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Abstract 
This tutorial describes ways of modelling repeated measurements taken on a 
sample of individuals. It gives a brief historical introduction and then describes how 
a 2-level formulation provides a flexible and straightforward approach. 
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1. Introduction 
      The fitting of statistical models to sequential or 
repeated measurements over time on the same 
individuals, has a long history. Early interest centred 
on characterising the growth period of individuals, 
children and animals, and a discussion can be found 
in Tanner (1979). These were attempts to fit 
smoothly varying  curves to the growth period, and 
by the 1930s had spawned a large literature that 
included complex non-linear models with several 
parameters that many investigators claimed could 
be associated with ‘biologically meaningful’ 
characteristics (see Goldstein, 1979 for a 
discussion). These procedures carried out separate 
fitting for each individual’s set of measurements. 
Subsequent developments generalised these 
models to consider samples of individuals where 
terms or ‘parameters’ are included in order to 
account for the between-individual variability in 
growth patterns. In the case of non-linear models 
the work of Bock (1989) is notable. 

      The main feature that distinguishes approaches 
to the fitting of models to repeated measurements 
is the actual structure of the repeated measures. If 
observations are planned to occur at the same 
occasions for all individuals the data are said to be 
balanced.  By contrast, if observations occur at 

irregular time points they are unbalanced. The first 
setting gives rise not only to equal numbers of 
observations on each individual, but also to a choice 
of modelling approaches because the data can be 
viewed as arising either from correlated 
observations of a single response or ‘dependent’ 
variable, or from multivariate outcomes (each 
outcome associated with one observation time). 
With unbalanced data only the first approach is 
generally possible. 

      In this tutorial we shall give an overview of the 
more commonly used methods to model repeated 
measurement data, distinguishing between these 
two main settings. We shall also touch upon the 
issue of missing (incomplete) data.  We illustrate 
the various approaches by fitting alternative models 
to some growth data collected in the `Oxford Boys 
Study’ *Goldstein et al., 1994+. 

2. Analyses based on balanced data 
      We set out some basic statistical models for 
repeated measurement data starting with the 
balanced case. Our response variable is denoted by 
Y and the i-th response for the j-th individual in a 
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sample is denoted by ijy .  Suppose that there are p 

measurement occasions at times t1, t2, …, tp, for 
each individual j, j=1, …,N, and we have complete 
balanced data. To fix ideas with an example we shall 

consider the case of 3 occasions, with obvious 
generalisations, so that the data will look like those 
in Table 1. 

Table 1. Balanced data example with p=3 repeated observations taken at fixed 

occasion times 

 Occasion 1 Occasion 2 Occasion 3 

            Time  

         

Individual           

t1 t2 t3 

1 y11 y21 y31 

2 y12 y22 y32 

…. …. …. …. 

j y1j y2j y3j 

…. …. …. …. 

N y1n y2n y3n 

 
Data missingness, i.e. settings where some of the cells in this table are empty, will be discussed later. 

2.1 Multivariate model formulation 

      Multivariate analysis of variance models for repeated measures, especially those associated with the 
work of Rao (1965), are summarised in Grizzle and Allen (1969). In brief, a general model is formulated as 
follows. We write 
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      In other words the three measurements on y are 
assumed to have a multivariate normal (MVN) 
distribution, in this case a 3-variate distribution. 
Model (1) is therefore simply a multivariate analysis 
of variance with a single covariate t and thus  
assumes linear growth. Clearly this can be 

generalised to include higher order polynomial 
terms and other covariates measured on individuals 
such as gender or birthweight and even time 
varying covariates.  The innovations introduced in 
the 1960s involved considering particular structures 

for . Thus, Rao (1965) considers a structure 
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where each individual has his/her specific 
coefficients and these coefficients vary across 

individuals, with independent residuals having a 
common variance. This gives the structure 
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where I  is the identity matrix and  
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This specification of the variance matrix  leads to 
separating two components of variation: the first,  
TΩuT

T  captures how growth trajectories vary across 
individuals via the definition of Ωu, and the second 
captures the within individual ‘noise’ via the residual 

variance σ2
e. Note also that the first component varies 

quadratically with time. We shall have more to say 
about this structure when we discuss the multilevel 
model formulation. 

2.2 Latent variables formulation 

Model (1) can also be written as 
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      We have now introduced the subject specific 
intercept β1j and slope β2j which are treated as 
latent variables with known regression coefficients 
(as defined by the matrix T) and variance covariance 
matrix Ωu while the errors eij have variance 
covariance matrix Ωe.  A flexibility allowed by this 
model is that Ωe is not forced to have identical 
variances at each occasion, i.e. we can allow  Ωe 
≠σ2

e I.  The model is often represented using a path 
diagram as shown in Figure 1, which applies to the 
example with repeated observations at three fixed 

times. As usual in this field, latent variables are 
represented by circles and observed (`manifest’) 
variables by rectangles. Arrows indicate the 
direction of assumed association. Note that the 
regression coefficients (in this literature termed 
`factor loadings’) are fixed in the matrix T. The 
covariance between the two latent variables 
(represented by a double arrow joining the two 
variables) corresponds to σu01 in the covariance 
matrix of equation (3). 
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Figure 1 - Path analytical representation for the latent variables formulation  

 

 

 

2.3 Analyses based on unbalanced data 

      As before, denote the i-th measurement for the 

j-th individual by ijy . Suppose that there are pj 

measurement occasions for the j-th individual. To 
fix ideas with an example we shall consider the case 
depicted in Table 2. Here individuals are observed 
at different time points and have different total 
numbers of observations. Such a data structure 
could be viewed as a balanced one which is affected 

by missingness, i.e. where potentially everybody is 
observed at all listed time points tij, for all 
individuals j=1, …,N.  Note, however, that this is still 
not fully general, since we are assuming a fixed 
number of discrete time points. In the next section, 
and in our example, we shall allow the time points 
(or ages) to occur anywhere. 
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.Table 2. Unbalanced data example with varying number of observations per individuals pj 
out of a maximum of 5 possible time points 

 

 

 Occasion 

Individual           
Variable 1 2 3 4 5 pj 

1 Time 11t  
21t  - - - - 

 Y 11y  
21y  - - - 2 

2 Time 12t  
22t  - 42t  - - 

 Y 12y  
22y  - 42y  - 3 

… … … … … … … … 

 … … … … … … … 

j Time jt1  jt2  jt3  - jt5   

 Y jy1  jy2  jy3  - jy5

 

4 

… … …. …. …. …   
For such unbalanced designs, assuming that the data are ‘missing’ at random, modifications to the standard 

multivariate or latent variable analyses are available (Muthen, 1997), 

3. The multilevel model for repeated measures 
      The seminal paper that introduces the modern 
approach to fitting repeated measures data is that 
of Laird and Ware (1982). In essence their model - 

often referred to as a linear mixed or random 
coefficient model - can be written, analogously to 
(1) – (3) as 
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      The essential difference between the earlier 
specification and (5) is that in (5) the time points 
are allowed to be quite general, that is to differ 
across individuals so that individuals need not have 
the same number or spacing of time points. This 
flexibility is available because (5) is essentially a 
univariate model where the response is directly 
modelled as a function of time. It is in fact a 2-level 
model and thus a special case of a general 
multilevel model (see Goldstein, 2003).  As before 
extensions include higher order polynomial terms 
for t and other explanatory variables. 
 

3.1 Semi-parametric modelling 
      Alternative approaches to parametric modelling 
of repeated measurement data, using the multilevel  
formulation, involve fitting smoothing or regression 
splines. Often, the results generally are best 
presented graphically, although features of the 
fitted growth curves at chosen ages can be derived 
numerically. We now show how these can be fitted, 
concentrating on the regression spline model.  

 
3.2 Smoothing splines 
      Smoothing splines are non-parametric functions 
of the outcome variable, Y,  on time, T, that are 
selected according to a ‘roughness penalty’. As 

before, let ijy  be the i-th measurement for the j-th 

individual taken at time ijt . A simple example of a 

smoothing spline would be a running mean based 
on a moving window (of size h) which is placed 
symmetrically around each data point, tij.  The 
estimate of the outcome specific to the point at the 
centre of the window is then calculated as the 
mean of the outcome values belonging to that

 window or as the prediction from a least squares 
model fitted to those data points.  
      More general approaches produce predictions 
based on weighted functions, called kernels, across 
the whole range of data, with points closer to the 
centre of the kernel given the greatest influence. 
Changes in the chosen kernel function will lead to 
changes in the fit to the observed data. However, 
any improvement in fit may lead to a very jagged 
shape so that roughness penalties that provide a 
compromise between fit and smoothness, are used 
to guide the selection of kernel function. This leads 
to penalized least squares estimators and automatic 
selection procedures such as cross-validation 
[Green and Silverman, 1993], and these procedures 
can be fitted within the framework of a multilevel 
or random coefficient model; see for example Wang 
(1998).  In the next section we describe a flexible 
system that is easily embedded within a multilevel 
framework.  

 
3.3 Regression splines 
      The simplest example of a regression spline is a 
piecewise linear model where simple linear 
regression models are fitted within consecutive 
intervals, defined by so-called knots, with the lines 
joining at the knots.  More general models include 
quadratic and cubic splines, with the latter being 
most commonly used [Pan and Goldstein, 1998]. In 
such cases the joins can be made ‘smooth’ in the 
sense defined below. The main problem with this 
approach is the selection of the number and 
location of the knots to be used.  
      A simple piecewise quadratic version of this 
model, with a single knot at time t0, can be written 
as follows: 
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where the term (ti-t0)+ is ‘grafted’ onto the existing 
polynomial. In (6) for simplicity we have dropped 
the suffix j. This function has continuous first 
derivatives and therefore will be smooth at the

 location of the knot. Thus, at time 0t  the predicted 

value is 2

02010 tt  and the first derivative, 

the rate of change with time, is 021 2 tt .   
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Thus, at a very small later time 0tx  the 

predicted value is 2

3

2

210 xx  , that 

is a point very slightly perturbed away from the 
quadratic curve defined at time t0  

      A direct generalization of this model to a 

multilevel structure with intercept and slope terms 

varying across individuals can be written as: 

 

0

00

0

2

2

101

2

0

1

0

111

000

2

03

2

210

                0

     )(
)(

),0(~

    ),,0(~

)(

tt

tttt
tt

Ne

MVN
u

u

u

u

etttty

ij

ijij

ij

eij

uu

u

uu

j

j

jj

jj

ijijijijjjij

                                                  (7) 

      This is just a 2-level model with an additional 
quadratic term smoothly ‘grafted’ onto the average 

quadratic relationship at time 0t , and with each 

individual having a subject-specific intercept β0 and 
subject-specific slope for time β1. For simplicity here 
the quadratic coefficients β2 and β3 are assumed not 
to vary across individuals, but either or both could 
be made random. 

4. Estimation and software 
      For continuous normal response measurements 
these models are readily fitted using maximum 
likelihood (ML). With balanced data, this gives 

unbiased estimates of although, especially where 

there are relatively small numbers of individuals, 
somewhat biased estimates of the parameters in Ω.  
In such cases we can use restricted maximum 
likelihood estimation (REML) which gives unbiased 
estimates of all the parameters (see for example, 
Rabe-Hesketh and Skrondal, 2008). REML 
estimation in its simplest form is the familiar use of 
the divisor n-1 for a variance rather than n which is

 the maximum likelihood estimator. Multivariate 
models can be fitted using SAS, Stata, SPSS and 
specialised software such as Mplus and MLwiN. All 
but MPlus allow a general 2-level model to be fitted 
with both ML and REML estimation.  

5. Example: The Oxford boys data 
      The dataset consists of repeated measures of 
the height of 26 boys taken on 9 occasions each 
over a 2 year spell from a residential school in 
Oxfordshire, England. Data are available as an 
EXCEL spreadsheet for download at 
http://www.journal.longviewuk.com/index.php/llcs
/issue/data/repeatedmeasurestutorial/OXBOYS.XLS      
The boys were just over 11 years of age at entry.  
The age scale in the following models is centred at 
12.25 years. Figure 2 shows their observed growth 
profiles and highlights the regularity of their 
observed time points, with only a few exceptions. 
There is clearly a ranking in height at entry that is 
generally maintained over the full observation 
period. 
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Figure 2. Observed growth profiles 

Figure 2 – Observed growth trajectories of 26 boys- Oxford Boys Study 
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      The boys seem to increase their rate of growth with time, from around a mean of 6 cm/year between 
about age 11 and 12 years to nearly 9 cm/years shown in Table 3. The standard deviation of growth also 
seems to increase with time. 
 

Table 3 – Mean and standard deviation (SD) of the yearly rate of increase (cm/year) between successive 

visits by age interval – Oxford Boys Study 

Age interval (years) Mean SD 

11 ¼ to 11 ½ 6.53 2.53 

11 ½  to 11 ¾  5.05 1.91 

11 ¾  to 12 6.21 1.28 

12 to 12 ¼  6.77 4.50 

12 ¼ to 12 ½   5.31 2.75 

12 ½  to 12 ¾  7.26 3.58 

12 ¾  to 13 8.95 4.01 

13 to 13 ¼  7.23 3.22 

 
     The repeated observations are effectively balanced, as every boy was observed 9 times, roughly every 3 
months. Note the high correlation among these repeated observations as well as its strengthening when 
they are closest in time. 
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Table 4. Observed correlations between height measured at 9 visits - Oxford Boys Study. 

  Age at visit (years) 

  11 ¼ 11 ½ 11 ¾ 12 12 ¼  12 ½  12 ¾ 13 13 ¼  

   
   

   
   

   
   

  A
ge

 a
t 

vi
si

t 
(y

ea
rs

) 

11 ¼  1.000         

11 ½  0.996 1.000        

11 ¾  0.997 0.999 1.000       

12   0.992 0.996 0.997 1.000      

12 ¼    0.987 0.991 0.992 0.996 1.000     

12 ½  0.983 0.989 0.991 0.995 0.997 1.000    

12 ¾  0.970 0.974 0.977 0.983 0.991 0.993 1.000   

13   0.962 0.963 0.968 0.975 0.984 0.988 0.995 1.000  

13 ¼ 0.957 0.959 0.964 0.970 0.979 0.986 0.992 0.998 1.000 

      
 
We can fit model (1) - or equivalently model (4) – to 
these data by treating the 9 observations as if they 
were taken at exactly the same set of 3-monthly 
intervals (which is nearly correct- see Figure 2).  We 
do this by specifying the (9 x 2) matrix T in equation 
(4) as a column of 1s and a column where the 
common observation times measured in years ti , 
i=1,..9, are:  (-1.0, -0.75, -0.50, -0.25, 0.0, 0.25, 0.50, 
0.75, 1) 
      The model is centred at age 12 ¼ years.  This 
choice of values will lead to the intercept term 
referring to the mid observation. The results are 
shown in Table 5 where we fit both a linear model  

 
and one that includes a quadratic term in the fixed 
part of the model that describes average growth.  
With the first specification we estimate that the 
random intercept β0 has mean 149.5 cm and 
variance 63.2 cm2 while the linear slope β1 has 
mean 6.5 cm/year and variance 2.7 (cm/year)2. The 
random intercept and random slope have 
covariance 8.41 and a corresponding correlation of 
0.64. Comparisons of log likelihood values indicate 
that specification 2 with a quadratic term gives a 
better fit to the data (deviance=21.7 to be judged 
according to a chi-squared distribution with 1 
degree of freedom, p<0.001).  
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Table 5 – Alternative specifications of model (4) with 2 latent variables β0 and β1: as a linear function of 

age (specification 1) and as a quadratic function of age (specification 2): ML estimation. Estimates and 

standard errors (SE). 

  Specification 1 Specification 2 

  Coef SE Coef SE 

Latent variable:     

β0   (intercept)     

 Mean 149.50 1.56 149.30 1.56 

 Variance 63.16 17.53 63.16 17.53 

β1    (linear effect of age 

(yrs, centred)) 

    

 Mean 6.54 0.33 6.54 0.33 

 Variance 2.72 0.78 2.74 0.79 

Fixed effect:     

 Age2 (yrs, 

centred) 

- - 0.53 0.11 

Cov(β0,β1) 8.41 3.10 8.41 3.10 

Residual level 1  

variance(s) 

0.42  0.05 0.38 0.04 

     

-2 Log likelihood 721.28 699.55 

        
 
Exactly the same results as those of table 5 can be 
obtained using a multilevel approach with the 
actual times of observations replaced by their 
planned times, ie 11 ¼, 11 ½ , etc., centred around 
age 12 ¼ years. The first two columns of table 6 
report results in the format usually adopted with 
multilevel models.  Here we also compare the 
results obtained using ML and REML estimation. 
Because the sample size is relatively small (26 boys  
 

 
 
measured 9 times) the estimates of the random 
part of the model do differ somewhat. 
      We now fit a multilevel model where we use the 
exact age at the measurement occasions (third set 
of columns in Table 6). There are some small 
differences in estimated values from those obtained 
using the planned ages due to the fact that there is 
only slight variation from the target ages of 
measurement.
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Table 6 - Alternative specifications for model (5) 

  Multilevel growth model with time defined by: 

  Planned age at visit Observed age at visit 

  ML REML REML 

 Coef SE Coef SE Coef SE 

Fixed part       

 Intercept 149.52 1.56 149.52 1.59 149.37 1.59 

 Age (yrs, 

centred) 

6.54 0.33 6.54 0.34 6.53 0.34 

Random 

part 

      

 σ2
Intercept 63.15 17.53 65.68 1.59 65.30 18.49 

 σ2
Age  2.72 0.79 2.84 0.84 2.83 0.83 

 σIntercept-Age 8.41 3.10 8.75 3.29 8.71 3.27 

        

Residual 

variance 

0.42 0.05 0.42 0.05 0.44 0.05 

-2 Log 

likelihood 

721.28 719.40 724.08 

 

      
As before, adding a quadratic term to the last 
model we fitted, we find that it is significant (see 
first set of columns in Table 7).  
       We can compare the model with a quadratic 
term with one obtained using a multilevel quadratic 
regression spline with a single knot at the centred 
age of zero (i.e. age 12 ¼ on the original scale), 
which is an example of model (7). We fit two  
specifications of this model: the first has both the 
standard quadratic term in age and the additional 

term identifying the local departure from the 
quadratic function after the knot at 0. The second 
removes the original quadratic term as it was found 
not to be significant. Figure 3 shows the predicted 
average growth curve for this final model.  The 
quadratic component only comes in at the mean 
age of 12 ¼ years: before that the growth is 
effectively linear. This illustrates the flexibility that 
we can introduce within the class of models that are 
based upon polynomials. 
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Table 7- Alternative specifications of model (5) and model (7) – time defined as the observed age at visit 

(in years, centred) and REML estimation 

  Multilevel model  Regression spline model 

 Coefficient SE Coefficient SE Coefficient SE 

Fixed part       

 Intercept 149.06 1.56 149.06 1.59 149.06 1.59 

 Age (yrs, 

centred) 

6.52 0.33 5.93 0.42 5.89 0.35 

 Age2 (yrs, 

centred) 

0.74 0.10 0.05 0.31   -   

 
2(Age)  

- - 1.40 0.59 1.49 0.19 

Random part       

 σ2
Intercept 62.81 17.43 65.32 18.49 65.32 18.49 

 σ2
Age  2.74 0.78 2.85 0.83 2.85 0.83 

 σIntercept-Age 8.38 3.09 8.72 3.28 8.72 3.28 

        

Residual 

variance 

0.44 0.05 0.33 0.04 0.33 0.03 

-2 Log 

likelihood 

780.20 674.74 674.26 
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Figure 3. Predicted average growth curve for quadratic regression spline model with linear growth  
before 12 ¼ years. 

 

 

6. Checking assumptions  
      Several diagnostic procedures are available for 
multilevel models to check the various assumptions 
made, especially that of normality (See Goldstein, 
2003 Chapter 2 for more details). To illustrate, 
Figure 4 shows normal quantile plots for the level 2 
(individual) and level 1 (occasion) estimated 
standardised residuals. If the assumption of 
normality for the random effects (residuals) is 
correct these plots should be approximately linear. 
At level 2 there is some evidence of departure from 
normality for the slope estimates, but little 
evidence at level 1. In particular there are no 
estimates that appear to be real outliers. 

      In fact, we can go on and allow the coefficient of 
the grafted quadratic term to vary randomly over 
individuals and this does improve the fit. We omit 
the details but it produces more linear plots at level 
2 as shown in Figure 5.  
      A further assumption that we have made is that 
the residuals, especially those at level 1 are 
independent. In some cases, for example when 
measurements are taken very close together, this 
may not be the case and we may need to fit, say, a 
model with autocorrelated level 1 residuals. For a 
discussion of this case with an example see 
Goldstein et al., (1994). 
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Figure 4. Standardised residuals for model in column 3 in Table 7. 

Level 2 

 

Level 1 
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Figure 5. Standardised residuals at level 2 for model in column 3 in Table 7 
with additional random effect for grafted quadratic. 

 

 

7. Conclusions 
    In this tutorial we have described the fitting of 
models to repeated measures data using a multilevel 
model formulation that allows considerable flexibility 
and is easily generalisable. Our basic model can be 
extended to incorporate more complex data 
structures such as further levels of nesting, for 
example of individuals within schools or 
neighbourhoods or clinics, and to cross classifications 
where individuals are simultaneously classified, for 
example by where they live and where they are 
educated. We can also add further predictors such as 
an individuals’ gender or ethnic background.  
      The use of regression splines further extends the 
usefulness of these models by allowing different  
 

 
degrees of polynomial to define the prediction curve 
over different time periods.  
      We have provided some historical background. 
Prior to the mid 1980s almost all the published analyses 
used multivariate approaches and these can still 
sometimes be found in contemporary literature, but 
are effectively best viewed as special cases of the more 
general approach using multilevel models. Thus, in the 
special case where there is a fixed number of discrete 
occasions the 2-level model becomes equivalent to the 
multivariate model. It is, however, more general and 
more flexible, especially since it easily allows further 
levels of nesting structure. With the ready availability of 
multilevel software, it can be recommended as the 
approach of choice for most purposes. 
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