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Abstract:  Fitting multilevel models to discrete outcome data is problematic because the discrete
distribution of the response variable implies an analytically intractable log-likelihood function. Among
a number of approximate methods proposed, second-order penalised quasi-likelihood (PQL) is commonly
used and is one of the most accurate. Unfortunately, even the second-order PQL approximation has been
shown to produce estimates biased toward zero in certain circumstances. This bias can be marked especially
when the data are sparse. One option to reduce this bias is to use Monte-Carlo simulation. A bootstrap
bias correction method proposed by Kuk has been implemented in MLwiN. However, a similar technique
based on the Robbins—Monro (RM) algorithm is potentially more efficient. An alternative is to use simu-
lated maximum likelihood (SML), either alone or to réfine estimates identified by other methods. In this
article, we first compare bias correction using the RM algorithm, Kuk’s method and SML. We find that
SML performs as efficiently as the other two methods and also yields standard errors of the bias-corrected
parameter estimates and an estimate of the log-likelihood at the maximum, with which nested models can
be compared. Secondly, using simulated and real data examples, we compare SML, second-order Laplace
approximation (as implemented in HLM), Markov Chain Monte-Carlo (MCMC) (in MLwiN) and nume-
rical integration using adaptive quadrature methods (in Stata’s GLLAMM and in SAS’s proc NLMIXED).
We find that when the data are sparse, the second-order Laplace approximation produces markedly lower
parameter estimates, whereas the MCMC method produces estimates that are noticeably higher than those
from the SML and quadrature methods. Although proc NLMIXED is much faster than GLLAMM, it is
not designed to fit models of more than two levels. SML produces parameter estimates and log-likelihoods
very similar to those from quadrature methods. Further our SML approach extends to handle other link
functions, discrete data distributions, non-normal random effects and higher-level models.
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1 Introduction

Multilevel models for discrete data are extremely useful in a wide range of social science
and medical settings, where the principal outcome is discrete and the data are naturally
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clustered. For example, consider the data on the investigation of contraceptive use
(ves/no) where individuals are clustered in localities, (discussed in Section 2).

However, unlike when the data are continuous, when (restricted) maximum likelihood
estimates can be readily obtained using, for example, the iterative techniques developed
by Goldstein (1986, 1989), fitting such models is not straightforward. This is because the
discrete distribution of the response means that the likelihood is computed by integrating
a product of discrete and normal densities, which has no analytical solution.

To tackle this problem, two classes of approximation have been developed; marginal
and penalised quasi-likelihood (Breslow and Clayton, 1993; Goldstein and Rasbash,
1996). Roughly speaking, both methods approximate the discrete multilevel likelihood
by a Gaussian multilevel likelihood, which can then be fitted in the usual way. However,
both approximations generally: yield parameter estimates that are biased towards zero
(Rodriguez and Goldman, 1995; Lin and Breslow, 1996). This is particularly the case
when the response data are binary, and the fitted probabilities are close to 1 or 0. This
bias is more marked if there are relatively few observations at the bottom level of the
hierarchy for each unit at the second level of the hierarchy (for example few repeated
observations on each individual). Further, these approximate methods do not yield an
estimate of the log-likelihood for comparing nested models.

The problems with marginal and penalised quasi-likelihood have led to the deve-
lopment of a variety of proposals-for reducing the bias. Lin and Breslow (1996) have
proposed an analytical bias correction. An alternative is to extend the Taylor expansion
in the penalised quasi-likelihood (PQL) to higher order. One such example is by Rau-
denbush et al. (2000) who used a sixth-order Laplace approximation (Laplace6) to the
marginal likelihood with maximization by Fisher scoring. This approach is implemented
in HLM 5. The Fisher scoring step has subsequently been replaced by EM fitting of a
second-order Laplace approximation in HLM 6.01 (henceforth EM-Laplace2) (Cong-
don, 2005). However, the quasi-likelihood approach does not provide an estimate of the
log-likelihood at the maximum and the higher order Taylor expansions may be difficult
to fit.

Another option is to use Monte-Carlo simulation. One proposal, due to Kuk (1995),
is implemented in MLwiN (Rasbash et al. 2000); it is known as bootstrap bias cor-
rection. The Robbins—Monro (RM) stochastic approximation method (Wetherill and
Glazebrook, 1986) can also be applied to this problem, and is potentially fully effi-
cient. Unfortunately, neither of these two methods readily gives standard errors of the
bias-corrected parameters. Another contender is simulated maximum likelihood (SML)
(McCulloch, 1997). SML is attractive because it yields standard errors of the bias-
corrected parameter estimates and an estimate of the log-likelihood at the maximum.
Further, it can be used to fit models with non-normal random effects.

Alternatively, a Bayesian approach can be pursued using Markov Chain Monte-Carlo
(MCMC) methods where exact inferences can be made based on their posterior distri-
butions of the parameters. MCMC methods have also been implemented in MLwiN
(Browne, 2000).

1.1 Outline

The main purpose of this article is to evaluate three different simulation-based
approaches to bias correction in discrete two-level models: Kuk’s method, the RM search
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and SML. A secondary aim is to use simulated and real data examples to compare and
contrast the best simulation-based bias correction method with promising alternative
methods, specifically EM-Laplace2, MCMC and numerical integration (using adaptive
quadrature).

The plan for the article is as follows. Section 2 presents data from studies that helped
to motivate this research: these are typical of discrete, sparse, multilevel data sets. Sec-
tion 3 describes and compares bias correction using Kuk’s method and the RM search.
Properties of the methods are highlighted with a simulation study. Section 4 describes the
application of PQL (2) followed by SML, and compares it with the other two methods
and numerical quadrature as implemented in SAS proc NLMIXED.

The illustrative analysis of two data sets (using second-order PQL, second-order PQL
followed by SML, EM-Laplace2, MCMC-and mumerical quadrature) is given in Section
5 and a comparison of SML and numerical integration approaches using simulated data
sets is given in Section 6. We conclude with a discussion in Section 7.

2 The data

Here, we briefly describe two data sets that we analyse in Section 5. USAsmall is a
simulated data set based on a hierarchical structure similar to that of a multistage
clustered survey of prenatal health care in a developing country described in Rodriguez
and Goldman (1995). The response is ‘whether or not mothers received modern prenatal
care during pregnancies’ with a set of covariates that are ‘measured’ at the individual,
family and community levels. In this data set, 737 children (level 1 units) are nested
within 479 families (level 2 units). The interesting feature of this data set is that a high
proportion (56%) of the families have only one child, as this sparseness may cause
marked biases in the quasi-likelihood estimates.

The second data set, BANG, is a sub-sample of the 1988 Bangladesh fertility survey
of contraceptive use (Huq and Cleland, 1990). In this survey, respondents were selected
using a two-stage cluster sample design. Clusters, corresponding roughly to villages in
rural areas and mobhalla (neighbourhoods) in urban areas, were taken as the primary
sampling units (PSUs) and selected with probability proportional to size. They were
stratified by district and urban/rural area. Amin ez al. (1997) analysed the data using a
three-level logistic regression model with women (level 1) nested within PSUs (level 2)
and the PSUs nested within districts (level 3).

Approximately, 20% of the women (level 1 units) in the original sample were chosen
randomly to be included in this sub-sample. The second level (PSUs) is ignored in our
illustrative analysis in Section 5, as SML has not yet been implemented for higher-level
models. Thus, the sub-sample analysed consists of 1934 women (level 1 units) from 60
districts (level 2 units). To be included in the sample, a woman had to have been married
at some time (ie, be an ‘ever married’ woman). On average, there are 32 women for each
district, but this ranges from 2 to 118. The researchers were interested in exploring the
relationship between the use of contraceptive at the time of the survey and a number
of covariates including age, the number of existing children and the type of region of
residence.
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3 Comparison of Kuk’s method and RM search

In this section, we briefly outline and discuss two computer intensive methods for bias
correction: Kuk’s method and the RM algorithm, as it applies to this problem.
Background: Consider, two-level data consisting, for example, of repeated observa-
tions on individuals. Let y; denote the ith response from a subject (i = 1,...,I), and
assume that responses from different subjects are independent. For the sake of simplicity,
the subscript, j, for subject is omitted throughout. Let # denote a p-vector of subject-
specific random effects, assumed to follow a multivariate normal distribution N(0, ¥),
with density f(«, £). Conditional on subject-specific random effects and covariates, the
two-level multilevel model assumes individual repeated observations are independent.
They follow a discrete distribution, denoted by g(v;|u, B, xi,zi); (i = 1,...,I), where

Elyilu, x;1 = A7 1(x! B + 2] u)

x; is a (g x 1) vector of covariates at the ith response with (g x 1) coefficient vector 8,
z;i is a (p x 1) vector of covariates for the random effects and X is the link function (eg,
logistic, probit, log). ’

The likelihood for the I observations on this individual is then

I
L0582 = [ [T (el B 20, B B.1)

=1

where the integral is over the p-dimensional normal distribution of the random effects.
As already discussed, when the response model, g, is normal (and A is the identity link),
the integral is tractable and (restricted) maximum likelihood estimates can be found
using, for example, (R)IGLS (Goldstein, 1989). However, when the response is discrete,
there is no closed form expression for the integral. There are two approaches to obtain
approximate maximum likelihood estimates. One is to replace the likelihood above by a
quasi-likelihood (marginal or penalised), which can be maximised using the algorithm
for normal models (Breslow and Clayton, 1993; Goldstein and Rasbash, 1996). The
other is numerical or Monte-Carlo integration, which we return to below.

While quasi-likelihood estimates are computationally relatively quick to calculate,
the resulting fixed and random parameters tend to be biased towards zero. This bias
is particularly noticeable for-the variance of the random effects, X, and persists even
if a second-order PQL approximation is used, particularly if there are few level 1 units
for each level 2 unit and/or the probabilities are close to 0 or 1. Accordingly, it is often
desirable to carry out a second stage of bias correction.

Below, we compare the method proposed by Kuk (1995) with an application of the
RM search algorithm to this problem. As the RM algorithm has certain optimality
properties, its use may be preferable in practice. First, we briefly outline the method for
bias correction proposed by Kuk (1995) and then describe our application of the RM
search algorithm to the problem.
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3.1 Kuk’s method for bias correction

Let 6 be the vector of parameters in the model (fixed and random) and suppose that

quasi-likelihood estimation on the observed data gives the biased estimate 8. Start the

algorithm with Ogc = 0. At step 1:

1) Use a parametric bootstrap to simulate H data sets from the model with parameters
5.

2) Fit the model (using quasi-likelihood) to each of these H data sets, obtain-
ing H bootstrap estimates 6;,h = 1,..., H. Calculate the average of these,
0_* = ZE:I é;/H' -

3) SetBi. =65 + (6 —6™).

4) Repeat steps 1 to 3 until |éﬁc — éﬁEll is acceptably small.

Typically, H is 300 to 1000, and at least five iterations are needed.

Full details are given by Rasbash et al. (2000). Kuk’s method has been implemented
in the MLwiN software; it is fairly reliable but computationally intensive. A drawback

is that there is no ready estimate of the standard error of the bias-corrected estimates.
To see why, recall that 8 is defined to be the vector of parameter estimates, and note that

the bias-corrected estimate can be thought of as some function h(6), with approximate
variance (from a Taylor expansion) V Var(9)VhT. While quasi-likelihood estimation
gives an estimate of Var(6), bias correction generates little information about Vb in the
neighbourhood of »(6) and additional simulation is needed to estimate this.

3.2 Application of the RM method to bias correction

Kuk (1995) does not discuss the efficiency of his method, in terms of obtaining the
smallest MSE for the estimated bias of the PQL parameter estimates given a fixed number
of simulated data sets. In contrast, the RM search process is known to be fully efficient
under certain circumstances (Wetherill and Glazebrook, 1986, chapter 9). Further, it has
been usefully applied to the problem of finding confidence intervals by test inversion
(eg, Carpenter, 1999).

Accordingly, we investigated applying this method to bias-correcting quasi-likelihood
parameter estimates. Recalling 6 is the vector of parameter estimates (fixed and random)
the RM algorithm is as follows: ’

Denote by 6 the possibly biased quasi-likelihood estimate of 8 obtained by fitting the
model to the observed data. Now let éﬁc be the ith bias-corrected estimate from the RM

algorithm and set él(s)c = 0. At step i:

1) Simulate a data set with parameter values éé_cl, and find the quasi-likelihood
parameter estimates, denoted 6*.

2) Setbp- = OﬁEl + a;(@ — 6%), where a; = ¢/i, and the choice of ¢ is discussed below.

3) Repeat steps 1 and 2 until convergence.
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In contrast to Kuk’s method, the RM algorithm only requires 1, not H, data sets to be
simulated at each step; however, the number of steps required till convergence is typically
much greater. The choice of the constant ¢ is important; if it is chosen optimally, then
the RM algorithm makes efficient use of the simulations; more formally, it achieves the
Cramér-Rao lower bound for estimation of the bias of the PQL estimates in the limit as
i —> 0o (Wetherill and Glazebrook, 1986, chapter 9).

Both Kuk’s method and the RM algorithm can be thought of as stochastic versions of
a Newton-Raphson search. To see this, consider the problem of finding bias-corrected

estimates as the problem of finding the zero of the equation k(8) = 6 — b(8), where b
gives the expected quasi-likelihood estimate from a data set with true parameter 6. If k

were known analytically, given the last estimate ééal, the new estimate is
e = Oic! + REEHITRGEHY

where, in the general case of more than one parameter, k is a vector function with
derivative Vk.

In Kuk’s method, we assume that Vk = 1, and use a Monte-Carlo estimate of k(6),
based on H bootstrap data sets,

In contrast, the RM approach uses H = 1, and convergence occurs because the update
steps, ¢/i, go to 0 as i — 0o. Also the RM method asymptotically (as i — 00) achieves
the Cramér-Rao lower bound for unbiased non-parametric estimators if the constant ¢
is chosen as ¢ = {Vk(#)} 1, where 0 is the true parameter value.

The attraction of the RM algorithm is that the efficiency declines slowly from the
optimum provided ¢ is over-estimated. However, if it is too small, the efficiency can
decline quite fast (Wetherill and Glazebrook, 1986).

However, as in practice the true value of 6 is unknown, and V& is usually setequal to 1,
it is unclear which method will be more efficient. We, therefore, carried out a simulation
study to investigate this, which we briefly report in the next subsection.

3.3 Simulation study to compare Kuk’s method and RM algorithm for bias
correction

Following Kuk (1995), 100 data sets were simulated from a two-level logistic model,
logit(p;;) = Bo + Pixij + uj, with two level 1 units per level 2 unit (ie, i = 1---2,
j=1---15), x;j from —14 to 15 in steps of 1, Bop = 0.2, B1 = 0.1, u; ~ N(O, 0'3) and
o2 = 1. The response is binomial with 7 = 6.

All experiments used 500 simulations in total. Various choices for the two bias cor-
rection methods were explored. For Kuk’s method, we performed 10 iterations of bias
correction with H = 50 simulations each and 50 iterations with H = 10 simulations
each. For the RM algorithm, the constant, c, is chosen to be 1 and 1.5 with 500 iterations
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Table 1 Comparison of bias-correction by Kuk’s, Robbins-Monro, SML and numerical quadrature {(SAS
NLMIXED, see Section (4.3)) methods

Simulated Numerical
maximum quadrature
Kuk’s Robbins-Monro likelihood (SAS NLMIXED)
a a — 1qa —_ a H 1
Average of 10 50 c=1 ¢ = 1.5 Not applicable Not applicable
True glmmPQL
value  estimates 500 100 5000 500  500° (draws) (a) (b)
Po 0.2 0.181 0.188 0.189 0.185 0.187 0.203 0.190 0.193
B 0.1 0.093 0.097 0.095 0.095 0.096 0.099 0.099 0.099
ok 1.0 0.796 1.025 1.018 0.986 0.980 0.939 0.927 0.968
Mean Squared Error .
Po . T -0.126 - 0.140 "I° 0.133 0.127 0.136 “0.135 0.133
B 0.00133 0.00144 0.00134 0.00135 0.00134 0.00134 0.00133
ol 0.678 0.712 0.549 0.526 0.561 0.478 0.478

(For SAS NLMIXED, column (a) reports the average over the 99 simulated datasets for which NLMIXED
converged with positive Hessian eigenvalues; column (b) reports the average over the 84 simulations for
which NLMIXED reported all projected gradients <0.001 at the final step.)

aNumber of steps.

PNumber of simulations.

in both cases. First-order PQL estimation using the glmmPQL function in the MASS
library (Venables and Ripley, 2002) of R (version 1.6.2) was used to obtain the initial esti-
mates, which were then bias-corrected. Note the algorithm implemented in glmmPQL
differs from that of Goldstein and Rasbash (1996). In brief, the variance in glmmPQL
is estimated as a proportion of V(y;|u«); hence, it allows under- or over-dispersion by
default. The results are in Table 1.

All three glmmPQL estimates are biased downwards towards zero and the bias is
largest for the variance. In line with theory suggesting the RM algorithm, it is fairly
efficient if ¢ is close to its optimum value, mean squared errors from the RM algorithm
with ¢ = 1.5 are close to or smaller than those from Kuk’s method. This suggests that the
RM algorithm with ¢ = 1.5 is preferable. However, in other examples ¢ may be different;
moreover neither method gives ready estimates of the variance of the bias-corrected
estimates.

4 Simulated maximum likelihood

An alternative approach to finding maximum likelihood estimates for multilevel models
with discrete responses is to use Monte-Carlo integration to repeatedly evaluate the
likelihood given by Equation (3.1) as a search is carried out over plausible values of 8
and X to find those which give the maximum.

We now describe how this can be done using importance sampling (see eg, Ripley,
1987, p. 122). Briefly, if a random variable X has a probability density function p(x),
and g(x) is a probability density function defined on the same support, then, for any
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function k,

H
1
[ pdx = £ 3 kG pConat) @)

h=1

where (x1,..., xy) is an independent identically distributed sample from the density
q(x), and the approximation becomes exact as H — 00. The probability density g(x)
is known as the importance density.

We can apply this idea to Equation (3.1) as follows. Let ¥ be the quasi-likelihood
estimate of X. Choose as the importance density, the multivariate normal density with
mean 0 and covariance matrix X; which we write as f («#, X). Simulate a large number, H,
of draws from this distribution, (#1,...,uy). Then applying the importance principle
4.1},

I
L(y;B,5) = f [Tte®ilu, B, xi, 20} (4, ) du

=1

1 ili[ (8l B, s ) i D).

~ - (4.2)
H h=1i=1 f(up, X)

This approximation can be used in two ways. First, we can obtain an estimate of the
log-likelihood at the quasi-likelihood parameter estimates by setting (8, X) equal to the
quasi-likelihood estimates (8, X). In this case, the importance ratio will be equal to 1.

Second, by repeatedly calculating the right hand side of this expression at various
values of (B8, X), we can search for the parameter values that maximise the simulated
likelihood. Note that we do not simulate a new sample, (u1,...,%y), as the search
progresses. Rather, we simulate a sample at the beginning, and, conditional on this,
find (B8, ¥) to maximise the Monte-Carlo estimate. If a new sample is drawn, then the
estimate of the log-likelihood will be slightly different at the same parameter values,
which is sufficient for optimising software to report an error.

In order to search for the maximum, optimising software (which uses versions of the
Newton—Raphson search) requires the derivative of Equation (4.2) with respect to (8, X).
Although this can be worked out numerically, this is prohibitively slow for practical use.
We have, therefore, calculated the derivatives of the right hand side of Equation (4.2), with
respect to (8, ), for a sample of size H. Expressions for these are given in Appendix A.

Once the maximum has been found, the analytic expressions for the derivative can
be used to compute an estimate of the second derivative of the log-likelihood at the
maximum, whose inverse is the asymptotic variancé matrix of the parameter estimates.
Thus, unlike bias correction of quasi-likelihood estimates using Kuk’s method or a
RM search, SML gives standard errors of the bias-corrected parameter estimates with
relatively little additional computational effort.
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4.1 Two-stage algorithm approac—h to obtain maximum likelihood estimates

McCulloch (1997) reports that SML only works well if the importance distribution is
fairly accurate. If this is not the case, then one option is to use the iterative procedure
described in Appendix B. Although, given time, this should lead to the maximum likeli-
hood estimates, it is too slow for practical use; further it ignores the fact that good
starting values are available from the quasi-likelihood estimates. The most accurate of
these are the second-order PQL estimates (Goldstein and Rasbash, 1996). Accordingly,
we propose the following algorithm:

Two-stage algorithm:

1) Fit the model us1ng second-order PQL to give estimates denoted (ﬂ ).

2) Set the importance density Xj = $'and simulate (41, . . . , ug;) from the multivariate
normal distribution with covariance matrix .

3) Fixing (u1,...,4y), find the values of (B, ¥) that maximise the Monte-Carlo esti-
mate of the likelihood in Equation (4.2), using the derivatives in Appendix A. Report
these as the maximum likelihood estimates.

4) Use the analytical form of the first derivatives to obtain a numerical estimate of the
second derivative of the log-likelihood function at the maximum. Invert this for an
estimate of the variance matrix of the parameter estimates.

In the next section, we describe a simulation study comparing this approach with Kuk’s
method for bias correction.

4.2 Comparison of Kuk’s method and ‘two-stage algorithm’ approach for bias
correction

The 100 simulated data sets used in the comparison between Kuk’s and the RM methods
are used again in this simulation study. For the ‘two-stage’ SML approach, H (the number
of draws from the importance density) is set at 500. The results are shown in Table 1.

An unconstrained search routine (‘fminunc’ in Matlab) based on the interior-reflective
Newton method is used in the SML approach. This method is described in Coleman and
Li (1996, 1994). Three simulated data sets resulted in non-convergence. In these cases,
we performed a constrained search where the variance is constrained to be positive.

The results suggest SML gives comparable mean squared errors, but with the advan-
tage of giving standard errors of bias-corrected parameter estimates and an estimate of
the log-likelihood at the maximum.

4.3 Comparison of ‘two-stage algorithm’ and numerical quadrature

To complete this section, we report the results of applying SAS proc NLMIXED to the
100 simulated data sets. Proc NLMIXED uses numerical integration using quadrature.
It selects the number of quadrature points adaptively. It does this by evaluating the log-
likelihood function at the starting values with increasing numbers of quadrature points
until the difference between two successive evaluations is less than the value set by the
option, QTOL. We use the default value of 1E-4. Proc NLMIXED would not converge
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unless starting values were provided. We chose these to be 0 for both fixed parameters
and 1 for the random intercept variance. Proc NLMIXED reports the projected gradient
at the final parameter estimates, which should be close to 0 if they are close to the
maximum likelihood estimates. With these starting values, NLMIXED did not converge
properly for one data set (final Hessian had a negative eigenvalue, and a gradient of
35 for the variance); for 15 others NLMIXED issued a note that at least one projected
(absoluted) gradient exceeded 0.001; the maximum of these was 0.012. For 10 others,
NLMIXED reported a negative eigenvalue while iterating, but converged satisfactorily
with all projected gradients <0.001.

Table 1, rightmost columns, reports the results for both (a) the 99 simulations for which
NLMIXED converged and, for reference, (b) the 84 for which NLMIXED converged with
all projected gradients <0.001. Unsurprisingly, NLMIXED performed better in (b), but
we believe (a) is the fairer comparison with our two-stage procedure (which fitted all 100
datasets). Comparing the NLMIXED results (a) with our two stage procedure, we see
that the bias is greater with proc NLMIXED. However, the mean square error is slightly
smaller. This is because the variability of the two-stage bias-corrected estimates with
only 500 simulations exceeds that of those from NLMIXED. The difference is greatest
for the estimated variance. For this parameter, the sample variance of the estimates from
NLMIXED is 0.688%; that from the two-stage approach is 0.7472. Assuming this variabi-
lity is proportional to 1/(no. of simulations), we would need 500 x 0.747%/0.688% = 589
simulations for similar MSEs.

In the light of this, rather than identifying one or other method as the ‘gold standard’,
we take the view that when both methods give similar results, we can be confident of
being close to the maximum likelihood estimates.

5 Data analysis

In this section, we give the results of applying our method to the analysis of two data
sets and compare with the results from using EM-Laplace2 (implemented in HLM ver-
sion 6.02), MCMC (implemented in MLwiN 2.02) and numerical (adaptive) quadrature
methods (implemented in (Generalised Linear Latent And Mixed Models (GLLAMM))
(Rabe-Hesketh et al., 2005) in Stata 8.2 and proc NLMIXED in SAS release 8.

5.1 USAsmall data

In these data there is a binary response on 737 children (level 1) from 479 families
(level 2) and three covariates. Fifty six percent of families have only one child, making
this a ‘sparse’ data set for which quasi-likelihood estimates are most likely to suffer
noticeable bias.

We fit the following model, where the binary response from child 7 in family j is
denoted as Yj;:

logit{Pr(Y; = 1)} = (Bo + ;) + p1X1; + B2X2;; + B3X3;;
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Table 2 Parameter estimates for the model for the USAsmall data from PQL(2), SML, EM-Laplace2, MCMC,

proc NLMIXED and GLLAMM

second-order

second-order

PQL followed by

Estimation method

PQL SML (H =3000) EM-Laplace2 MCMC Proc NLMIXED GLLAMM
Fixed
parameters
Bo 0.905 (0.244) 0.954 (0.275) 0.862 (0.209) 1.020 (0.299) 0.962 (0.276) 0.960 (0.274)
B 0.573 (0.445) 0.581 (0.466) 0.487 (0.418) 0.644 (0.491) 0.596 (0.471) 0.599 (0.470)
B2 1.431 (0.218) 1.501 (0.258) 1.344 (0.208) 1.594 (0.282) 1.515(0.259) 1.514(0.259)
Ba 1.798 (0.351) 1.883 (0.408) 1.712 (0.316) 2.014 (0.449) 1.905(0.410) 1.901 (0.408)
Random
parameters L — . - y
o2 2.402 (0.473) © 2.800(1.110) "1.546 (NA) 3.569 (1.399) 2.894 (1.087) 2.874(1.073)
-2 x log- NA 792.0 2146.4 (DIC) 754.7 791.5 7915
likelihood

NA, not available; DIC, Deviance Information Criterion; NLMIXED used adaptive quadrature (Section 4.3);
GLLAMM: 8 quadrature points were used.

where u; is the family-specific random effect with variance o?. Using i) second-order
PQL and ii) second-order PQL followed by SML, as in our two-stage algorithm eatlier,
gives the results in Table 2.

The second-order PQL estimates of random and fixed parameters are consistent with
the downward biases found in Table 1. This is most marked for the variance, 03, which
is 14% smaller than the SML estimate. Further, the standard errors appear to be under-
estimated by second-order PQL. Again, this is most marked for the standard error of
the estimate of 2.

Inaddition, SML, like other methods based on numerical integration, gives an estimate
of the log-likelihood at the maximum, shown in the bottom row of the table above.
This is useful for comparing models. For example, refitting the model without X1 gives
—2 x log-likelihood = 793.0 (1 dp). The likelihood ratio test for the importance of X1
is thus 793.0 — 791.4 = 1.6, which comparing with x? is not significant at the 5% level.

As expected, this agrees, to 1 dp, with the Wald test (0.581/0.466)> = 1.6. Also the SML
estimates for the fixed and the random parameters are very close to those from the two
numerical integration methods, proc NLMIXED and GLLAMM.

Relative to SML and NLMIXED, EM-Laplace2 parameter estimates appear too small;
in particular the random parameter, 62, is 45% less than the SML estimate. The reported
deviance from EM-Laplace2 is more than twice those from SML and the other two
numerical methods, presumably because it includes an additional constant term from
the likelihood. Changes in the deviance are similar, though.

It is interesting to note that the sixth-order Laplace approximation with Fisher scoring
(Laplace6) implemented in HLM 5.04 failed to converge in this example. We presume
that such convergence difficulties lie behind the replacement of i) sixth-order Laplace
approximation with a second-order approximation and ii) the Fisher scoring algorithm
with the EM algorithm, in HLM 6.01 and 6.02 (Raudenbush et al., 2004). However,
standard errors are currently unavailable for the variance components estimated using
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EM-Laplace2 in HLM 6.01 or 6.02. The latter is the latest version available at the time
of writing.

The MCMC estimate for o is about 27% higher than the SML estimate. The Gibbs
sampling with Gamma diffuse priors (¢ = 0.001 and B = 0.001) used in the MCMC
run in MLwiN is based on a burn-in of 5000 iterations and a chain-length of 100000.
It was run for another 400000 iterations to confirm the relatively large level 2 variance.
The mean (SD), median and effective sample size (assuming successive values in chain
independent) of the resulting chain are 3.511 (1.339), 3.126 and 2014. Our results are
probably because of the fact that, although the prior is diffuse, it gives zero weight
to a zero variance, so that when there is relatively little information in the data, both
the posterior mean and median are pulled away from zero relative to the maximum
likelihood estimate. Interestingly, the Bayesian Deviance Information Criterion (DIC) is
fairly close to those from SML and the numerical methods.

5.2 BANG data

This data set comes from a study of the fertility of women in Bangladesh and is typical
of social science data to which our method can usefully be applied.

In the sub-sample analysed here, the response is the contraceptive use of women
(1 =yes, 0 =no) at the time of the survey. Three covariates are considered in our
illustrative analysis: number of living children (four categories: 0, 1, 2 and >3), age
(centred at the sample mean) and region of residence (1 = urban, 0 = rural).

Let Y;; denote contraceptive use of women i in district j, and 1[] an indicator function
for the event in brackets. We fit the following model:

logit{Pr(Y;j = D} = (Bo +#;) + (B1 +v;) x 1[urban resident] + B, x (centred age);;
+ B3 x 1[1 child] 4+ B4 x 1[2 children] 4+ B85 x 1[>3 children]

2
u] ~ . —_— au UMU
(Uj) N@©,Q); Q= (UW avz) .

In this example, region of residence is not taken as a level in the data hierarchy but is
treated as a level 1 covariate in the model. The dummy variable for urban residential
effect on the use of contraceptive is included in the random part of the model thus
allowing variance between districts to differ between rural and urban regions.

Table 3 gives the parameter estimates for the various approaches considered. For SML,
we see the adjusted odds of using contraception is 2.3 times greater for women in urban
areas than those in rural areas, reduced by about 0.8 times for each decade-increase in
age, roughly three times greater with the first child and four times greater with two
or more children (compared with having no children). There appears to be significant
variability between districts, but this is reduced by 2 x —0.41 4+ 0.69 = —0.13 (log-odds
scale) in urban regions.

To carry out a likelihood ratio test for the latter effect, we refitted the model without
the random term for urban residence and its covariance with the random intercept. This
gave a —2 x log-likelihood = 2413.0. Thus, the likelihood ratio test for this effect is
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2413.0—2398.9 = 14.1. Comparing this with the xZ distribution, we conclude that there
is strong evidence to support a reduction in the variability of contraceptive use in urban
regions. (Note this is an approximate test, because of the constraints on the variance
terms. Corrections to allow for this are discussed by Self and Liang (1987). However, the
conclusions are unchanged here.)

The fixed and random parameters obtained from using EM-Laplace2 are close to
those from SML and the two numerical integration methods. This is different from
the previous USAsmall example where parameter estimates were markedly lower when
compared with SML and the other methods considered. The reported deviance from
EM-Laplace2 is 5953.1. Refitting the same model without allowing random effect for
urban residence gave a deviance of 5968.1. This yields a change in deviance of 15.0, to
1dp, on 2 d.f. Itis slightly higher than that from SML but the same as those from the two
numerical methods as shown in Table 3. Note the larger value of the deviance (relative
to the other software) just reflects that the EM-Laplace2 adds a different (arbitrary)
additive constant to the deviance. This does not affect inferences, which are based on
changes in the deviance.

The estimates for the three random parameters from MCMC with Gamma diffuse
priors (@ = 0.001 and B = 0.001) are again somewhat higher (on average 13%) though
to a lesser extent than those from SML and the two numerical methods.

It is interesting to note that proc NLMIXED failed to converge for the model con-
sidered in this example when user-supplied starting values were not provided (default
starting values for all parameters are 1). For this and the earlier USAsmall example
PQL(2) estimates were provided as starting values for proc NLMIXED. User-supplied
starting values were not needed for GLLAMM in either of these examples. It uses
parameter estimates obtained from ordinary logistic model as starting values.

Finally, note that, in this example, there is little difference between the second-order
PQL estimates and those obtained by following second-order PQL with SML. This
reflects the fact that there are a reasonable number of women (level 1 units) in each
district (level 2 unit).

6 Comparison with numerical integration methods in SAS

To conclude, we present a further comparison of PQL followed by SML with the nume-
rical integration method implemented in SAS. We found the latter considerably faster
than Stata’s GLLAMM (see below for some timings) especially when there are many
random effects in the model. :

We simulated data from a two-level logistic model,

logit{Pr(Y;; = 1)} = (Bo + uoj) + (B1 + u1) X1 + (B2 + u2))X2;; + (B3 + u3j) X35

where

o 0.5
- , N w | 0.05 0.5
p=I1111), XitoX3~N@O,Dand | | ~N]0,|505 005 0.5

u3 0.05 0.05 0.05 0.5
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Table 4 Results from SML (H = 5006) and SAS proc NLMIXED

SML SAS proc NLMIXED
Random
parameters Time Max. Time Max.
in model (min) |gradient| Log-likelihood {min) |gradient| Log-likelihood
1 3.4 0.004121 -1033.097 0.05 1.723e-6 —1033.021
3 4.9 0.017214 -1019.218 0.4 0.000719 —-1019.143
6 30.0 0.006752 —1006.041 4.65 0.000437 —1005.950
10 86.1 0.004275 —995.822 32.35 0.00323 —997.042

There are 200 level 2 units with 1 to 19-level 1 units each.

In the comparlson models with increasing numbers of random effects are fitted.
Results from our ‘two-stage algorithm’ are compared with those from proc NLMIXED.
The optimisation technique used in proc NLMIXED is quasi-Newton and adaptive
Gaussian quadrature is used to integrate over the random effects numerically. At sensible
precision, parameter estimates and standard errors were very similar for both methods
(results not shown). Table 4 shows the relative time taken to converge, the log-likelihood
value and absolute value of the largest gradient at convergence.

The log-likelihood values are comparable between the two methods. The gradients at
convergence are lower in NLMIXED. However, imposing a more stringent convergence
criterion on SML would only be sensible if H were increased. Elapsed time goes up at
an exponential rate in NLMIXED, while we were able to achieve comparable accuracy
with a more linear increase in time using SML.

The similar parameter estimates, standard errors and log-likelihoods are encouraging,
As the relative increase in computational time for SAS with increasing number of random
effects is much faster SML would appear to have the edge for models with a large number
of random effects. We have not optimised our code in a low-level language, so it is
plausible that further optimisation could bring the baseline times for the two methods
closer. In addition, as discussed below, SML has the potential to extend to non-normal
random effects and more than two levels.

Finally, note that GLLAMM took 225, 4.5 min and 93 min for the models with one,
three and six random parameters. The model with 10 random parameters had not
converged after 15 h.

7 Discussion and conclusions

We have investigated methods for bias correction of parameter estimates in two-level
models for binary data. Initially, we used a simulation study to compare three simulation-
based methods: 1) Kuk’s; ii) the RM search; and iii) SML, as a means to bias-correct
quasi-likelihood estimates. Our results show that SML performs comparably with the
other methods, but has the advantage that it yields estimates of the variances of the
parameter estimates together with an estimate of the log-likelihood at the maximum
that can be used for comparing models.
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Further, SML has some computational advantages over Kuk’s method and the RM
search. First, SML does not require refitting the model to each bootstrap data set, so
it is not prone to problems when unusual bootstrap data sets are simulated, to which
either the model cannot be fitted or which gives outlying parameter estimates, such
as negative variances. Even when second-order PQL estimates converge readily on the
original data, these problems mean Kuk’s and the RM approach require ad-hoc ‘fudges’
to the code to work automatically. In contrast, our experience is that, given second-order
PQL estimates have converged, SML is far more robust.

Our experience confirms that of McCulloch (1997), that SML needs good starting
values to converge to the maximum likelihood estimates. Using SML after second-order
PQL therefore seems sensible. Note that if bias-correction is not required, our code can
be used to provide an estimate of the log-likelihood at the maximum.

There are several areas in which refinements could be made to our algorithm. First,
convergence could be assessed more formally. For example, a running estimate of the
standard error of the estimated likelihood function could be computed, and simula-
tion stopped when it is smaller than a user-specified threshold. Alternatively, Booth
et al. (2001) note that the variability of SML tends to increase as the random effects get
larger, so it might make more efficient use of simulation to concentrate more heavily
on level 2 units with larger random effects. Another approach would be to use a level-2
unit-specific importance distribution, based on the second-order PQL estimate of the
mean and variance of the subject-specific random effect. Clearly, our code can be gene-
ralised to include other distributions (Poisson, negative binomial) and link functions. In
addition, the averaging step (the slowest part) of SML is a natural candidate for parallel
processing.

It may be possible to further improve the accuracy of SML using carefully chosen
so-called ‘good lattice points’, instead of a random sample from the importance distri-
bution. In empirical studies, the results with such points have been promising (Pan and
Thompson, 1998).

In our illustrative analysis of the USAsmall data set with its sparse data structure, we
found that EM-Laplace2 produced estimates that are markedly lower in both fixed and
random parameters when compared with estimates from the other methods considered,
including PQL(2). As this marked reduction in magnitude of parameter estimates was
not replicated in the analysis of the BANG data set where a reasonable number of level 1
units were nested within most of the level 2 units, we are led to believe that EM-Laplace2
in HLM may produce downwardly biased estimates when the data are sparse. However,
this would require a more extensive simulation study to verify.

Turning to the comparison with numerical integration, we used SAS NLMIXED to
fit the same simulated data sets used in the comparison between Kuk’s method, RM
search and SML. We found the bias was fractionally larger with NLMIXED, which also
had some convergence problems. While mean square error was slightly smaller with
NLMIXED, this is not surprising as we only used 500 simulations for SML. For our
data sets SML and NLMIXED gave similar parameter estimates. We also found that
when increasing number of random effects were included in the model, we were able
to obtain comparable results to numerical integration without increasing the power
of H by 1 for each new random effect. Thus, the computing time of SAS’s numerical
integration increased faster than for SML. We are hopeful that if more effort were put into

»
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optimising code it would also be more comparable in terms of speed. The rapid increase
in computing power available to researchers will also help here. The advantages are: i) the
code we have written would be relatively simple to extend to at least single non-normal
random effects; and ii) the method extends to models with more than two levels which
SAS’s proc NLMIXED is not designed for (although, with the use of certain tricks, savvy
users may be able to fit three-level models). Although, using SML with three or more
levels requires a modification of our code and a considerable increase in H, nevertheless
Carpenter et al. (2003) obtained useful results in a practical example.

Finally, note that our approach is complementary to fitting similar models using
a Bayesian approach, using MCMC methods in MLwiN, WinBUGS (Spiegelhalter
et al. 1999) or other Bayesian software. Advantages of our approach are that it is unnec-
essary to specify priors-for variance terms; which even if notionally ‘uninformative’ may
turn out to have unforeseen effects (see Tables 2 and 3); that a likelihood is available for
testing, and that Monte-Carlo error can be relatively straightforwardly addressed (eg,
Booth and Hobert, 1999).

In summary, we conclude the following: SML (starting from PQL estimates) performed
better than bias-corrected versions of PQL by Kuk’s method or the RM algorithm. It
makes as efficient use of simulations, yet avoids their computational problems and in
addition provides standard errors and an estimate of the log-likelihood at the maximum.
Our comparison of SML, EM-Laplace2, a Bayesian approach with uninformative priors
and numerical integration, came out in favour of SML and numerical integration. The
former is more flexible, and in our simulation study slightly less biased. However, pro-
vided good starting values are available and taking into account computational speed,
SAS proc NLMIXED appears the ‘best of the rest’ for standard two-level analyses.

Matlab code implementing SML is available from the Journal website.
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Appendix A
Derivative expressions for SML

For every level 2, in other words jth unit, the first derivative of the right hand side of
" Equation (4.2) can be written as

3l adlogl 8 "o
= = = — | —log(H ;
%9 29 29 ( og(H) + log Z l_[gwh)

h=1 i=1
where , :
f(up, X)
0 e (ﬂa E)a 8 = g(yiluha ﬂaxia zi) and whp= —=_
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H I I
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e L
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H
C= Z giwp.
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For the case where the importance density follows a multivariate normal distribution
with mean 0 and covariance matrix X,
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where y is an element of the variance—covariance matrix, X, and
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For example, for a bivariate distribution, % = ((1) 8) , % = ((1) (1))
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Finally, the full first derivative with respect to 6 is simply the derivatives summed over
j, that is

For three or higher level, cross-classifications and multiple membership models, see
Appendix 4.2 in Goldstein (2003).

Appendix B
SML algorithm when starting far from maximum

Let X denote the estimate of the covariance matrix at step i. Set the covariance of the
importance density X = X*. At step i:
1) Simulate (#1,...,uy) from the multivariate normal distribution with covariance

matrix 2j. )
2) Fixing (u1,...,uy), find the values of (8,X) that maximise the Monte-Carlo

estimate of the likelihood in Equation (4.2). Denote these (3 i1 5ty
3) Setx; = ¥,

Iterate steps 1-3 till convergence.




