or by school so that we could
write

Dixj=d; + Wy;+ €, (8)
where

wkj=vk+ukj

and v, varies randomly over schools and u,; varies randomly within schools across
students. It is also clear that we can introduce further explanatory variables as in the
previous section and so obtain a multilevel general linear model, which includes cross
classifications of units (Goldstein, 1987, ch. 7). A review of generalizability models is
given by Shavelson & Webb (1981). In practice, generalizability analyses tend to use
scores derived from sets of items rather than individual item responses. They are an
example of ‘random effect’” unidimensional models described below. Their main
distinguishing feature is that they explicitly consider random samples of items,
although it may be difficult to see how a group of items which are chosen for a test
can be regarded as a random sample from a universe of items, unless very strict item
definition and selection rules are chosen.
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9. Response transformations

One method of avoiding predicted probabilities in the standard linear model outside
the range (0,1) is to transform the scale of the response probability. The most
common transformation is the logistic, namely

Another possibility is the log-log function
log(—logn;;)=a;+b;f; (10)

Another common function is the cumulative distribution of the normal or gaussian
curve, but the shape of this curve is very similar to the logit curve and need not be
considered in detail. It needs to be stressed that the principal purpose in introducing
such transformations.is largely mathematical. They eliminate in a simple way
inadmissible probability values. Whether this is substantively and practically
important and whether such curves actually give better fits to observed data is an
empirical matter upon which there seems to be little evidence. In fact there is an
infinity of transformations which would satisfy the probability constraints, some of
which are symmetrical like the logit and others which are asymmetrical like the log-
log. Goldstein (1980), in a simple example, compares the logit and log-log
transformations and finds little to choose between them in terms of overall fit to the
data, but shows that they lead to quite different estimates of individual abilities, and
indeed to different rank orderings of ability.

Thus, in a situation where the choice of transformation lacks empirical justification
and where different transformations give different ability estimates, we do need to be
rather cautious in our interpretations of the parameter values.

These remarks apply to multidimensional as well as unidimensional models. In the
former case there is the additional issue that if the ‘wrong’ transformation is chosen
then we may still be able to fit a set of data adequately by including extra factors.
Thus, for example, if a log-log model is a good fit with 2 factors, we may in fact
require 3 factors if a logit model were to be used. A similar point arises with single
factor models, since it may be possible to have a unidimensional model under one
data transformation which requires more than one factor under another data
transformation. Hence when we talk about the unidimensionality of a test this always
must be with respect to the particular transformation used.

For both the logit and log-log transformations we see that both transformations
imply that, at the extremes of the scale, small changes in the probability of a correct
answer are associated with very large changes in ability. It is difficult to envisage a
substantive definition of ability, say in an educational context, which accords with
such a model. 1t implies that there are, in principle, individuals who have a virtnally
infinite ability! In their own way, therefore, although they have eliminated
inadmissible probabilities, these transformations have introduced further difficulties
which our original model (2) did not possess. Moreover, we know that we can
overcome the inadmissible probability problem by introducing upper and lower

&
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bounds into the model, interpreted as guessing and carelessness parameters. As we
shall see in the next section, the introduction of a lower bound is common practice
when using logit transformed models and an upper bound likewise can be used
(though it is rarely attempted). Nevertheless, this does not remove the possibility of
infinite abilities. In the absence of empirical or substantive theoretical reasons for
choosing a particular transformation it seems that the modified version of (2), which
we can refer to as the constrained identity transformation, may have theoretical
advantages as a unidimensional IRM since it neither allows inadmissible probabilities
nor infinite ability values. Furthermore, in the 2-parameter case, even though the
identity transformation leads to inadmissible probabilities, it does provide perfectly
sensible ability estimates, since these are just weighted sums of item responses. We
return to this point in the next section. It may also have practical advantages, and
provides a rather more straightforward interpretation.

In spite of the advantages of the 2-, 3- or 4-parameter identity model it has found
little favour in the IRT literature, despite the implicit reliance of traditional item
analysis upon a simple version of it. The reason for this appears to be partly
historical, and partly due to certain mathematical properties of the logit model which,
in the 2-parameter case, provide relatively straightforward estimation procedures,
although when we move to 3- and 4-parameter models, estimation problems become
more apparent.

Having said all this, the logit model still remains the standard one in use and we
shall therefore devote the next section to a study of it.

10. The logit item response model

Before we consider the basic model given by (9), a few remarks are necessary
concerning the simpler model where the discriminations b; are all equal. (Note that
we call the parameters in this model by the same names as in the identity model
since they have the same general interpretation.) This is the Rasch model. It can be
written as

log {T[ij/(l—fiij)}=ai+f}. (11)

Efficient (maximum likelihood) estimates of the ability parameters are in fact
monotone transformations of each subject’s raw score. Our previous discussion of the
use of raw scores, when item discriminations really do differ, applies also to (11).
Moreover, as pointed out in the previous section, the logit model suffers from the
difficulty of interpreting infinite abilities. Related to this are estimation problems,
since subjects who answer all items correct or all items incorrect cannot be assigned
finite ability estimates. It can be shown (Goldstein, 1980) that the presence of such
subjects leads to biases in parameter estimates. '

In our view the 1-parameter logistic model has little to recommend it over its main
competitor, the 1-parameter identity model, and if we wish to choose a 1-parameter
model, then the identity model, which is simpler to use, seems to have the advantage.
Moreover, as we have already pointed out, the estimates from the logistic model are
simply monotone functions of the raw scores (and correspondingly for the facilities)
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so that the same rank orderings appear whichever model is used. We also note that
while (11) gives ability estimates which are monotonic functions of the raw scores,
other transformations such as the log-log (10), for example, do not.

In the logit 2-parameter model the ability estimates are obtained by forming a
weighted sum of the item responses using the discriminations as weights and applying
a non-linear monotone transformation to this sum. This is analogous to the
procedure for the identity model and similar arguments apply to the comparison of
the two models as for the 1-parameter models.

We have already discussed the advantages of the identity transformation in the
case of the 4-parameter model. There appear to be few empirical analyses of 4-
parameter logit models although Barton & Lord (1981), found no advantage over the
3-parameter model. Nevertheless, there have been several applications of the logit 3-
parameter model. These suggest (Traub & Lam, 1985) that the lower bound or
asymptote typically 1s not estimated very accurately, and imprecision in its estimate
can affect the values of the other parameters. We would expect the 3-parameter
identity model to behave similarly.

So far, it should be noted, we have been considering fixed effects models. In a
subsequent section we consider random effects models and show how these overcome
certain difficulties we have encountered.

To summarize the position: despite the considerable effort which has gone into
geveloping unidimensional models with 1, 2 and 3 parameters, fixed effect logistic
IRMs appear to possess no persuasive advantage over the corresponding simpler
identity models, and some clear disadvantages. No compelling empirical evidence
indicates the clear superiority of any particular transformation.

11. Goodaess of fit

Goodness-of-fit tests are informative only when they are sensitive to a specific
alternative model. Thus, we may wish a test of the fit of a 2-parameter model to be
sensitive to the alternative- of a 3-parameter model. In this case it would be

- appropriate to fit a 3-parameter model and study the values of the third parameter. If

we wished to test whether a 2-factor rather than a 1-factor model should be used
then a 2-factor model should be fitted and the loadings on the ‘minor’ second factor
studied. In some cases a specific alternative model may be suspected. For example, in
the mathematics data analysed by Goldstein (1980), separate ‘algebra’ and ‘geometry’
factors could be identified, giving (at least) a 2-dimensional model. Yet when a 1-
dimensional model was fitted, a general ‘goodness of fit’ test indicated a satisfactory
fit. This illustrates the way in which such tests can be highly misleading.

A number of alternative procedures for judging unidimensionality have been
proposed, but these tend to be statistically unsound, lack sensitivity or adopt an
unsatisfactory definition of unidimensionality. The factor analytic approach of
McDonald (1982) provides one of the most useful formulations of this problem.

12. Conditional independence

We have assumed, as is common, that the residuals e; in the GLIRM are
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independent. This is often referred to as the ‘local’ or ‘conditional’ independence
assumption. It implies that, for a group of individuals with the same set of
(multidimensional) abilities, the observed item responses are independent.

Now, for a group of such equivalent individuals, the responses to a p-item test can
be arranged as a 2” table, and the conditional independence assumption implies that
there is complete independence is this table. It is nevertheless possible to have a
situation where there are dependencies in the table, for example as a result of a
common autoregressive sequence (se¢ for example, Ackerman & Spray, 1987). In the
usual case, however, each of a group of non-equivalent individuals responds just once
to each item. In this case, a p-dimensional model can explain all the observed
dependencies, yet the true model might be p-dimensional together with further, say
autoregressive, dependencies. Thus the confounding of the dimensionality of the
between-individual vanability and residual dependencies is of practical but not
theoretical importance. Goldstein (1980) and Bell, Pattison & Withers (1988) point
out that this confounding appears to have misled Lord & Novick (1968) into defining
conditional independence in terms of dimensionality.

13. Random ability medels

One of the major problems with the fixed effects models is that we have to estimate
an ability parameter for every subject in the estimation sample. Thus, as the sample
size increases the number of parameters increases and we cannot therefore guarantee
consistent estimates (Cox & Hinckley, 1984). An alternative is to follow McDonald
(1967) and revert to the traditional factor analysis model and suppose that the ability
has a distribution among the population of individuals and then seek only to
estimate the parameters of this distribution plus the item parameters.

While such random ability models have advantages, and solve certain problems, all
of our previous discussions concerning choice of transformation, admissible
probabilities and scaling assumptions apply equally to these models. As before, we
can fit either identity models or logit or guassian models. There have been attempts,
especially in the literature on generalizability modelling, to fit multidimensional
identity transformation models treating the observed (0, 1) data in the same way as
continuous measurements, but as might be expected, these run into difficulties. To
our knowledge there have been no attempts to fit constrained identity models with
random abilities, all the theoretical and empirical work being with logit or gaussian
transformed models. We therefore restrict ourselves to these transformations.

We can write the 2-parameter logistic model as

logit(pij)=a,-+bifj+eij. (12)

We now are interested primarily in estimates for the parameters a;, b;. The f; are
assumed to have a gaussian distribution with zero mean and unit standard deviation.
The estimation procedure is iterative, where working estimates of the f; lead to new
estimates of the other parameters and a new set of values f; are then obtained based
upon the gaussian distribution assumption. Details of one version of the procedure
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can be found in Sananathan & Blumenthal (1978). The procedure avoids the problem
associated with individuals who have all zero scores or all scores equal to 1, since the
assumption of a distribution for the f; allows finite values to be predicted for such
individuals. We will have more to say about such models when we discuss
multidimensional models.

14. Non-linear models

Until now we have assumed that the relationship between the (transformed) item
response and the factor is Iinear. It is perfectly possible, however, to envisage a non-
linear model, say of the form

logit(pij)=a,-+b,-f;-+ciff+e,-j. (13)

This, clearly, is unidimensional in the sense that only one individual attribute or
variable determines the item response. We shall not discuss estimation procedures,
but a general discussion of non-linear factor analysis can be found in Etezadi &
McDonald (1983). Sometimes, a model which is non-linear can be made into a linear
one by a suitable transformation of the response variable. Furthermore, if the model
(14) actually holds and we attempt to fit the model,

logit (p;;) =a;+b; f; +e;), (14)
then (13) will not provide an adquate fit although the following model will
1°g1t(Pu)=a¢+bzf;+cng+eu (15)

A test for two dimensions will indicate the need for a second dimension (given
sufficient data), when in fact the second factor is just the square of the first. The
consequence is that the number of variables in (15) is really less than implied by the
model. If we take the view that the aim should be to describe a data set using as few
parameters as possible (consistent with fitting the data adequately) then, ideally, when
fitting an item response model, the aim should be to search for a scale or
transformation which reduces the number of separate dimensions. Non-linear models
under various different transformations seem to offer considerable scope in this
respect. '

Another extension of the basic unidimensional model is to include ‘interaction’
terms between item parameters and ability parameters, thus

logit (n;;) = a;+ bi( f;+c;)). (16)
Separate values for each c;; cannot be estimated, but, for example, if ¢;; is assumed,

for each j, to have a gaussian distribution across items or groups of items, then this
introduces an extra variance parameter to be estimated (Levine & Rubin, 1979).
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A further consequence of a non-linear model such as (13) is that p;; is no longer
necessarily a monotone function of ability. Some writers (for example Holland &
Rosenbaum, 1985) essentially define items to be unidimensional only if such a
monotone relationship exists. Such a definition, however, not only rules out general
non-linear models, it also requires a linear model to have ICCs either which are all
increasing or all decreasing, that is with discrimination parameters which all have the
same sign. Of course, with simple unidimensional linear factor models we can always
ensure this simply by changing the sign of appropriate response variables or by
redefining what is regarded as a correct or incorrect response. Whether such
redefinitions are substantively justifiable is another matter. The point is that it is the
form of the model not the sign of its coefficients which is relevant to the definition of
unidimensionality. The values of the discrimination parameters are of considerable
interest, especially in the special case where the ICCs are all increasing or decreasing,
but in a unidimensional model these values are not involved in the basic definition of
unidimensionality.

15. The reference popalation

Suppose that there are two populations, and in each one there is a single factor, but
the item parameters differ, and are not a simple transformation of each other. Thus
for population 1 we could have

pij=a;+b;fi+ey; (17)
and for population 2
pi=ci+d; fit+ ey (18)

Consider now population 3 formed by combining the two populations, where we
suppose we can write a unidimensional model

pij=h;+g:fi+es; (19)

We can see that the parameters of this new model will be weighted averages of the
parameters from the original models. If we now fit (19) to individuals from the first
population we see that the following relationship must exist between the residual
terms

esj=ey;+(a;—g)+ (bifhi)]}-

Hence, if (17) satisfies the definition for a unidimensional model, in particular that
the residuals are mutually independent with zero mean values, then the residuals for
the proposed model for population 3 do not satisfy this assumption, being related to
the factor values. Thus we need at least a 2-dimensional model for population 3 (see
McDonald, 1982, for a further discussion).

To give another example, we may suppose a two factor model where the first
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factor is discrete, that is takes a finite number, p, of values. We then divide the
population into p subpopulations on the basis of this factor. It is clear that for each
subpopulation there is just one factor exhibited since every individual now has the
same value for the discrete factor. Such a situation may often arise in practice where,
for example, there are substantial curricula differences between schools or cultural
differences between groups in terms of the response variables. In the general
population this variation will be exhibited in further factors.

It follows that the parameter values and the dimensionality of any factor model
can be specified only with respect to a specific population of individuals. Any
structure found for one population cannot be assumed to apply to any other
population or subpopulation without an empirical demonstration. This has important
implications not just for the interpretation of item response model parameters but
also for individual factor or trait estimates based upon them. Thus, for example, we
can have a minority subpopulation with its own factor structure which has littie
influence on the overall parameter values for the whole population. Application of
the latter to determine minority group individual factor scores can then lead to biases
in these. It is therefore important in any large scale implementation of IRMs to try to
identify distinct subpopulations and to study their characteristics. We note that such
efforts are rare and that most item response modelling is carried out on
undifferentiated large general population samples. While large population samples are
important, their indiscriminate use is not to be encouraged.

Most current procedures for constructing and analysing tests are based, in effect,
upon unidimensional models. We now discuss some of the main procedures and
relate them to our previous exposition.

16. Item bias and item anomalies

Much effort has gone into detecting so called ‘biased’ or ‘atypical’ items using IRMs
(see e.g. Ironson, 1983). An issue in all these procedures can be summed up by
quoting Shepard, Camilli & Averill (1981):

an item is biased if two individuals with equal ability but from different groups do not
have the same probability of success on the item (our italics).

The problem is how to decide whether the individuals do indeed have the same
ability. Clearly, it would be possible to define ability in terms of an externally agreed
criterion. Typically, however, such criteria do not exist in a simple form and so resort
is often had to other test scores, ratings and so forth. We shall not enter into a
debate of the merits of such procedures, save to note that such a debate would have
to come to terms with different perceptions of ability and in many cases the result
will be a negotiated compromise between different viewpoints.

In the context of IRMs, however, the notion of item bias is derived from an
estimate of ability based upon the model itself. Typically, two groups of individuals
with the same distinct ability estimates are compared in terms of the probability of a
correct response, for each item in turn and over the complete range of ability
estimates. It is clear that these procedures contain a circular logic, since the items
being studied help to define ability and the unidimensional models used assume no

by
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differential group differences. If we fit a model which does allow differential group
differences, such as (8), then the notion of item bias is simply equivalent to the model
assumption of group differences in item parameters. Other, more sophisticated
versions of this procedure exist, but all suffer from the same problem. Thus, so called
appropriateness measurement (Levine & Drasgow, 1982, 1988) attempts to identify
individuals with ‘unusual’ item patterns. The approach, however, is based upon the
assumption of an underlying item response model, typically a 3-parameter
unidimensional logit model, so that any unusual patterns might well be indicating the
inadequacy of the model. Of course, in one sense it is artificial to make a distinction
between an aberrant individual and an inadequate model. In practice, however,
choosing to regard individuals as aberrant rather then the model as inadequate to
cater for such individuals, has important consequences. Thus, Levine & Drasgow
(1982) maintain that:

a few examinees may be so unlike the others that their multiple choice aptitude test scores
have limited value as ability measures.

These authors go on to cite individuals who may have cheated on some of the
questions, and also some ‘exceptionally creative examinees’. There is in all this a
temptation to tailor the complexity of actual test responses to conform to the
structure of a simple model.

In like manner Tatsuoka & Tatsuoka (1982) use a unidimensional, so called perfect
or Guttman scale, model which can be thought of as the special case where the
discrimination parameters for each item become indefinitely large so that the ICC is
a simple step function. They base their procedures on the notion of subtests within
each of which items are parallel. Interestingly, these authors do recognize explicitly
the difficulty which 1s posed by a heterogeneous reference group, implying departures
from their model, but admit they have no way of coping with this. Because their
discrepancy measures are also dependent on the assumption that the items within a
subgroup are parallel, the existence of any discrepancies can also be viewed partly as
a test of this assumption as well as the assumption of a unidimensional model.

In effect, the attempt to identify discrepant items or individuals on the basis of
various models, must ultimately constitute tests for the adequacy of such models. Of
course, some observed responses may actually be incorrect (e.g. through miscoding)
and insofar as the study of residuals or discrepancies is directed towards that end the
procedures have their uses. Nevertheless, the existence of ‘extreme’ individuals or
unusual items will often be telling us that the model is inadequate. The term item
bias, in our view, should be reserved for the cases where such things as item format
or cultural stereotypes are thought to affect responses and thereby to reduce the
accuracy of the measurement which we wish to make.

17. Test equating

In many applications of testing, it is required that different tests be given to different
groups of individuals in different circumstances and perhaps at different times. It is
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also required that the test scores, or ability estimates, be reported on a common scale
so that individuals or groups can be compared. The procedures developed for this are
known as equating methods (see Angoff, 1971 for a comprehensive account). IRMs
have recently become increasingly used for equating instead of earlier methods based
upon raw test scores. We shall first deal with the latter since many of the problems of
these carry over to IRM based methods.

The basic model for the equating of two tests is that where both tests are
administered to a random sample of individuals from a specified population an
equating relationship is derived whereby the score on one test can be transformed
monotonically into a score on the second and vice versa. A variant is to administer
the separate tests to distinct random samples from the same population. Of course, in
many circumstances an adequate equating simply will not be possible. Rather than
talking about whether tests can or cannot be equated, an index of equatability,
ranging from 0 to 1 could be used. We shall not here go into the details of how the
equatings are actually carried out and the attendant practical difficulties. A discussion
can be found in Holland & Rubin (1982) and Goldstein (1986). We should point out,
however, that there is an implicit unidimensionality assumption involved in requiring
a single equating function to hold for each individual.

It is also important to note that the procedures are population dependent. There is
no guarantee that an equating relationship found in one group will hold for another
group. Moreover, equating typically takes place using random samples from general
populations and this raises issues similar to those discussed earlier concerning
subpopulations and groups. For various reasons to do with, say, curriculum or
culture, equating relationships may vary over subpopulations, so that an overall
relationship may not reflect at all accurately the relationships to be found within
subgroups or subpopulations. This raises the potentially serious issue of bias and
discrimination against certain subgroups. Unhappily there appears to be little formal
recognition of this in the equating literature and a lack of serious empirical study of
the issue (but see Angoff, 1986).

Where tests are constructed to be as nearly alike as possible, then it would seem
reasonable to assume that subpopulation equatings will be similar, although again
empirical verification of this is important. In many cases, however, tests are not so
constructed and in these cases there must exist, a priori, doubt about the constancy of
equating relationships. For example, it is often required to equate two tests, each of
which is designed for a different age subgroup (vertical equating), with an area of
overlap. In this case an equating relationship may be established within the
overlapping age range and then used outside that range. Since the tests are
necessarily dissimilar, however, there may be several factors which would cause the
relationship to vary over the subgroups defined by age.

As far as IRMs are concerned, equating is based upon the assumption of a
unidimensional model for which the items in both tests to be equated have a
common set of parameter values. Having estimated these parameters via suitably
overlapping samples or using equivalent random samples, then any individual score
can be estimated. A variant of this procedure arises in the construction of so called
scaled item banks or pools where a large number of items are ‘calibrated’, that is,
parameters are estimated from suitable samples and then tests formed from sets of
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items selected from the pool. All our previous remarks about parameter variation
between subpopulations and possible lack of unidimensionality, apply to IRM
equating (see Section 19).

The literature which seeks to attempt to validate equating almost always does so
without seriously questioning the basic model assumptions. Thus, for example, a
popular technique is to equate a test to itself. This is done by having several tests and
equating test 1 to test 2 then test 2 to test 3, etc, and finally equating the last test to
test 1 to see whether, via the chain of equatings, the first test indeed is equated to
itself. Such a procedure, however, does not address the crucial issue of subpopulation
equating.

Although we have mentioned the dependence of equating procedures on a
unidimensionality assumption, this is not strictly always necessary. If the tests to be
equated are multidimensional but the loadings for the test items are such that the
raw score or the unidimensional summary score (see below) represents the same
function of the underlying factor for each test, then both raw score and IRM
equating procedures are theoretically possible. In practice, this is unlikely to occur,
but there may be situations where it is approximately true, and this is another topic
for empirical investigation. (See Section 20).

18. Trends over time

A particular form of equating which arouses considerable interest is that whereby
two different tests are administered to samples from the same population at different
times. Generally, the same test cannot be used on more than one occasion because
knowledge of the items may have become available so that items which are known in
advance will acquire higher success rates and hence the parameters of an IRM fitted
to them will change. Also, because curriculum objectives, etc., change over time, new
items to cover such changes will need to be introduced and old and less appropriate
ones eliminated.

When a test is multidimensional there is no guarantee that the dimensions at a
second occasion will appear in the same form or with the same interpretation as at
the first occasion. In fact, the updating of items in the test militates against this.
More importantly, even if the same dimensions could be identified, we still have
different items at each occasion so that identical solutions at each occasion are
impossible. In particular, it is almost axiomatic that for those items which are
discarded or newly acquired, their parameter values, for example their difficulties,
implicitly change between occasions; that was why they were discarded or newly
introduced. Nevertheless these items will contribute to the factor definitions, and
conversely the factors are related to the items through the loadings. Instabilities or
changes in the loadings imply a corresponding change in the interpretation of the
factors.

There is a further fundamental problem with this form of equating which follows
from the fact that the item parameter values, for example the difficulties, are defined
with respect to the current population. Suppose, for a single item used at two
occasions, that its difficulty increases from occasion one to occasion two. We have no
way of knowing whether we should interpret this as the item becoming more difficult,
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or as the population becoming less ‘able’. In constructing a common scale extending
over time, we are free either to ‘anchor’ the parameter values of the items or of the
subjects, or, indeed, some combination of them. Thus, if we carry out an equating or
scaling so that items retain the same parameter values over time, this merely reflects
an assumption that it is the population which has changed rather than the items. This
fundamental ambiguity of interpretation effectively precludes statements concerned
wtih absolute changes over time.

19. Item banks, two stage and tailored testing

We have already touched upon the idea of an item bank or pool. The fundamental
element of this is a collection of items assumed to have a unidimensional structure,
and there may be several such sets representing different domains. Note that we are
not concerned here with the looser use of these terms to denote a collection of items
available for test construction, rather with a structured set of items intended to
conform to an IRM. Users of such a bank or pool are invited to make a selection of
items to form a test, and since the item parameters are assumed known, on the basis
of previous testing, any of the tests so formed will be capable of giving ability
estimates for individuals. Thus, a user might wish to do this in order to replace a
known test with a new one, and this can be viewed as an example of test equating
and our previous remarks apply.

In addition to this use, however, item banks are sometimes advocated on the
grounds that users will actually differ in their requirements, some wanting more items
of one kind rather than another. Since the items are all intended to share a single
common dimension these users can be satisfied in this respect and still have a
common, unidimensional, scale along which to compare individuals. Unfortunately,
such an argument is inconsistent. Suppose a set of items is truly unidimensional.
Aside from considerations of estimation efficiency, it is a matter of indifference which
kinds of items a user chooses since the same ability is being estimated by each one.
Once it is admitted that different users require different kinds of items, then this
becomes a tacit admission that the item set is not unidimensional with a common set
of parameter values.

Suppose the true model for an item set incorporates group differences, which are
not recognized in the operation of the item bank. Users are invited to select items for
their own use, and to treat the parameters, e.g. the difficulties, as norms for their own
populations. Thus, a user may well be able to select items especially ‘favourable’ to
her own subgroup and hence be able to demonstrate an ability in excess of that
obtained with, say, a random selection of items. Indeed, it is perfectly possible
theoretically for every user to demonstrate a greater than average ability for their
own subgroup! We should note also that this situation is generally true where users
can choose to adopt any published test with national norms attached. By a judicious
choice users may be able to present a particularly favourable picture for their own
group. Phillips & Finn (1988) cite this as one possible reason for the so called ‘Lake
Wobegon Effect’ where it was found that each of the 50 states of the United States
had a mean score on certain standardized tests above the national mean.
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An application of vertical equating procedures is to so called two-stage testing. In
this, a first stage, usually fairly short, test is given to all subjects and then each
subject is allocated one of a number of second stage tests. These second stage tests
differ in their average difficulty and the allocation of them is made on the basis of the
first stage score. Those subjects with the highest scores are given the most difficult
test and so forth. The idea behind this is to give every subject a test which contains
some easy (for them) and some difficult items—thus better to discriminate between
subjects. A common scale for all the tests is formed by equating together all the
second stage tests and the first stage test and hence is a case of vertical equating.
Thus, the remarks made in Section 17 apply to this procedure, particularly so since
several tests are being equated, not just two.

The unidimensionality assumption built into this procedure may produce some
particularly undesirable effects when it is violated. Thus, for example, since the first
stage test typically is short, many dimensions present in the second stage tests will be
poorly represented if at all, and subjects who have high ability just on those
dimensions will tend to perform poorly and be allocated to a less difficult second
stage test. Because only one dimension is assumed to exist, each second stage test
may contain different weightings for the several dimensions present, so that no fair
single score summary is possible.

A further extension of two stage testing is so called ‘tailored’ or ‘adaptive’ testing.
Here, the administration, typically by computer, is an item at a time with the choice
of next item dependent on the response to the previous one. The items are all
calibrated in an item pool, for example using a unidimensional 3-parameter logistic
IRM (see Lord, 1980, and Hambleton, 1989, for details). Again, the procedure is
heavily dependent on the unidimensionality assumption and similar remarks apply to
it as to two-stage testing.

It would seem possible with two-stage and tailored testing schemes to adapt them
to multidimensional item sets. Thus, for example, a first stage test of adequate length
could be used to estimate scores on several dimensions and then several different
second stage tests, each one strongly representing a particular dimension, applied to
obtain more accurate estimates for each dimension. Naturally, the administration of
such a procedure would be more costly, but it could avoid the more serious problems
of unidimensional procedures.

20. Multidimensional item response models and unidimensional summaries

For simplicity we deal with the two dimensional model

logit(m;;)=a;+b; f,;+ ¢ f2;. (20)

In order to fit a multidimensional model, as in ordinary factor analysis, we specify
that the f;, f,; are standardized random variables and in the usual formulation are
also uncorrelated.

We shall not go into the various issues surrounding the interpretation of
multidimensional IRMs. These parallel those of ordinary factor analysis (McDonald,
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1985) with the additional complication imposed by the choice of transformation
function. As with unidimensional models there are also the issues of models for
different populations, use of covariates and so forth. No essentially new issues arise in
these respects and the translation of the previous discussion to multidimensional
models is straightforward. As yet these models have had little empirical exposure and
hence their usefulness largely remains to be demonstrated. There is, however, one
important area where there is something to be said; namely where a unidimensional
model is fitted to multidimensional data.

In areas such as education, with diverse curricula, styles of teaching, etc., it is a
priori reasonable to assume that tests of attainment or ‘ability’ will be multi-
dimensional. At the same time it should never be overlooked that homogeneity of
instruction or preparation may convert multidimensional responses into uni-
dimensional ones. We have already explored the consequences of a failure to
distinguish between separate subpopulations when considering unidimensional
models. Now we look at what can happen when we fail to distinguish more than one
dimension.

Several authors have studied the effect of fitting unidimensional models, typically
the 2- and 3-parameter logistic fixed effects model, when at least two ability
dimensions are present. Thus, for example, Drasgow & Parsons (1983) show that, for
models with a general common factor and group factors (with non-zero loadings only
for a particular group of items), the unidimensional fit tends to emphasize different
item parameters depending on the relative importance of the different factors. Yen
(1984) studied the effect of different discrimination parameters. In general, ‘minority’
dimensions will be poorly respresented in 1-dimensional fits and this will be the case
whatever transformation is used.

Suppose we have a multidimensional IRM

Vi = ZaCuSuj+ € (21

where y;; may be any transformed item response. We now estimate a unidimensional
model, say

yij=ai+b‘-fj+uij. (22)

The estimates of a;,b; are weighted functions of the y;; and hence of the cs in (21).
Hence by varying the latter, that is by varying the relationship between the y;; and
the factors, or by selecting items with particular value of the cs, we will vary the
estimates of the a;, b; and also the average or expected values of these.

If we choose a set of items and have no knowledge of the actual factor structure
(21), nevertheless that structure, among the items, will determine the parameters of
any unidimensional model which is fitted. If we choose a set of items about which we
do have knowledge concerning the loadings in (21), then for the particular
unidimensional model we choose to fit we can fix the parameter values in (22) by
suitable choices of items {or individuals). Reckase, Ackerman & Carlson (1988)
discuss the special case where items are selected so that each has the same set of
values of the c¢s. As pointed out in Section 17, this effectively produces a
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unidimensional test, which in turn means that information about the separate
underlying factors cannot be recovered.

It follows, therefore, that where a multidimensional structure exists the choice of
items to be included in a test will determine the parameters of a unidimensional
model. These parameters are often complex functions of the parameters of the
underlying multidimensional model and hence have in general no separate
interpretation of their own. Where there is little knowledge about the underlying
multidimensional structure and where attempts are made to obtain a unidimensional
set of items by removing the ‘misfits’, any resulting unidimensional structure will
inevitably reflect the ongmal ch01ce of items in relation to their underlying
multidimensional structure.

21. Dynamic models

A feature of all the models we have described is their static nature. Only recently has
there been any consideration of models which allow that responses to questions or
items may depend on responses to previous questions or items (see Ackerman &
Spray, 1987). In principle, however, there is no reason why we cannot model the
probability of a correct response as a function of previous responses, together with
measured individual and item or question characteristics.

Such dynamic models would lead to a more ‘contextualized” view of individual
responses, which recognized that individuals are actively interpreting the overall test
situation, rather than providing a set of purportedly independent responses to items.
Furthermore, such models have no need for particular dimensionality assumptions
and to that degree may be able to provide more faithful descriptions of individual
behaviour.

22. Practicalities

It should be clear from our exposition that in order to design a single summary test
where items have a basic underlying multidimensional structure, it is likely that
multidimensional factor analysis will have a role in assisting our understanding of the
response patterns. In practice we would not in general wish to rely solely upon pure
factor analytic models. There is often a great deal of knowledge about test items and
information about individual characteristics which can be incorporated into models
as covariates. Furthermore, test items are generally not selected haphazardly. The test
constructor has in mind some idea of what factors or characteristics an item is
supposed to reflect. All such information should be used when constructing a
composite test.

The special case where there are only group factors is of some interest. Here, the
weights can be approximated by choosing the number of items from each group in
proportion to these weights and then forming an equally weighted raw score from the
chosen items. This appears, in effect, to be what is done by index constructors. The
index constructor acts as if each item in the index loads on a single factor and then
selects items to correspond to predetermined weights as described. A similar
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procedure is often followed by constructors of educational tests, typically relying on
prior knowledge or beliefs to classify items into distinct groups.

Thus, the procedure we have outlined can be viewed as a modification of index
construction techniques, whereby the item responses are regarded as being influenced
by several factors, and where empirical factor analyses combined with prior
knowledge, beliefs or theoretical assumptions are used to create the composite score
or index to reflect predetermined weights.

There are many situations where composite scores either are unnecessary or
misleading or both. Often it will be advantageous to provide a multidimensional
summary, perhaps in terms of factor scores, or perhaps in terms of separate subtest
scores for groups of items selected as reflecting particular dimensions, constructs, etc.
A useful intermediate position might be to provide a small number of summaries or
indices, each based upon a different weighting of factors. This can be particularly
useful for a multipurpose test. ‘

Finally, all the above remarks may be applied to items or questions with a
continuous or pseudo-continuous score. These include essay or constructed responses
as well as multiple choice items with no single ‘correct’ answer but different values
attached to each choice.

23. Conclusions

Item response theory is a misnomer. It is all very well to talk about IRT models
having been developed in the context of a long history of psychological theory about
the processes involved when people answer questions (Thissen & Steinberg, 1988),
but the truth is that the theory as operationalized in those models is desperately thin.
It is not about why people get questions right or wrong, but about the supposed
probabilistic nature of responses conditioned on an assumed trait called ability. It is
no accident that Lord & Novick (1968) titled their book ‘Statistical Theories of
Mental Test Scores’. When responses are modelled by a response function the model
is the theory. Substituting IRM for IRT is both a more accurate description of what
1s going on, and also an acknowledgement of the threadbare nature of the theory—as
substantive theory. Practitioners have been too content to estimate item and ability
parameters and leave it at that, a tendency encouraged by computerized adaptive
testing. We believe that a switch of nomenclature will have the effect of emphasizing
the essential task of the interpreter which is to glean insights from the results of
modelling, perhaps to the point where the models have actual heunstic value. Very
little of this style of work has been seen in the first five decades, although this issue is
starting to receive attention (see, for example, Thissen & Steinberg, 1988).

The lack of progress can be seen as a direct result of the tendency to exploit a
particular model to the exclusion of others. In this paper we have brought out the
unity of item response models by siting them within an explicit linear modelling
framework. The logistic models, for which some have claimed a special status, can be
seen merely to be one class out of many possible classes of models. While they do, in
certain respects, possess convenient statistical properties, they have no special claim
to any desirable theoretical properties. Indeed, in our view, their relative
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mathematical complexity is often a disadvantage since it may help to obscure
substantive reality. In practice, the simple identity models used over the effective
response range, typically give near equivalent results.

We have shown how the statistical assumptions made in all item response models
are also made in a number of other procedures, even where an explicit item response
model is not used. Thus, the unidimensionality assumption is typically a key
assumption in item bias studies, where the assumption of a single underlying
dimension is needed to detect discrepant items. Equating studies rely upon the notion
of a common unidimensional scale onto which each test score can be transformed
monotonically. Scaled item banks also operate on the assumption of underlying
unidimensionality. Because the bank is meant to enable user choice, the satisfying of
such choices will undermine any attempt to establish a unidimensional set of items.

In our view, there has been too little concern with the consequences of fitting
unidimensional models when reality is multidimensional. We have shown how an
assumption of unidimensionality in the presence of multidimensionality will produce
a composite dimension, the characteristics of which will reflect the choices of the test
constructor. Thus, in this situation there can be no claim for the ‘objectivity’ of item
response model estimates, nor for other procedures which rely upon a
unidimensionality assumption. We would suggest that the best scientific practice is
for the test constructor or analyst to seek vigorously for ways to reject an assumption
of unidimensionality. Unfortunately, this seems to be the exception rather than the
routine.

We are sure that there is an important place for statistical modelling of test item
responses. Nevertheless, we believe that much of the mathematical development of
such models during the last five decades has concentrated too exclusively on the
particular case of the unidimensional logit linear model and at the same time shown
an over-obsessive concern for mathematical elaboration at the expense of substantive
empirical explorations.
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